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Abstract

Although external concentrations are more readily quantified and often used as the metric 

for regulating and mitigating exposures to environmental chemicals, the toxicological response 

to an environmental chemical is more directly related to its internal concentrations than the 

external concentration. The processes of absorption, distribution, metabolism, and excretion 

(ADME) determine the quantitative relationship between the external and internal concentrations. 

ADME processes are often susceptible to saturation at high concentration, which can lead to 

nonlinear changes in internal concentrations that deviate from proportionality. Using generic 

physiologically-based pharmacokinetic (PBPK) models, we explored how saturable absorption or 

clearance influence the shape of the internal to external concentration (IEC) relationship. We used 

the models for hypothetical chemicals to show how differences in kinetic parameters can impact 

the shape of an IEC relationship; and models for styrene and caffeine to explore how exposure 

route, frequency, and duration impact the IEC relationships in rat and human exposures. We also 

analyzed available plasma concentration data for 2,4-dichlorophenoxyacetic acid to demonstrate 
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how a PBPK approach can be an alternative to common statistical methods for analyzing dose 

proportionality. A PBPK modeling approach is a useful tool that can be used in early stages of a 

chemical safety assessment program to optimize the design of longer-term animal toxicity studies 

or to interpret study results.

Keywords

Physiologically based pharmacokinetic (PBPK); animal study design; internal concentrations; 
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Introduction

Modern toxicity testing increasingly seeks and utilizes non-animal approaches, but whole 

animal studies still play a critical role in assessing potential human health risks because 

in vivo methods can provide data that are currently unobtainable using alternative 

approaches. Such data include internal concentrations and dose-response relationships at 

the organism or population level. These in vivo studies can also provide insight into the 

roles of pharmacokinetics (PK) and potential mechanisms of toxic action in determining 

the dose-response relationship. For certain environmental chemicals, chronic toxicity and 

carcinogenicity studies are required to assess human health risks under prolonged and 

repeated exposures. These repeated dose animal studies are designed and conducted to meet 

objectives beyond hazard identification alone; a well-designed study could also inform how 

the toxicity of a chemical progresses or changes with increasing doses or exposure durations, 

allowing the studies to be more predictive of human health risks under realistic exposure 

circumstances. An optimal design of a study is best supported by integrating and collectively 

assessing the available body of data to determine, for example, human relevant effects, the 

most suitable animal model (i.e., test species), and appropriate dose levels and dose spacing 

that can maximize the interpretability of study results (OECD 2014).

Pharmacokinetic data can provide valuable information during in vivo study design 

through the characterization of the internal to external concentration (IEC) relationship, 

which might exhibit species, sex, age, time, or dose-dependent differences. While external 

concentrations can often be more readily quantified and controlled in animal studies than the 

resultant internal concentrations, toxicological responses are more directly related to internal 

concentrations. Improved understanding of PK can also provide a stronger mechanistic basis 

to extrapolate or compare study results across studies, species, doses, and organism life 

stages. The term “external concentration” is used herein as panoptic shorthand to refer to 

multiple common terminologies (such as administered dose, applied dose, external exposure, 

or external dose) used to describe intentional dosing in animal studies and human exposure 

to environmental chemicals. Similarly, the term “internal concentration” is used herein to 

represent xenobiotic found in animal or human blood, plasma, or tissues that are described 

with multiple terms (such as systemic exposure, internal dose, effective dose, or internal 

exposure).

The IEC relationship is controlled by the processes of absorption, distribution, metabolism, 

and excretion (ADME). Many ADME processes are mediated by enzymes or transporters, 
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and therefore have the potential to become saturated at higher concentrations. Examples of 

saturable ADME processes include intestinal metabolism, tissue or plasma protein binding, 

transporter-mediated tissue absorption, renal tubular reabsorption, hepatic metabolism, 

enzyme induction or inhibition, and biliary secretion (Yu and Shargel 2016). As a result, 

changes in chemical concentrations in blood, plasma, or tissues can be higher or lower than 

would be expected by assuming proportionality in the IEC relationship; “non-linearity” is 

used herein to describe the resultant IEC relationship that deviates from proportionality. 

To illustrate how saturable ADME process(es) can lead to a nonlinear IEC relationship, a 

generic physiologically based pharmacokinetic (PBPK) model for rats was constructed to 

simulate saturable absorption and clearance processes and the resultant IEC relationships 

for several hypothetical and known chemicals. In our test cases, the area under the curve 

(AUC) of plasma concentrations was chosen to represent the internal concentration of 

interest, which is generally an appropriate dose metric for lifetime exposure to systemically 

acting chemicals (Clewell, Andersen, and Barton 2002; Voisin et al. 1990). There are 

cases where other dose metrics are more toxicologically relevant than AUC, for example 

peak concentration, amount or rate of metabolism, or protein adduct levels. Dose metrics 

other than AUC can also be simulated using a PBPK model and should be selected on a 

chemical-specific and case-by-case basis. This generic PBPK model was also parameterized 

for humans to explore how different exposure scenarios, including variations in routes, 

duration, and frequency, influence the IEC relationship.

Characterizing the proportionality of the IEC relationship is important for toxicity study 

design and chemical risk assessment (Borgert, Fuentes, and Burgoon 2021). The common 

analyses used include visual inspection and comparison of fold changes in external and 

internal concentrations (Loccisano et al. 2020; Loccisano et al. 2021; Saghir et al. 2013; 

Terry et al. 2014), as well as statistical methods that examine if a linear assumption can 

be used to adequately describe the IEC relationship (Bartels et al. 2020; McFadden et al. 

2012; Saghir et al. 2012). There are several issues associated with the visual inspection and 

fold-change methods; both are inherently subjective, are frequently based on the average 

blood or plasma concentration for each administered dose group, only distinguish tested 

dose groups as simply proportional or not proportional, and lack informative statistical 

outputs, such as confidence bounds to provide objective criteria for defining proportionality.

Other statistical methods, such as piecewise regression, can be used to estimate an external 

concentration above which the IEC relationship markedly deviates from proportionality and 

to quantitatively address uncertainty in such an estimate with confidence bounds. These 

methods also require a pre-determined criterion, such as a specific percentage that the 

IEC relationship is allowed to deviate from the expected proportional relationship before 

being classified as not proportional. However, choosing such a criterion requires quantitative 

understanding of the dose-dependent transition of a known or proposed mode of action, and 

such information is often not available.

The objective of the current proof of principle study, involving multiple test cases, is 

to demonstrate the potential use of a PBPK model for integrating available ADME data 

to predict the IEC relationship. It is important to note that the utilized model and test 

cases represent a theoretical exploration of a modeling approach for data analysis and 
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hypothesis testing. If the model purpose is outside of this context (for example, conducting 

extrapolations to support regulatory risk assessment), the modeling analysis should go 

through an application-appropriate, rigorous validation process as described elsewhere (e.g., 

USEPA 2006, WHO 2010). Nonetheless, the test cases examined herein demonstrate the 

utility of PBPK models to provide a clearer understanding of the IEC relationship, which 

can inform better design or interpretation of repeated dose animal toxicity studies.

Methods

Generic PBPK Model

A generic PBPK model was constructed for both rats and humans (physiological parameters 

listed in Table S1) to simulate, at pseudo steady state, the average daily AUC of plasma 

concentration of the parent chemical and its metabolite from repeated daily dosing. Unless 

otherwise specified, all simulations were performed for 100 external doses, the magnitude 

of which were evenly log-spaced between 1 and 1,0001 mg/kg bw/day. The model included 

flow-limited compartments for liver, fat, lumped rapidly perfused tissues, and lumped slowly 

perfused tissues (structure in Figure 1). The selection of utilized compartments was guided 

by the principle of parsimony (USEPA 2006) and the specific relevance for the conducted 

test cases. Liver was separated from the lumped rapidly perfused tissue to represent a major 

metabolism site; fat was separated from the lumped slowly perfused tissues to account for 

elevated lipophilicity of styrene. The model assumed distribution of chemicals to the tissues 

is blood flow limited. This generic model included an oral and an inhalation route; and 

for one of the test cases, a dermal route via a skin compartment was added. Oral exposure 

can be a single exposure or repeated daily exposure from one or more exposure episodes 

within a 24-hour period. Oral exposure was described using a combination of a first-order 

absorption rate and an absorption fraction that could be a fixed value or saturable, exhibiting 

progressive reductions at higher external concentrations.

Six proof-of-principle test cases were performed using the model to understand how the 

IEC relationship was influenced by nonlinear absorption or metabolism/clearance processes 

(summarized in Table 1). However, these proof-of-concept test cases using hypothetical and 

known chemicals are not meant to simulate the PK of specific chemicals for risk assessment 

purposes. The structure, parameterization, and required predictive capabilities of a PBPK 

model for other purposes should be determined according to the intended use and accepted 

range of uncertainty. The physiological parameters used in the rat and human models were 

obtained from the literature (Brown et al. 1997; Lave et al. 1997) (Table S1). With the 

exception of the styrene test case, all chemicals were assumed to be non-volatile, so the 

blood:air partition coefficient (PC) was set to a large value (1000) and exhalation of these 

chemicals was not expected. The tissue:blood PCs (Tables S2–S4) were estimated using the 

unadjusted Schmitt method in the High Throughput Toxicokinetic (httk) package (v 2.0.4 

in R v 4.0.4) (Pearce et al. 2017). In all cases where PCs were estimated with httk, the 

rapidly perfused tissue:blood PC was set to be the same as the liver:blood value. Plasma 

protein binding was not assumed in these test cases, so fraction unbound was set to 1.0. In 

1An oral dose of 1,000 mg/kg bw/day is a default maximum dose in repeated dose animal toxicity studies (OECD Guideline 407, 
1995/2008).
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the model it is assumed that a chemical can be metabolized in liver to a single metabolite 

and/or excreted in urine. Hepatic metabolism and urinary excretion of the parent chemical, 

as well as urinary excretion of the metabolite, were described using two terms, a first order 

process and Michaelis-Menten kinetics (see equation below for a generic substrate “S” and 

product “P”). Hepatic metabolism or urinary excretion were a first order process when Vmax 

was set to zero and a value was provided for the first order rate.

d P
dt = V max × S

Km + S + Cl × S

No further metabolism or clearance was included in the model. This model was 

implemented in Berkeley Madonna (v.10) for most analyses. The model was also 

implemented in R (v.4.0.3), as an open-access alternative to Berkeley Madonna, for 

the analysis of the proportionality of published 2,4-D AUC data (code available in the 

Supplemental Material, Appendices S1–S4).

Test case 1: Impact of partition coefficients and absorption/metabolic constants

PBPK analysis often involves sensitivity analyses to evaluate how the model outputs (dose 

metrics) are affected by the estimated model parameters (USEPA 2006; WHO 2010). 

Generally, a subset of model parameters is highly influential for the outputs. This test 

case is similar to a sensitivity analysis, but here the purpose is to understand about 

how different biology, described with model parameters, alters the IEC relationships. 

Specifically, we sought to understand how values of PCs, saturable absorption constants 

(maximum reduction in relative absorption fraction [fimax] and dose associated with half-

maximal absorption [f50]), and saturable metabolism constants for the parent (maximum 

rate of metabolism [Vmax] and concentration associated with half-maximal metabolism 

[Km]) influence the shape of the IEC curves. By varying the values of each of these 

constants across a broad range, we illustrated the impacts on IEC for a variety of theoretical 

chemicals. In this test case, parent metabolism was the only saturable process described in 

the model to simulate parent plasma AUCs given external concentrations between 1 and 

1,000 mg/kg bw/day. The parameter values for hypothetical chemical A were used as the 

starting point (chemical specific parameter values in Table S2) to generate an IEC curve. 

This curve was compared to curves generated by increasing or decreasing PCs by 10-fold 

and 100-fold, one PC at a time and all four PCs together. Additional curves were generated 

by increasing or decreasing Vmax by 2-fold, 5-fold, and 10-fold; Km by 5-fold, 10-fold, and 

100-fold; and Vmax and Km by 10-fold together, with the ratio of Vmax/Km kept the same. 

Next, we assumed that oral absorption was the only saturable process, the IEC curves were 

generated by setting (fimax, f50) to (0.9, 100), (0.5, 100), (0.1, 100), (0.9, 500), and (0.9, 50) 

and compared to a first-order oral absorption scenario by setting fimax to zero.

Test case 2: Impact of saturable metabolism and clearance on the IEC relationship

The purpose of this test case is to demonstrate how saturable hepatic metabolism and 

urinary excretion influence the IEC relationships for both the parent chemical and its 

metabolite. In this test case, the model was used to simulate repeated oral dosing to 

two hypothetical chemicals in rats for 20 days. These hypothetical chemicals represented 
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realistic chemicals with difference physico-chemical properties (for example, A: logKow 

=1.48; B: logKow = 4.66). The metabolic constants (A: Vmax = 6.1, Km = 2.5; B: Vmax = 

528, Km = 180) were predicted using quantitative structure-property relationships algorithms 

in IndusChemFate (chemical-specific parameter values in Table S2). While the parameter 

values for hypothetical chemicals A and B were estimated based on known chemicals, the 

parameter values for their metabolites (such as volume of distribution and excretion rate 

constants) were placeholder values for proof-of-principle demonstration. When data are 

available for specific metabolites, these placeholder values can be replaced with data, and 

additional metabolic pathways can be added to the model. The IEC curves for the parents 

and the metabolites were simulated based on one of the three saturable processes (described 

as Michaelis-Menten kinetics): (1) saturable hepatic metabolism of the parent chemical 

(no urinary clearance of the parent); (2) saturable urinary clearance of the parent (with first-

order metabolism of the parent); (3) saturable urinary clearance of the metabolite (first-order 

metabolism and no urinary clearance of the parent). One additional case was simulated, 

using only the hypothetical chemical A, for a scenario where both parent metabolism and 

metabolite clearance were saturable. The maximum rate of metabolite clearance (VmaxUM) 

was set to either double or half of the parent Vmax. In addition, the IEC curves for first-order 

metabolism and urinary clearance were generated to compare with the saturable scenarios.

Test case 3: Saturable oral absorption fraction

The purpose of this test case is to demonstrate how saturable oral absorption influences 

the IEC relationship for the parent chemical and its metabolite. To parameterize the 

model for describing saturable absorption, fractional oral absorption for two hypothetical 

chemicals, C and D, was first predicted with the physiologically based oral absorption 

program, GastroPlus® (version 9.8, Simulation Plus Inc., Lancaster, CA, USA) across a 

wide range of external concentrations. Such models are commonly used to understand 

factors impacting oral absorption (Chung et al. 2017; Hansmann et al. 2016; Margolskee 

et al. 2017). In GastroPlus®, quantitative structure activity relationship (QSAR) predictions 

of physico-chemical properties of the test materials (Khurana et al. 2017) provided inputs 

for a variant of the Advanced Compartmental Absorption and Transit (ACAT) model, 

which included dissolution and absorption of chemicals in nine separate sections of the 

gastrointestinal tract (De Buck et al. 2007; Parrott et al. 2009).

Next, a simplified representation of saturable oral absorption fraction, following the equation 

of Dolton and D’Argenio shown below (Dolton and D’Argenio 2017), was programmed as 

a standalone model (code in Supplementary Material, Appendix S3) to fit the GastroPlus® 

predicted oral absorption fraction by reducing the residual sum of squares between the 

log-transformed predicted absorption fractions and the log-transformed GastroPlus® values 

(Figure S1).

frac = fa × 1 − fimax × (bolus − dose_prop term
f50 + bolus−dose_prop term

Where fa is the maximum fractional bioavailability of the chemical, fimax is the 

maximum fractional reduction in relative bioavailability, bolus is the administered oral 
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dose, dose_prop_term is the dose at which the response is no longer dose-proportional, and 

f50 is the amount of additional dose above the dose_prop_term that is associated with half-

maximal reduction in relative bioavailability (i.e., a bolus equal to f50 + dose_prop_term is 

the dose where the reduction in relative bioavailability is expected to be equal to 0.5*fimax).

To examine the effect of saturable oral absorption on the IEC relationship, we simulated 

repeated oral dosing of the above two hypothetical chemicals in rats for 20 days. Saturable 

oral absorption was parameterized using the values fit to the GastroPlus® generated 

absorption fractions. Parent metabolism was assumed to be a first-order process, using 

hepatic clearance rates predicted from QSAR-based total microsomal clearance in rats 

(ADMET predictor module v10.0 of GastroPlus®). There was no urinary excretion for the 

parent (both urinary excretion rate [CLU] and maximum rate of urinary excretion [VmaxU] 

were set to 0), and the first-order clearance rate for the metabolite (CLUM) was assumed to 

be twice the parent metabolism rate (CLH).

Test case 4: Styrene

The purpose of this test case is to compare the IEC relationships between rats and humans, 

between oral and inhalation exposures (using a rat model), for different exposure frequencies 

(using a rat oral model), and for different exposure durations (using a human inhalation 

model). In addition, potential occupational inhalation exposure levels were estimated from 

more than 14,000 personal samples collected by the United States Occupational Safety and 

Health Administration (OSHA) from 1984–2020 (OSHA 2020). Styrene air concentrations 

ranged from 0–2272 ppm with a median of 32 ppm and a mean of 54 ppm (Figure S2). 

These potential exposure levels were compared to external concentrations at which styrene 

metabolism saturated by simulating 8 hours/day inhalation exposure for 20 days. Styrene 

metabolic parameters (Vmax and Km) were fit to available rat data (Withey 1976; Young et 

al. 1979) (Figure S3) and styrene-specific tissue partition coefficients were obtained from 

the literature (Ramsey and Andersen 1984) (Table S3). In this test case, the only clearance 

mechanism described in the model was saturable hepatic metabolism (no urinary excretion) 

to predict parent AUCs (no metabolite predictions), as suggested by the available animal 

data. For interspecies comparison, both rat and human models were used to simulate 6 

hours per day inhalation exposures for 20 days (parameter values are listed in Table S3), 

given air concentrations between 1.84 and 1,844 ppm. This range of air concentrations was 

calculated to be equivalent to oral bolus doses between 1 to 1,000 mg/kg bw/day in rats for 

total inhalation and total oral concentrations.2 The difference between this conversion and 

a conversion based on total amount of styrene metabolized (toxicity arises from metabolite) 

was small (Figure S4). For route comparison, the rat model was used to simulate 6 hours per 

day inhalation exposure and daily oral exposure for 20 days, given external concentrations 

between 1 and 1,000 mg/kg bw/day. To explore exposure frequency, the rat model was 

used to simulate oral exposures, with total daily doses between 1 and 1,000 mg/kg bw/day, 

from evenly spaced 1, 3, 6 or 12 doses per day for 20 days, or a single dose. For exposure 

duration, the human model was used to simulate inhalation exposure to air concentrations 

between 1 and 2,000 ppm, for 1, 8 or 24 hours per day for 20 days.

2For example, 1.84 ppm = (1 mg/kg bw/day) * (0.25 kg) / ((5.3 L/h) * (6 h/day) / (1000 L/m3)) / (104.16 g/mole) * (24.45 L/mole)
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Test case 5: Caffeine

The purpose of this test case is to simulate the IEC curves from oral or dermal exposures to 

caffeine (chemical specific parameter values in Table S3). Similar to the styrene test case, 

potential human exposure levels were also compared to predicted external concentration 

at which caffeine metabolism is saturated. Human exposures to caffeine can come from 

multiple sources, such as oral intake from caffeinated beverages and chocolate (EFSA Panel 

on Dietetic Products 2015) or skin contact with consumer products that contain caffeine. 

The maximum 95th percentile of caffeine intake estimated from all food/drink sources was 

648 mg/day (or 10.8 mg/kg bw/day) for adults (18 to <65 years old) or 786 mg/day (or 

13.1 mg/kg bw/day) for those ≥65 years old (OECD 2020). For dermal exposure, the Tier 

0 deterministic cosmetic product exposure assessment (SCCS 2021) was used to estimate 

a worst-case aggregate exposure level from using personal care products such as shower 

gel, shampoo, hair styling products, body lotion, face cream, hand cream, liquid foundation, 

lipstick, and deodorant/antiperspirant. Including the use of retention factors to represent the 

fraction on the skin available for uptake depends on the respective cosmetic product, the 

maximum aggregate dermal exposure level was estimated to be 4.6 mg/kg bw/day (Bury 

et al. 2021). Caffeine-specific partition coefficients were obtained from literature (OECD 

2020). Caffeine is almost completely metabolized with 3% or less being excreted unchanged 

in urine (Begas et al. 2007; Bonati et al. 1982; Kot and Daniel 2008), so hepatic metabolism 

is the only clearance mechanism described in this test case. A published model described 

caffeine metabolism as a first-order process (OECD 2020), and for the purpose of our 

test case, a saturable metabolism was also included to simulate the IEC relationships for 

caffeine. For saturable metabolism, Km was set to a placeholder value of 100 μM, and the 

Vmax was calculated based on this Km value and a Vmax/Km ratio that corresponded to an in 
vitro hepatic clearance value of 0.68 μL/min/million hepatocytes (OECD 2020). For a 70 kg 

adult, the estimated Vmax was 735 μmol/h.3

Test case 6: Analysis of measured AUC data for 2,4-D

The purpose of this test case is to demonstrate the use of PBPK modeling as a biologically 

relevant alternative to statistical methods (Bartels et al. 2020; McFadden et al. 2012; Saghir 

et al. 2012) for analyzing the proportionality of the IEC data. In this test case, the rat PBPK 

model was used to examine whether a linear or a saturable clearance assumption can better 

explain the published plasma AUC data for 2,4-D administered by diet to male rats for 28 

and 71 days and female rats for 29 and 95 days (Saghir et al. 2013). The approximate intake 

concentrations were 0, 6, 25, 50, 75 or 100 mg/kg bw/day; 100 mg/kg bw/day was reduced 

to 75 mg/kg bw/day on test day 20 due to excessive toxicity observed in this dose group. 

Literature data suggested that 2,4-D was virtually unmetabolized (Van Ravenzwaay et al. 

2003) and it was primarily eliminated via saturable urinary excretion (Saghir et al. 2013). 

Thus, in our analysis, urinary excretion of 2,4-D was the only clearance pathway tested and 

no metabolism was included in the model. Saturable urinary excretion parameters, described 

as Michaelis-Menten kinetics, were fitted to the AUC data for each sex separately. Code for 

the generic rat PBPK model can be found in the Supplementary Materials (Appendix S4).

3For this example, Vmax/Km (L/h) = (0.68 μL/min/million hepatocytes) * (99E-6 L/μL) * (60 min/h) * (1000 g/kg) * 0.026 * (70 kg) 
= 7.35 L/h
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Fitting of urinary excretion parameters (maximum rate of urinary excretion [VmaxU] and 

dose associated with half-maximal excretion [KmU]) was performed using individual animal 

data (4 rats at each administered dose). For the 29-day female rat study, data from the 

main study and a dose refinement study were included; both studies targeted many of the 

same approximate doses, but achieved slightly different actual doses (e.g., 6 versus 7 mg/kg 

bw/day). Thus, the average of the external concentrations from the two studies was assigned 

as the targeted dose level (e.g., 6.5 mg/kg bw/day for the 6 and 7 mg/kg bw/day in the 

main and refinement studies); the animals were ad libitum fed so it was not possible to 

precisely determine the actual doses for each treated animal (Saghir et al. 2013). Daily 

dietary exposure was simulated in the model by dividing the daily dose into 24 equal 

amounts that are administered every half hour between 6 pm and 5:30 am, to approximate 

the nocturnal feeding pattern.

The urinary excretion parameters were optimized to fit the observed plasma AUCs by 

reducing the residual sum of squares between the log-transformed predicted and the log-

transformed observed values. Both VmaxU and KmU values were first fit to all the available 

female data (29-day and 95-day studies), and then the obtained KmU value was set the same 

for male rats. All available male data were then used to fit VmaxU for male rats (28-day 

and 71-day studies). The same KmU value was used for both female and male rats because 

the enzyme affinity was likely to be conserved across sexes; KmU was fit to female data 

more data points were available. We also fit the KmU based on the male data to test the 

sensitivity of the optimized results to fitting order. In addition, the AUC data were separately 

fit using a first-order urinary excretion alone (that is VmaxU was set to zero), and the process 

of model fitting for the first-order clearance rate (CLU) was identical to the optimization 

process assuming saturable excretion.

To compare the model fit generated using Michaelis-Menten kinetics with a first-order 

assumption, the residual sum of squares (RSS), mean absolute error (MAE), and the 

corrected Akaike information criterion (AIC) were calculated to provide a quantitative 

basis for comparing the relative “goodness of fit”. The AIC is a penalized measure of 

goodness of fit, which tested if the added complexity of the saturable excretion (fitting two 

parameters, VmaxU and KmU) is justified by a substantial improvement in the fit over the 

model employing only first-order clearance (fitting one parameter, CLU). The corrected 

AIC (AICc) was used because of the relatively small sample size available in observed 

data (Cavanaugh and Neath 2019). A small RSS or MAE value indicated a tighter fit of 

the model predictions to the observed data; conversely, a large ΔAICc value indicated a 

substantial improvement in the modeled fit due to the incorporation of saturable excretion.

Results

Test case 1: Impact of partition coefficients and absorption/metabolic constants

Varying parameter values from those initially chosen for chemical A provided perspectives 

for multiple theoretical chemicals. Similar trends were found for the impact of various PCs 

on the IEC relationships; decreasing PCs had minor impact on the shape of the curve and 

increasing PCs had more impact and flattens the shape of the curve (Figure 2A, showing 

only results for rapidly perfused tissue:blood PC). Varying all four PCs together resulted 
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in a more obvious shift of the IEC curve (Figure 2B). Decreasing PCs shifted the curve 

up, because smaller tissue:blood PCs resulted in more chemical in plasma. Increasing PCs 

shifted the curve down and flattened the curve, because more chemical distributed to tissues 

and lessened chemical in plasma. For saturable metabolism of the parent, increasing Vmax 

moved the sigmoid-like curve to the right (i.e., metabolism saturated at higher external 

doses) and increasing Km moved the sigmoid-like curve to the left and flattened the curve 

(Figures 3A and 3B); decreasing Vmax or Km gave similar changes but in the opposite 

direction. When increasing Vmax and Km by the same ratio, the shape of the IEC curve did 

not change much and shifted to the right; decreasing these parameters shifted the curve to 

the left (Figure 3C). For saturable absorption, increasing fimax or decreasing f50 moved the 

IEC curve further away from a linear curve (Figure 3D).

Test case 2: Impact of saturable metabolism and clearance on the IEC relationship

Although the first-order clearance values were similar between the two hypothetic chemicals 

(2.4 for chemical A and 2.9 for chemical B), the large difference between the metabolic 

constants (A: Vmax = 6.1, Km = 2.5; B: Vmax = 528, Km = 180) resulted in different 

IEC curves given the same range of external concentrations (Figure 4). In the case of 

saturable hepatic metabolism of the parent, AUCs of both chemicals increased faster than 

proportional with increasing external concentration. However, only the IEC of chemical A 

demonstrated a sigmoid-like shape. The IEC curve of chemical B with saturable metabolism 

was almost indistinguishable from the first-order curve at external concentrations below 10 

mg/kg bw/day (Figures 4A and 4B). The simulated AUCs of the metabolites also showed 

different trends. The AUCs of both metabolites proportionally increased with increasing 

external doses of the parents, but only the AUCs of chemical A’s metabolite reached a 

plateau that corresponded to the saturation of the parent metabolism (Figures 4A and 4B).

In the case of saturable urinary excretion of the parent, the simulated AUCs of both 

chemicals increased faster than proportional at higher external concentrations; and the 

simulated AUCs of both metabolites only slightly deviated from proportionality (Figures 

4C and 4D). In the case of saturable clearance of the metabolite, the simulated metabolites 

AUCs (Figures 4E and 4F) demonstrated a similar trend as the parent AUCs in the case 

of saturable metabolism of the parent (Figures 4A and 4B). The simulated parent AUCs 

are not affected by the clearance mechanism of the metabolite; they were proportional 

to external concentrations (Figures 4E and 4F). The reason different profiles were 

observed for chemicals A and B was due to simulations being limited to a specific 

range of external concentrations (1 – 1000 mg/kg bw/day). If a much wider range of 

external concentrations was covered, not considering whether some concentrations were 

unreasonable or unachievable, the overall profiles were likely to be similar between the two 

chemicals.

When both parent metabolism and metabolite clearance were described as saturable 

processes, both the parent and the metabolite AUCs increased faster than proportional 

with increasing external concentration (Figure 5). When VmaxUM was smaller than Vmax, 

the disproportional increase of metabolite AUCs was much larger than the disproportional 
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increase of parent AUCs (Figure 5A). When VmaxUM was larger than Vmax, the metabolite 

AUCs reached a plateau after parent metabolism reached saturation (Figure 5B).

Test case 3: Saturable oral absorption

The predicted oral absorption fractions based on the optimized parameter values were in 

good agreement with those generated by Gastroplus (Figure S1; optimized values are listed 

in Table S2). Implementing the optimized absorption parameter values in the PBPK model, 

the simulated plasma AUCs for the hypothetical chemicals C and D and their metabolites 

increased sublinearly with increasing external concentrations, and the degree of sublinearity 

increased with increasing external concentration (Figure 6).

Test case 4: Styrene

The IEC curves for styrene were similar between rats and humans (Figure 7A). For rats, the 

IEC curves suggested saturation of metabolism occurred at a lower external concentration 

via bolus oral exposure when compared to inhalation exposure (Figure 7B). Oral exposures 

from a single dose and repeated dose (one dose per day for 20 days) resulted in overlapping 

IEC curves, which reflected the rapid clearance of styrene (Figure 7C). Multiple doses 

per day decreased the plasma AUCs and saturation of metabolism occurred at a higher 

total external daily dose; to achieve the same total daily dose with increasing numbers 

of doses administered, each individual dose was lower (Figure 7C). Shorter inhalation 

exposure duration shifted the plasma AUCs down and flattened the IEC curve, because 

shorter exposure to the same air concentration resulted in lower total daily dose (Figure 7D). 

Finally, the median of estimated styrene air concentrations of 32 ppm from occupational 

sampling was close to an exposure concentration at which the rate of metabolism was ~9% 

Vmax; the mean of 54 ppm was close to an exposure concentration at which the rate of 

metabolism was ~16% Vmax. At the OSHA 8-hr time weighted average (TWA) Permissible 

Exposure Limit (PEL) of 100 ppm(OSHA 2017), the rate of metabolism was ~29% Vmax.

Test case 5: Caffeine

Given the same external concentration, the plasma AUC of caffeine resulting from oral 

exposure was modestly higher than the AUC resulting from dermal exposure (Figure 8). 

The maximum 95th percentile of estimated caffeine oral intake for adults was close to the 

exposure concentration at which the rate of metabolism was ~57–65% Vmax; the estimated 

maximum aggregate dermal exposure was close to the concentration at which rate of 

metabolism was ~5.8% Vmax.

Test case 6: Analysis of measured AUC data for 2,4-D

The optimized urinary excretion parameters (Table S4) produced model predictions that, by 

visual inspection, agreed with the observed AUCs for both male and female rats and for 

different lengths of studies (Figures 9, S5). The model parameterized for saturable urinary 

excretion exhibited sigmoid-like shapes for the IEC relationship, and were similar for males 

and females though shifted on the x-axis for external exposure due to different VmaxU values 

(Figures 9 and S5). The larger VmaxU optimized for male rats resulted in urinary excretion 

approaching saturation at a higher external concentration when compared to female rats, 
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a result that may explain the treatment-related, adverse effects observed at lower external 

concentration in female rats (Saghir et al. 2013). In addition, the PBPK model was able 

to describe the accumulation of internal concentration with increasing exposure duration 

(Figure 9B); this capability was unique to the PBPK approach.

For female rats, the saturable urinary excretion assumption provided a better fit to the in vivo 
data than the first-order assumption (Figure 9A; Table 2). This result was supported by all 

three goodness of fit metric calculations (Table 2). For male rats, while the saturable urinary 

excretion assumption resulted in smaller RSS and MAE, it did not provide a sufficient 

improvement in model fit to justify its selection over the first-order urinary excretion 

assumption. Optimizing the KmU to male data rather than female data yielded a minor 

change in the KmU value and did not change the conclusion (results not shown).

Discussions

Hypothetical chemicals in our test cases were based on physical-chemical properties from 

known chemicals, because constructing models in this manner allowed for the chemical-

specific parameters to be estimated using in silico approaches and ensured that our 

simulation results were biologically plausible. The identities of these chemicals were not 

revealed because the modeling purpose was not simulating the kinetic behaviors of these 

known chemicals or supporting risk assessment applications. Rather, the purpose of this part 

of our modeling study was to explore how saturable ADME process(es) influence the profile 

(such as plateau, shape) of the IEC relationship. Models of known chemicals (styrene and 

caffeine) were used in the test cases to explore the impact of exposure route, frequency, 

and duration on the IEC relationship and analyses were undertaken for measured blood 

concentrations of 2,4-D.

The influence of PCs and saturable clearance and absorption parameters on the IEC 

relationship was evaluated by increasing or decreasing these parameter values up to 100-

fold (test case 1). In liver, changing PCs affected both the distribution into liver and 

the free concentration available for metabolism; in other tissues, PC changes affected 

only tissue distribution. In general, changing distribution shifted curves up or down 

while simultaneously making the region of nonlinearity steeper or flatter, respectively. By 

contrast, changing Vmax and Km shifted the curves right and left. Saturable absorption 

reduced the plasma concentrations compared to first-order absorption, with the parameter 

values influencing the magnitude of the difference as a function of increasing external 

concentration.

In general, multiple effects on ADME can arise from changes in the chemical structure. 

For example, greater lipophilicity increases partitioning to fat tissue and may also increase 

cytochrome P450-mediated metabolic rates. To examine the impact of varying multiple 

model parameters simultaneously, analyses could be conducted using Monte Carlo methods. 

However, it can be challenging to capture the potential interdependencies of parameters, 

such as lipophilicity influencing both distribution and metabolism. Monte Carlo analysis 

can also be used to evaluate the net impact of the variability in critical biochemical and 

physiological parameters (such as enzyme levels, body weights) and exposure scenarios 
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(such as dietary intake), which can better inform the design of animal toxicity testing 

studies.

Using a PBPK model to understand the IEC relationship or to identify an appropriate 

internal dose metric can aid in better characterization of dose-response relationships 

observed in animals. For example, Himmelstein and colleagues (2004) used a PBPK 

model to account for interspecies differences in the uptake and metabolism of 2-chloro-1,3-

butadiene (CD) and to interpret different lung tumor findings among different species 

(Himmelstein et al. 2004). Chronic inhalation studies in B6C3F1 mice and Fischer rats 

led to lung tumor response (Melnick et al. 1999), which was not observed in Wistar 

rats and Syrian hamsters (Trochimowicz et al. 1998). While dose-response relationships 

across species were challenging to interpret at the external concentration level, the model-

predicted average daily amount of CD metabolized was able to explain lack of tumor 

response in Wistar rats and Syrian hamsters; a single dose-response curve could be used to 

describe tumor response data from all test species when the dose metric accounted for CD 

metabolism (Himmelstein et al. 2004).

When dose-response data are available, a PBPK model may be used to identify the most 

toxicologically relevant dose metric (e.g., AUC, peak concentration) for potential toxic 

moieties (e.g., parent, metabolite) in exposure scenarios (e.g., single dose, repeated dose, 

or a specific developmental period) that best correlate with the observed dose-dependent 

toxic effects. For example, our test case 2 showed that when parent metabolism saturates, 

the parent AUC increases more rapidly for a specific dose range until it re-establishes 

a proportional increase with increasing external concentration (Figure 4A). On the other 

hand, the metabolite AUC reaches a plateau when parent metabolism saturates (Figure 

4A). Thus, if a toxic response did not increase with increasing external concentration, it 

may suggest that the toxic moiety is a metabolite and that metabolism of the parent had 

reached saturation at the higher doses tested. Test case 2 (Figure 4) also highlighted that 

proportionality of the IEC relationship should be analyzed using the appropriate dose metric 

for the active moiety, when known, and not always the parent AUCs.

The styrene test case examined the impact of varied exposure routes, durations, and 

frequencies on the IEC relationship and compared the IEC relationship between rats and 

humans. Cross-species comparison of rat and human inhalation exposures showed similar 

IEC curve shapes for styrene (Figure 7A), and this result was specific to chemical of interest. 

Choices for how to simulate oral exposures, such as a bolus dose or multiple doses, can 

shift the IEC curve to the left or right, given the same total daily dose (Figure 7C); this 

will always be an uncertainty factor for dietary or drinking water exposures in contrast 

to a single bolus dose. This test case also showed that the median and the mean of the 

estimated air concentrations in workplace (32 and 54 ppm, respectively) were likely to be 

in the range where the rate of metabolism was approaching linear. Even at the OSHA PEL 

of 100 ppm, the average rate of metabolism was ~29% of Vmax. Although some measured 

air concentrations were higher than the OSHA PEL, these concentrations were unlikely to 

be experienced by workers because respiratory protection and personal protective equipment 

are recommended by OSHA when engineering controls are not sufficient to reduce air 

concentrations to levels below the OSHA PEL. Occupational exposure was also anticipated 
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to be much higher than that of general populations, making this test case an analysis of 

high-end exposures.

When possible, PBPK modeling can be used as a biologically based alternative to other 

statistical methods for analyzing proportionality of the IEC relationship from limited in 
vivo data. A PBPK model can account for species physiology and incorporate available 

ADME information, while the other methods analyze PK data in isolation. Currently, the 

most common statistical approach for analyzing proportionality of the IEC relationship 

compares the fold increases in external concentrations with the fold increases in internal 

concentrations (Loccisano et al. 2020; Loccisano et al. 2021; Saghir et al. 2013). There 

are two main issues with this approach. First, the internal concentration is not always 

proportional to the external concentration at the lowest dose level tested. As demonstrated in 

the current study, an internal concentration can start to deviate from proportionality at very 

low external concentration (Figure 4B). Deviation from proportionality may even occur at 

external concentration below the lowest dose level tested (Figure 4A). Second, a criterion 

does not exist to suggest what degree of nonlinearity in the IEC relationship would result in 

a dose-dependent transition in mode of action. A nonlinear IEC relationship by itself does 

not necessarily suggest an adverse effect, and such a criterion can only be determined by 

weighing all available data on a case-by-case basis (Tan 2021).

Most statistical approaches distinguish tested dose groups as either proportional or not 

proportional, but a PBPK modeling approach allows for the potential IEC relationship to 

be simulated across a continuous range of external concentrations. Also, most methods 

utilize only the mean values in the analysis, and the PBPK modeling approach can optimize 

parameters to individual animal data to account for study and biological variability. Another 

difference is that the PBPK analysis may not be feasible for analyzing IEC data when 

the number of data points available for model optimization is less than the number of 

optimized parameters (i.e., parameter identification or model overfitting issue). For example, 

metabolite AUCs measured at three external concentrations are not sufficient to estimate 

parent metabolism rate, parent urinary excretion rate, metabolite clearance rate, and oral 

absorption fraction when these parameters cannot be informed by other studies. This 

limitation, however, does not suggest that other approaches are better, because this situation 

may indicate that the PK data are too sparse to adequately inform the true IEC relationship 

regardless of the employed approach. For example, while the fold difference approach can 

be applied to analyze a dataset with only two dose groups, the results are unlikely to inform 

the underlying IEC relationship.

In the original 2,4-D test case (Saghir et al. 2013), a “threshold” external concentration was 

determined when the fold increase in the terminal AUC24 exceeded the fold increase in the 

external concentration. By contrast, our PBPK approach characterized the IEC relationship 

across a continuous range of doses (Figures 9A, 9B, S5), and avoided singularly identifying 

a so-called ‘threshold of non-linearity’ or ‘inflection point’ from the tested dose groups. As 

demonstrated in our test cases, a point at which the IEC relationship based on a saturable PK 

mechanism deviated from a linear IEC relationship may exist (for example, parent AUC in 

Figures 4B and 4D), but the difference in internal concentrations at that ‘point’ was so small 

that it was unlikely to be indicative of any toxicologically or kinetically meaningful change. 
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If saturable PK contributes to a dose-dependent transition in mode of action, this transition 

may occur gradually or steeply but is more likely to be observable when the internal 

concentration is substantially higher than proportional to external concentration. Such was 

the case for 2,4-D as treatment-related clinical effects were observed at concentrations where 

the IEC relationship demonstrated substantial superlinearity (Figure 9A) (Saghir et al. 2013).

Saghir and colleagues (2013) attributed the divergent dose-response results to sex-dependent 

differences in 2,4-D clearance, which they hypothesized to be mediated by the OAT1 

transporter (Saghir et al. 2013). Although our model did not explicitly include OAT1-

specific data to describe sex-specific clearance, allowing different VmaxU to separately 

fit the male and female AUCs allowed for the potential sex-dependent difference to be 

considered in the analysis. In another study, a simple PK model was used to analyze the 

same dataset, with Vmax and Km values assumed to be the same for both sexes (Slob, 

Zeilmaker, and Hoogenveen 2020). This assumption may not be appropriate given the 

sex-dependent differences observed in both toxicity and PK studies on 2,4D (Saghir et al. 

2013). Using a PBPK model to account for sex-specific difference in PK and the subsequent 

toxicity responses was also demonstrated with a study on ethyl-tertiary-butyl ether (ETBE) 

and its metabolite, tertiary-butyl alcohol (TBA) (Borghoff et al. 2017). This model included 

ETBE and TBA binding to the male rat-specific protein α2u-globulin in kidneys, saturable 

metabolism of ETBE and TBA in liver, and induction of TBA metabolism following 

repeated exposures. From their analysis, they were able to contribute PK differences to 

the sex-specific, route-specific, and moiety-specific responses observed in cancer bioassays 

(Borghoff et al. 2017).

While the 2,4-D test case demonstrated a retrospective analysis, a PBPK model can also 

be used for prospective predictions. With growing interest in applying the 3Rs principles 

(reduction, refinement, and replacement) to animal toxicity testing, it is critically important 

to optimize the design of an in vivo study so that it adds the maximum scientific value 

while minimizing animal use. Optimizing study design is best supported by a weight of 

evidence approach to evaluate and integrate all available information that has the potential 

to influence study outcomes, and a provisional PBPK model can aid in data integration and 

interpretation. In the 2,4-D example, a model that is optimized to fit the data from a dose 

range-finding study conducted in rats could have provided valuable insight for top dose 

selection in the subchronic study, potentially avoiding the inclusion of the toxic dose group 

(100 mg/kg bw/day) in the female rat study (Figure 9B). Alternatively, if in vitro data, such 

as OAT1-mediated clearance of 2,4-D, were available to parameterize a PBPK model, then 

the model could supply preliminary prospective predictions of the IEC relationship to inform 

dose selection and may avoid the need for an in vivo dose range finding study.

Ideally, data collection/model refinement is an iterative process: the quantity and type of 

available data dictate the structure and outputs of a model, and a model can be used to test 

hypotheses and identify data gaps for additional experiments. For example, an OECD 417 

guideline ADME study may inform the rate and fraction of oral absorption, rate of parent 

clearance, identity of major metabolites, the extent of storage in tissues, and excretion in 

urine and feces. If an ADME study shows that the parent chemical is not detected in the 

tissue, blood, urine, or fecal samples, it may suggest rapid metabolism of the parent and a 
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PBPK model can fit a rapid hepatic clearance rate to simulate parent concentration below 

the analytical detection limit shortly after dosing ends. On the other hand, a PBPK model 

may be used to suggest the dose level and spacing for a repeated dose study or to inform the 

appropriate time points of blood sample collection in a PK study.

An additional benefit of using the PBPK modeling approach is the correspondence between 

the internal concentration of a chemical and the hazard aspects of the study design. 

Knowledge of the predicted internal concentrations and the anticipated mode of action 

enables a study design to incorporate mechanistic biomarkers, which correspond to early 

events that are predictive of adverse, apical endpoints at the organism level. Monitoring 

those early biomarkers can allow for an adaptive study design where the doses selected 

for the longer-term studies are based on the results seen for the short-term measurements. 

It is even possible to eliminate the need for longer-term studies in certain circumstances, 

because the progression from early events to apical outcomes can be independent of a 

specific chemical (Heusinkveld et al. 2020). Toxicological transcriptomic studies have 

provided ample evidence for such an application of using short-term animal studies to 

predict apical endpoint alterations that occur after much longer exposure time (Farmahin et 

al. 2017; Thomas et al. 2013). When evaluating chemicals from a well-studied class, the 

correspondence between internal concentration and early biomarker measurements also can 

be used to support read across applications that leverage existing apical outcome data from 

other chemicals in the same class.

Conclusions

A mechanistically credible PBPK model can reduce the uncertainty in chemical risk 

assessment by predicting tissue dosimetry for chemicals under conditions where little or 

no data exist. As more in vitro and in silico tools are available to estimate enzyme and 

transporter functions in cells or tissues, provisional PBPK models can be constructed to 

serve a purpose other than direct application to risk assessment. A PBPK model can be 

developed as a research tool to integrate available ADME data from shorter-term in vivo 
studies or in vitro assays to simulate longer-term exposure, which can inform dose selection, 

dose spacing, or sample collection intervals in future whole animal studies. A PBPK model 

can also be used to interpret toxicity testing results, generate hypotheses on potential modes 

of action, or identify early mechanistic biomarkers. These capabilities can potentially reduce 

animal use in longer-term studies, as well as improve our understanding of the study 

outcomes by providing insight into the IEC relationship. In retrospective analyses, the 

PBPK approach has important advantages over common statistical methods as it avoids 

the bimodal distinction of ‘proportional’ versus ‘non-proportional’. The test cases analyzed 

herein support the assertion that a PBPK model is a useful tool, as part of a weight of 

evidence approach, to optimize study design or for use in retrospective data analysis to 

interpret dose-response results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Two schematic diagrams showing the structure of a generic PBPK model for rats (panel A) 

and humans (panel B). The parent compound is indicated by solid lines whereas metabolite 

is shown using broken lines. Inhalation, oral, and dermal exposure routes are shown with 

the model compartment that first receives the external concentration. The skin compartment 

for dermal exposure (panel B) is divided by a broken line to indicate separate treatment of 

exposed and unexposed skin areas in the model.
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Figure 2: 
Demonstration of the impact on the relationship between external concentration (mg/kg 

bw/day) and area under the curve (AUC) of plasma concentrations during the last 24 

hours (μmole*h/L; AUC) from decreasing or increasing the values of tissue:blood partition 

coefficients (PCs) by 10-fold and 100-fold. In panel A, simulations are shown when only the 

rapidly perfused tissue:blood PC is changed and panel B simulations are the results of all 

compartment PC values changed an equal amount.
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Figure 3: 
Demonstration of the impact on the relationship between external concentration (mg/kg 

bw/day) and area under the curve (AUC) of plasma concentrations during the last 24 

hours (μmole*h/L; AUC) from decreasing or increasing the values of the maximum rate 

of hepatic metabolism of the parent (Vmax) by 2, 5, and 10-fold (panel A); decreasing or 

increasing the Michaelis-Menten constant (Km) by 5, 10, and 100-fold (panel B); decreasing 

or increasing Vmax and Km together by 10-fold (panel C); or setting the in relative oral 

absorption fraction (fimax) and dose associated with half-maximal absorption (f50) to (0.9, 

100), (0.5, 100), (0.1, 100), (0.9, 500) and (0.9, 50) (panel D). The results are presented 

for concentrations above 10 mg/kg bw/day to emphasize the divergent results produced by 

changing fimax and f50.
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Figure 4: 
Simulated external concentrations (mg/kg bw/day) versus area under the curve of plasma 

concentrations during the last 24 hours (AUC; in μmole*h/L) of the parent and the 

metabolite, assuming saturable or first-order metabolism for hypothetical chemicals A 

(panel A) and B (panel B); saturable or first-order urinary excretion for hypothetical 

chemicals A (panel C) and B (panel D); or saturable or first-order urinary excretion of 

the metabolites for hypothetical chemicals A (panel E) and B (panel F).
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Figure 5: 
Simulated external concentrations (mg/kg bw/day) versus area under the curve of plasma 

concentrations during the last 24 hours (AUC; in μmole*h/L) of the parent and the 

metabolite, where hepatic metabolism of parent (hypothetical Chemical A) and urinary 

excretion of metabolite of Chemical A are either saturable or first-order. Two conditions are 

evaluated: the maximum rate of metabolite clearance is half of the maximum rate of parent 

metabolism (panel A); or the maximum rate of metabolite clearance is double the maximum 

rate of parent metabolism (panel B).
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Figure 6: 
Simulated external concentrations (mg/kg bw/day) versus area under the curve of plasma 

concentrations during the last 24 hours (AUC; in μmole*h/L) of the parent and the 

metabolite, assuming saturable or first-order oral absorption of hypothetical chemicals C 

(panel A) and D (panel B).
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Figure 7: 
Simulated external concentrations (mg/kg bw/day for oral exposure; ppm for inhalation 

exposure) versus area under the curve of plasma concentrations during the last 24 hours 

(AUC; in μmole*h/L) of styrene concentrations in plasma. Panel A compares rat and human 

AUCs generated by simulating 6 hours/day inhalation exposures for 20 days. Panel B 

compares rat AUCs generated from daily oral dosing and 6 hours/day inhalation exposure 

for 20 days. Panel C compares rat AUCs generated from evenly spaced 1, 3, 6 and 12 

oral doses per day for 20 days. Panel D compared human AUCs generated from inhalation 

exposures for 1, 8 and 24 hours/day for 20 days (panel D).
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Figure 8: 
Simulated external concentrations (mg/kg bw/day) versus area under the curve of plasma 

concentrations during the last 24 hours (AUC; in μmole*h/L) of caffeine from daily oral 

or dermal exposures for 20 days, assuming saturable or first-order hepatic metabolism of 

caffeine.
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Figure 9: 
Simulated external concentrations (mg/kg bw/day) versus area under the curve of plasma 

concentrations during the last 24 hours (AUC; in μmole*h/L) of 2,4-Dichlorophenoxyacetic 

acid (2,4-D) from dietary exposures of female rats is compared to in vivo data. Panel 

A shows plasma concentrations from a 95-day in vivo study, and simulated plasma 

concentration curves with saturable (VmaxU = 2.91; KmU = 58.5) or first-order urinary 

clearance (CLU= 0.0186) of 2,4-D. Panel B compares the in vivo data and saturable urinary 

clearance (VmaxU = 2.91; KmU = 58.5) curves for both 29-day and 95-day exposures.

Hoer et al. Page 32

Toxicol Appl Pharmacol. Author manuscript; available in PMC 2023 September 25.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

Hoer et al. Page 33

Table 1.

Test cases using PBPK modeling

Case Study Chemicals Species Modeling Purposes

Test Case 1: Hypothetical 
chemical A Rat

Evaluate the internal to external (IEC) relationship for the parent assuming a wide range of:

• tissue:blood partition coefficients (Figure 2)

• metabolism parameters (maximum rate, half maximal constant) (Figures 3A–C)

• parameters for saturable fraction of oral absorption (Figure 3D)

Test Case 2: Hypothetical 
chemicals A, B Rat

Simulate the IEC relationships for both the parent and the metabolite, assuming:

• metabolism of the parent as first-order or saturable (Figures 4A, B)

• urinary excretion of the parent as first-order or saturable (Figures 4C, D)

• urinary excretion of the metabolite as first-order or saturable (Figures 4E, F)

• both metabolism of the parent and urinary excretion of the metabolite as saturable 
(Figure 5)

Test Case 3: Hypothetical 
chemicals C, D Rat Simulate the IEC relationships for both the parent and the metabolite, assuming first-order or saturable 

oral absorption (Figure 6)

Test Case 4: Styrene

Rat

Compare the IEC relationships across:

• species (Figure 7A)

• oral and inhalation routes (Figure 7B)

• exposure frequency (number of doses per day) (Figure 7C)

Human

Compare the IEC relationships across:

• species (Figure 7A)

• exposure duration (hours of inhalation exposure per day) (Figure 7D)

Compare the estimated air concentrations with the simulated IEC relationship

Test Case 5: Caffeine Human Compare the IEC relationships between oral and dermal exposures (Figure 8)
Compare the estimated human exposures to caffeine with the simulated IEC relationship

Test Case 6: 2,4-D Rat Analyze the proportionality of the IEC relationship based on plasma AUCs measured at multiple 
external concentrations (Figure 9)
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Table 2:

Statistical comparison of the model fits to data from in vivo exposure of rats to 2,4-D (Saghir et al. 2013). The 

values for the dose associated with half-maximal urinary excretion (KmU) used in these simulations were fit to 

female data

Urinary Excretion Sex RSSB MAEB AICcC ΔAICcA

First-Order Female 55.7 0.878 160.7
69.9†

Saturable Female 15.4 0.423 90.8

First-Order Male 11.0 0.408 63.9
4.99

Saturable Male 9.18 0.372 59.0

A
ΔAICc was calculated as AICcfirst-order – AICcsaturable

B
Residual sum of squares (RSS) and mean absolute error (MAE) were calculated using log-transformed errors given the log-normal distribution of 

the residuals.

C
The corrected Akaike information criterion (AICc) was used given the relatively small sample size of the in vivo dataset

†
symbol on the ΔAICc value denotes sufficient improvement in fit to justify preferential use of the model using saturable excretion over that which 

used only first-order excretion (Cavanaugh and Neath 2019).
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