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Abstract

Background: We are currently screening human volunteers to determine their sputum 

polymorphonuclear neutrophil (PMN) response 6- and 24-hours following initiation of exposure 
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to wood smoke particles (WSP). Inflammatory responders (≥10% increase in %PMN) are 

identified for their subsequent participation in mitigation studies against WSP-induced airways 

inflammation. In this report we compared responder status (N=52) at both 6 and 24hr time points 

to refine/expand its classification, assessed the impact of the GSTM1 genotype, asthma status and 

sex on responder status, and explored whether sputum soluble phase markers of inflammation 

correlate with PMN responsiveness to WSP.

Results: Six-hour responders tended to be 24-hour responders and vice versa, but 24-hour 

responders also had significantly increased IL-1beta, IL-6, IL-8 at 24 hours post WSP exposure. 

The GSTM1 null genotype significantly (p<0.05) enhanced the %PMN response by 24% in the 

24-hour responders and not at all in the 6 hours responders. Asthma status enhanced the 24 

hour %PMN response in the 6- and 24-hour responders. In the entire cohort (not stratified by 

responder status), we found a significant, but very small decrease in FVC and systolic blood 

pressure immediately following WSP exposure and sputum %PMNs were significantly increased 

and associated with sputum inflammatory markers (IL-1beta, IL-6, IL-8, and PMN/mg) at 24 but 

not 6 hours post exposure. Blood endpoints in the entire cohort showed a significant increase in 

%PMN and PMN/mg at 6 but not 24 hours. Sex had no effect on %PMN response.

Conclusions: The 24-hour time point was more informative than the 6-hour time point 

in optimally and expansively defining airway inflammatory responsiveness to WSP exposure. 

GSTM1 and asthma status are significant effect modifiers of this response. These study design and 

subject parameters should be considered before enrolling volunteers for proof-of-concept WSP 

mitigation studies.
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INTRODUCTION:

Wood smoke particles (WSP) produced by combustion of biomass contribute to both 

household and ambient air pollution with fine particulate matter (particulate matter 2.5-

microns in diameter or less or PM2.5 ) (1, 2). Increased levels of WSP are associated with 

exacerbations of asthma (3, 4), pneumonia(5, 6), chronic obstructive pulmonary disease(7–

9) and cardiovascular morbidity(5, 10, 11). Household WSP can reach levels well over 1000 

g/m3 (12), and WSP from wildfires are an increasingly important source of ambient air 

PM2.5 in the US airshed, and account for a disproportionally high number of hospitalizations 

compared to PM2.5 from other sources (2). Wildfires often abruptly produce ambient air 

PM2.5 levels >190 μg/m3 (13), with firefighters often exposed to levels >1,000 μg/m3 (14, 

15). Inhalation of WSP results in an inflammatory response in the airway, which is a central 

mechanism for WSP related morbidity (16–21). We are currently undertaking proof of 

concept clinical trials of interventions to mitigate the effect of WSP on airway inflammation.

This report documents the response of 52 volunteers, which includes 12 persons with asthma 

who have undergone our open-label phase I screening WSP protocol to identify those who 

are responsive to the inflammatory action of WSP 6 and 24 hours after controlled exposure 

to 500 μg/m3. We include analysis of sputum PMN and inflammatory cytokines, circulating 

Alexis et al. Page 2

Inhal Toxicol. Author manuscript; available in PMC 2023 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cytokines and leukocyte counts, forced vital capacity (FVC), forced expiratory volume at 1 

second (FEV1), heart rate, and blood pressure. We also analyzed GSTM1 status, asthma and 

sex as potential effect modifiers of the WSP-induced inflammatory response.

The overarching goal of the current study is to characterize the inflammatory response to 

WSP at 6- and 24-hours post exposure and undertake initial assessment of potential effect 

modifiers of this response, such as the glutathione-S-Transferase Mu1 (GSTM1) genotype 

and asthma status, where in the case of the former, multiple reports demonstrate that persons 

with the homozygous null genotype for GSTM1 (GSTM1 null) have increased inflammatory 

responsiveness to O3 and other pollutants (22–26, 32–34). In the case of asthma, we have 

shown that it too is a determinant of the inflammatory response to O3 (25), hence we 

hypothesize that these effect modifiers may play a similar role with WSP. In this report, 

we expand upon our recent preliminary report of 27 volunteers who had completed a WSP 

screening protocol, where we observed that 67% of healthy volunteers were inflammatory 

responders, and that the GSTM1 null genotype appeared to increase inflammatory response 

to WSP as observed 24 hours after challenge (21).

METHODS:

A total of 52 subjects (26 male, 40 healthy, 12 asthmatics), aged 18–45 years completed 

the WSP screening protocol (Table 1, subject demographics). All subjects were non-smokers 

with no acute respiratory illness in the prior 4 weeks, and no current allergic rhinitis 

symptoms. Healthy volunteers were required to have a FEV1 of >80% of predicted, 

persons with asthma were required to have a FEV1 of ≥75% predicted while off any 

bronchodilator. Only healthy volunteers and persons with mild to moderate asthma were 

recruited. Asthma was defined by a history of episodic wheezing, chest tightness, or 

shortness of breath consistent with asthma, or physician diagnosed asthma and confirmed 

with a post-bronchodilator increase in FEV1 of at least 12%, or a clinical history of 

asthma after the age of 6. If persons with asthma used controller therapy (e.g., inhaled 

corticosteroids), they had to withhold this therapy for 2 weeks prior to WSP exposure. 

Persons requiring oral corticosteroid or biologic controller therapy were excluded. All 

asthmatics were also required to have either a positive skin test for aeroallergens present 

in North Carolina or a history of seasonal rhinitis symptoms. Volunteers were excluded 

if they had abnormal physical findings at the baseline visit, including but not limited to 

abnormalities on auscultation, temperature of 37.8° C, Systolic BP > 150mm Hg or < 85 mm 

Hg; or Diastolic BP > 90 mm Hg or < 50 mm Hg, or pulse oximetry saturation reading less 

than 94%.

Fifty subjects provided at least one sputum sample; 47 (35 healthy; 12 asthmatics) provided 

matched baseline and 6-hour timepoint sputum samples; and 41 (30 healthy; 11 asthmatics) 

provided matched baseline and 24-hour timepoint sputum samples. The GSTM1 genotype 

was determined by buccal swab analysis using methods previously described (22). Twenty 

subjects were GSTM1 null, twenty-six were GSTM1 sufficient, with six refusing GSTM1 

genotyping. Written consent was obtained from all participants. The study was approved by 

the University of North Carolina Institutional Review Board and listed in ClinicalTrials.gov 

(NCT02767973)
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Details of the WSP exposure protocol are described previously (19, 21). In brief, baseline 

induced sputum samples were obtained prior to the WSP chamber visit and at 6 and 24 

hours following WSP exposure. The WSP chamber used wood smoke generated by heating 

red oak wood on an electric heating element. Subjects were exposed to 500 μg/m3 WSP over 

a 2-hour period with alternating 15-minute periods of rest and exercise on a cycle ergometer 

at a level sufficient to produce a minute ventilation of 20 L/min/m2 body surface area. 

Induced sputum was collected and processed according to previously published methods 

(35, 36). The primary endpoints were sputum percent neutrophils (%PMNs) at 6- and 

24-hours post- initiation of the WSP exposure compared to baseline samples. Consistent 

with previous studies at our center, inflammatory responders were defined as those who 

experienced a ≥10 percentage point increase in sputum %PMN (23, 28, 37, 38). In brief, 

subjects underwent sputum induction with 3 7 minute periods of hypertonic saline inhalation 

(21 total minutes, 3%,4%,5%). Sputum samples were expectorated into sterile specimen 

cups, kept on ice and processed immediately following collection. Plug selection was 

performed on raw samples and plug material treated was treated with DPBS (8 x wt), 

homogenized on a rotating tumbler (15 minutes, RT), centrifuged and cell free supernatants 

captured and stored at −80 deg C. Cell pellets were treated with 0.1% DTT (15 minutes, 

RT), filtered and cell counts and viability assessed using hemacytometry. Cytospin slides 

were prepared, and stained with Hema 3 stain and differentially read under light microscopy. 

Measures of lung function (spirometry), cardiovascular status (blood pressure, heart rate) 

sputum soluble markers and serum inflammatory markers were also recorded at baseline and 

6- and 24-hour post WSP exposure time points.

Statistical Analyses:

To assess the effect of GSTM1, Asthma and sex on sputum inflammatory measures, we 

assessed the sputum outcomes of interest measured at baseline and 6 and 24 hours after 

exposure commenced. To investigate if WSP had an effect on subjects, for endpoint X, we 

used the ratio, defined as Rx = X_post
X_pre . For instance, R%PMN24 = %PMNat24ℎours

%PMNatbaseline . For the form 

of the outcome variable, we also considered the differences from the baseline, as well as 

various transformations, e.g., log transformation. For modeling, we selected the ratio form of 

our outcomes based on the QQ plots to assess the model assumptions (39). The hypothesis 

test for WSP effect is to test whether the ratio is statistically different from 1. We fit the 

following regression model,

Y = β0

where Y = RPMN − 1 is the response variable, and β0 is the intercept. The p-value for testing 

β0 = 0 is equivalent of testing RPMN = 1, i.e., if there is a significant change in outcome at post 

exposure from pre-exposure.

We then employed the regression model to examine whether GSTM1 status, Asthma status 

or sex had a significant effect on the ratio of interest. We fit the following model,

RPMN = β0 + β1*xcovar
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where xcovar is the covariate of interest. For GSTM1 status, we will use GSTM1-Null 

(GSTM1-) as the reference group (xcovar = 1ifGSTM1 + , elsexcovar = 0 . For Asthma status, 

we will use Healthy as the reference group (xcovar = 1ifAstℎmatic, elsexcovar = 0 . The p-value 

for β1 tests whether β1 = 0, i.e., if there is a significant change in the outcome between the 

covariate levels. We fit the models using lm () in R 3.6.1(39).

We also compared the effect of WSP exposure 6 and 24 hours after beginning the 2-hour 

exposure challenge to baseline lung function, sputum, and blood measures. We analyzed 

these data by fitting a mixed model as implemented in GraphPad Prism 8.0. This mixed 

model uses a compound symmetry covariance matrix and is fit using Restricted Maximum 

Likelihood (REML). Paired t-test analysis was used to compare spirometry and blood 

pressure outcomes at baseline and immediately after WSP exposure.

RESULTS:

The primary endpoints for this study were identification of persons with at least a 10%-

point increase in the percentage of sputum PMNs (%PMN) at 6- and 24-hours post WSP 

challenge compared to that at pre-exposure baseline, and the effect of the GSTM1 null 

genotype on responder status. Additional endpoints assessed the impact of asthma status 

and sex on 6 and 24 hour-responder statuses, the correlation between sputum soluble phase 

markers of inflammation (IL‐1β, IL-6, IL-8, TNFα) and 6 and 24 hour %PMN responses and 

the effect of WSP exposure on lung function (spirometry) and cardiovascular (systolic and 

diastolic blood pressure, heart rate) outcomes.

Historic baseline vs. Air Challenge control measures in sputum.

As the goal of this screening protocol is to identify persons who are responsive to the 

inflammatory effect of WSP for subsequent entry into an intervention study, we chose to 

compare post WSP exposure responses to a pre-exposure baseline, rather than undertake 

an additional clean air control challenge. In support of this approach, we pooled our 

own historical data from several air control chamber challenges previously undertaken that 

involved 2–3 hours of exercise like that employed for this WSP challenge (NCT00840528, 

NCT00839943, NCT03395119, (40, 41)). At pre air challenge baseline, the %PMN in 

sputum was 31.7±3.0 % (mean, SEM, n=66) vs. 29.4±2.9 % (n=68) at 6 hours post air 

challenge and 37.0±8.0% (n=10) at 24 hours post air challenge (p=0.7). The pre-WSP 

baseline value was 33.2±3.2 %PMNs (n=50) and was not statistically different (p=0.72) 

from the baseline, 6h or 24h historic clean air exposure time point values. It has also 

been reported that FVC and FEV1 following an air control session are unchanged or 

increase slightly. These observations support using pre-exposure baseline measures without 

an air exposure control visit to lower subject burden and increase efficiency for screening 

responsive volunteers for enrollment into intervention studies.

Endpoints for the Entire Cohort:

As of April of 2020 (the date at which the protocol was paused due to the COVID-19 

pandemic), 52 volunteers had completed this WSP screening protocol. Table 1 below 

outlines the demographics of these volunteers. Of 52 subjects, 50 provided at least one 
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sputum sample, with 47 (35 Healthy volunteers and 12 with Asthma) providing matched 

baseline and 6-hour timepoint sputum samples. Forty-one (30 Healthy volunteers and 

11 with Asthma) subjects were able to provide matched baseline and 24-hour timepoint 

samples.

Response of all 52 unstratified volunteers:

Figure 1A depicts the sputum % PMN and soluble phase inflammatory mediators 6 and 24 

hours post WSP challenge of the entire cohort which was not defined by responder status. 

As shown, only the %PMNs in sputum (Figure 2A) are significantly increased by WSP 24 

hours after exposure. PMN/mg sputum and sputum levels of IL‐1β, IL-6, IL-8 and TNFα
(Figure 1, panels B-F respectively) were unchanged by WSP 6- or 24-hours post exposure. 

We compared % change in %PMN at 6 hours to that observed at 24 hours in 39 volunteers 

who had these results at both timepoints. In this group, there was correlation of r=0.85, 

p<0.05 between the %PMN responses at both time points.

We also assessed the correlation between the change from baseline of sputum %PMNs at 

6 and 24 hours with the corresponding change from baseline (expressed as %change) of 

the PMN/mg sputum and sputum levels of IL‐1β, IL-6, IL-8 and TNFα using Spearman’s 

Rank Correlation. Only one significant correlation was found at 6 hours (PMN/mg, 

r=0.35, p=0.02, n=47). However, at 24 hours post exposure there were several significant 

correlations between %PMNs and other inflammatory endpoints in sputum, including IL‐1β
(r=0.39, p=0.02, n=36), IL-6 (r=0.36, p=0.04, n=34), IL-8 (r=0.37, p=0.02, n=37) as well as 

PMN/mg sputum (r=0.6, p=0.01, n=41) (Table 3).

Figure 2 depicts the immediate effect of WSP exposure on FVC (Figure 2A-left panel), 

FEV1 (Figure 2A-Right Panel) and systolic and diastolic blood pressure (Figure 2B) within 

the overall cohort. We observe a small but significant decrease in FVC and systolic blood 

pressure.

We also examined the relationship between change from baseline in sputum %PMN and 

PMN/mg sputum at 6 and 24 hours with % change from baseline in FVC, FEV1, systolic 

and diastolic blood pressure. Of these relationships, the only significant finding (p<0.05) 

was between the %change in PMN/mg sputum at 24 hours and % change in FVC (r=−0.36); 

we did observe a trend (p<0.1) between PMN/mg sputum at 24 hours and % change in 

FEV1 (r=−031).

We also measured blood endpoints from volunteers at 6- and 24-hours post WSP exposure 

(Table 2). These included circulating levels of PMNs (cells/ul), the PMN differential count 

(expressed as percent of total nucleated cells), and levels of IL‐1β, IL-6, IL-8 and TNFα
and C-reactive protein (CRP). The % PMN and PMN/ul levels were significantly (p<0.05) 

increased above baseline at 6 hours, but not 24 hours. All other measures were unchanged in 

volunteers stratified by the %PMN response at 6 and 24 hours.

Endpoints of Responders stratified on the basis of the 6-hour %PMN sputum response:

Forty-seven volunteers provided sputum samples at baseline and six hours after initiation 

of WSP challenge. Of these volunteers, 30 (64%) were responsive to WSP, as defined by 
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a ≥10% point increase in sputum %PMNs. Of the 30 responders based on 6-hour sputum 

analysis, 23 also had 24-hour sputum data, of which 20 remained responsive (87%). Figure 

3 depicts the airway inflammatory response (cells and soluble phase mediators) to WSP of 6 

hour responders (N=30). On average, 6-hour responders had significantly (p<0.05) increased 

%PMN responses at 24 hours, but no other inflammatory endpoints demonstrated this effect. 

When stratified on the basis of sputum inflammatory response (%PMN) at 6 hours, we again 

found a modest decrease in FVC and systolic blood pressure only in responsive volunteers 

(Figure 4). Stratification of systemic inflammatory endpoints on the basis of individual PMN 

responsiveness at 6 hours in sputum did not modify these responses (data not shown).

Endpoints of Responders stratified on the basis of the 24-hour %PMN sputum response:

Forty-one volunteers provided sputum samples at baseline and 24 hours after initiation 

of WSP challenge. Of these volunteers, 28 (68%) were responsive to WSP, as defined 

by a ≥10% increase in sputum %PMNs. Of the 28 24-hour responders, 26 provided an 

adequate sputum sample at 6 hours as well, with 21 of those (81%) being responsive 

at 6 hours. Figure 5 depicts the airway inflammatory response (cells and soluble phase 

mediators) to WSP of 24-hour responders (N=28). The 24-hour responders had significantly 

increased %PMN and PMN/mg responses at both 24 and 6 hours. Interestingly, and unlike 

6-hour responders, 24-hour responders showed significantly increased levels of several pro-

inflammatory mediators in sputum at 24 hours post WSP exposure (IL‐1β, IL-6, IL-8). 

We also observed a decrease in FVC and systolic blood pressure immediately after WSP 

challenge in persons who demonstrated a sputum inflammatory response at 24 hours post 

challenge (Figure 6). Systemic endpoints were again similar when stratified based on airway 

response at 24 hours (data not shown).

Effect of GSTM1 genotype, asthma status and sex on the airway inflammatory 
response to WSP: We assessed the role of GSTM1 genotype, asthma status and sex on 

the sputum %PMN, PMN/mg sputum and sputum IL‐1β, IL-6, IL-8 and TNFα response to 

WSP at 6 and 24 hours using the entire cohort, the 6-hour responder cohort and the 24-hour 

responder cohort. We used linear regression modeling approaches in which a given response 

was expressed as % of baseline, where, Routcome = postbaselineoutcome
baselineoutcome , as our main response 

variable, with a responder defined as R ≥ 1.1 (equivalent to a 10% increase from baseline 

in %PMN). For instance, R%PMN24 = %PMNat24ℎourspost
%PMNatbaseline . To determine if there is a difference 

in post baseline versus baseline, we first fit an intercept only model, where the response 

is defined as Routcome − 1. Thus, the hypothesis test for WSP effect is equivalent to testing 

whether the ratio is statistically different from 1, or equivalently, a t-test to test if β0 = 0 in 

an intercept only model. We next expanded our regression model to examine if there are any 

differences in the ratio between the status of GSTM1, Asthmatics, and responder status. We 

also fit the regression model to allow for other covariates of interest that might influence the 

response variable, as described fully in Methods.

We found that the GSTM1 null genotype significantly (p<0.05) enhanced only the %PMN 

variable. When we consider the entire unstratified (responders and non-responders) cohort, 

the GSTM1 sufficient genotype was associated with significantly (p<0.05) decreased 
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%PMN at 6 hours (β1 ± SE = − 0.514 ± 0.310), but not 24 hours after challenge. In the group 

stratified on the basis of sputum %PMN at 6 hours, the GSTM1 genotype had no impact 

on %PMNs at either 6 or 24 hours within that group. In the group stratified on the basis 

of sputum %PMN at 24 hours (only persons responsive at 24 hours post challenge), the 

GSTM1 sufficient genotype was associated with significantly decreased %PMNs at 24 hours 

(β1 ± SE = − 1.160 ± 0.536). Thus, the GSTM1 sufficient genotype protected volunteers from 

increased sputum %PMN after WSP challenge.

We also observed that having asthma increased the %PMN response to WSP 

exposure 24 hours after exposure. This was true when assessed across the overall 

cohort (β1 ± SE = 1.170 ± 0.501), as well as those defined as responsive at 6 hours 

(β1 ± SE = 1.587 ± 0.636), and 24 hours (β1 ± SE = 1.215 ± 0.533), We did not observe an effect 

of sex on response to WSP exposure for the endpoints we assessed. These factors had no 

effect on any of the other inflammatory outcomes (data not shown).

DISCUSSION:

This protocol was developed to screen and identify volunteers who demonstrate 

inflammatory responsiveness to WSP for their entry into subsequent early phase studies 

of candidate mitigation interventions for WSP-induced airways inflammation. This approach 

was modeled on screening protocols developed by Holz, et al (27) and employed by our 

group (28) to identify inflammatory responders, that is, persons who had a >10% increase in 

sputum neutrophils (PMN) post O3 for recruitment into studies evaluating anti-inflammatory 

interventions for O3. These placebo-controlled studies of recruited O3 inflammatory 

responders demonstrated that inhaled fluticasone (27, 28) and oral prednisolone (27) 

reduced O3 induced airway inflammation. The advantage of excluding non-responsive 

volunteers from these intervention studies, was to improve study efficiency and eliminate 

uninformative data from O3 non-responsive volunteers. Indeed, similar O3 screening 

protocols have reported that two CXCR2 antagonists (SCH527123 and SB-656933) (29, 30) 

reduced O3-induced airway inflammation, whereas secukinmab (an anti-IL-17A antibody) 

(31) did not impact this response.

Previous O3 screening studies also examined effect modifiers of the O3 response in 

inflammatory responders and non-responders. We showed that volunteers with the GSTM1 

null genotype had a 13-fold increased likelihood of having a >10% increase in sputum 

PMN following exposure to 0.06 ppm O3 for 6 hours (23) or 0.4 ppm O3 for 2 hours 

(22). Interestingly, Asthmatics revealed increased sputum PMN, levels of IL-1beta, IL-6 and 

IL-8, as well as enhanced gene expression of innate immune genes and sputum macrophage 

expression of TLR4 (25). These O3 studies indicated that the GSTM1 null genotype and 

asthma status were associated with increased inflammatory response 24 hours following 

exposure to O3, and therefore were examined as potential modulators of response to WSP 

exposure in this analysis.

Based on our previous O3 studies we chose to examine %PMN in sputum obtained both at 6 

and 24 hours after initiation of a 2-hour WSP exposure to determine which time point might 

be optimal and most informative for the purpose of a mitigation screening protocol.
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Analysis of the 6-hour sputum identified 64% of our volunteers as responders, while 

analysis of the 24-hour sputum samples identified 68% of our volunteers as responders. 

We also observed that there is a correlation of r=0.85, p<0.05 between the 6 and 24 hour 

responses. When we focused our analyses on volunteers defined as responders based on the 

6-hour sputum sample that also had an adequate 24-hour sample, we observed that 87% of 

these 6-hour responders remained responsive at 24 hours. When we examined volunteers 

defined as responders based on the 24-hour sputum sample that also had an adequate 6-hour 

sample, we observed that 81% of the 24-hour responders had been responsive at 6 hours. 

Thus, overall, for the purpose of identifying responsive volunteers, we observed relatively 

consistent agreement between assessments made 6 and 24 hours after initiation of WSP 

exposure.

When we reviewed the sputum data of the overall unstratified cohort for a more complete 

assessment of airway inflammation, we found that only the sputum %PMN was significantly 

elevated at 24 hours after WSP exposure. Neither the absolute sputum PMN measure 

(PMN/mg sputum) nor the soluble phase cytokines were increased above baseline levels.

Circulating PMN cell counts were increased at 6, but not 24 hours. When we reviewed 

the cohort defined by responsiveness reflected in %PMN in airway sputum at 6 hours post 

exposure, we observed that both the %PMN at 6 and 24 hours was significantly increased, 

with no increase in the quantitative sputum PMN measure (PMN/mg sputum) or the soluble 

phase cytokines. In both the overall cohort and the 6 hours responsive cohort, the FVC and 

systolic blood pressure were slightly decreased immediately after challenge.

Interestingly, we observed a more expansive airway inflammatory response in the cohort 

stratified on the %PMN in airway sputum 24 hours post WSP challenge. The %PMNs 

were significantly increased over baseline, as one would expect based on the definition of 

the cohort. However, unlike our observations in the overall and 6-hour responsive group, 

we observed that PMN/mg, IL‐1β, IL-6 and IL-8 were also significantly increased at 24 

hours. We also explored the correlation between the % change in sputum %PMNs with 

the PMN/mg sputum, of IL‐1β, IL-6, IL-8 and TNFα in the total unstratified cohort at 

6- and 24-hours post WSP challenge. At 6 hours, the %PMNs correlated only with the 

PMN/mg sputum, whereas at 24 hours the % change in sputum %PMNs correlated with the 

PMN/mg sputum, and several pro-inflammatory cytokines, IL‐1β, IL-6, and IL-8. Overall, 

these observations suggest that inflammatory biomarkers present 24 hours after challenge 

more robustly reflect the inflammatory response to WSP challenge than do those present 6 

hours after challenge.

We also examined the effect of 500 μg/m3 WSP on lung function and blood pressure 

responses of exposed volunteers. Intriguingly, we observed mild decreases in FVC and in 

systolic blood pressure in the overall cohort. When the cohort was stratified on the basis of 

sputum %PMN at 6 and 24 hours, we found that this effect was only observed in the PMN 

responsive populations, suggesting that perhaps inflammation plays a role in these additional 

effects of WSP. This is different than what has been reported for O3, in which the effect of 

O3 on lung function does not relate to development of an airways inflammatory response 

(22, 42).
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As we had previously observed that the GSTM1 and asthma genotype modified 

inflammatory response to O3, we explored if these factors modified inflammatory response 

to WSP as well. When we examined the effect of WSP on sputum %PMNs, we found 

that GSTM1 and asthma significantly modified airway inflammatory response to WSP. This 

effect was most consistent in the cohort defined by responsiveness 24 hours after initiation 

of the controlled exposure, which is also when the inflammatory response to WSP was the 

most defined across a number of biomarkers.

There are important limitations to this screening protocol. Because the protocol is intended 

to identify responsive volunteers, we chose not to undertake a clean air control exposure. 

This is similar to our approach to identify response characteristics to O3. In establishing that 

protocol, we compared sputum PMN content at baseline and after a clean air exposure and 

found no difference in those measures (41). We also reviewed sputum data from a number of 

clean air exposures undertaken in studies of O3 which were using similar exposure duration 

exercise regimens and compared these outcomes to baseline values from our WSP cohort. 

We found no significant difference between these historic clean air exposures and the current 

baseline sputum %PMNs. Thus, at least for inflammatory endpoints in sputum, we did not 

feel that it was essential to employ an air exposure to identify WSP responsive volunteers. 

We also focused on one level of WSP exposure, and it is possible that the impact of asthma, 

GSTM1 or other potential biological determinants of response might be more apparent with 

different doses of WSP.

Despite these limitations, our studies with O3 and the data presented here on WSP suggest 

that screening protocols developed to identify responders to air pollutants such as WSP 

comparing post exposure with baseline values is a relatively efficient procedure to identify 

volunteers for recruitment into subsequent intervention studies. These screening protocols 

can also be used assess candidate determinants of pollutant-induced airway inflammation 

and biomarkers of pollutant response. Our use of this 500 μg/m3 WSP screening protocol 

to identify WSP responsive volunteers has not induced adverse effects in these initial 52 

volunteers. We also found that while sputum analysis at 6- and 24-hours after initiation of 

WSP challenge is similarly effective at identifying WSP responsive volunteers, our findings 

also suggest that responses observed 24 hours after initiation of challenge yield more 

robust biological data and is likely a more efficient and informative timepoint for exploring 

determinants of response to WSP.

The current study will be critical in developing and conducting early phase studies of 

potential personal mitigation interventions to reduce WSP-induced disease in persons 

unavoidably exposed to this pollutant, as well as undertaking future dose response studies of 

WSP exposure.
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LIST OF ABBREVIATIONS

WSP wood smoke particles

GSTM1 glutathione S transferase mu 1

PMN polymorphonuclear neutrophil

FVC forced vital capacity

FEV1 forced expiratory volume in 1 second

IL interleukin

TNFα tumor necrosis factor alpha

ug/m3 microgram per cubic meter

BMI body mass index

ANOVA analysis of variance

l/m2 liters per square meter
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Figure 1: 
Sputum Inflammatory Response to WSP of the Entire Cohort Sputum % PMN (Panel A), 

PMN/mg sputum (Panel B), IL‐1β (Panel C), IL-6 (Panel D), IL-8 (Panel E) and TNFα (Panel 

F) at baseline, 6- and 24-hours post WSP challenge in the total unstratified cohort. . Asterisk 

denotes mixed model analysis using a compound symmetry covariance matrix where fit used 

Restricted Maximum Likelihood (REML) to allow for overall and multiple comparisons and 

missing data.
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Figure 2: Spirometric and blood pressure endpoints at baseline and immediately after WSP 
challenge of the entire unstratified cohort.
Spirometric and blood pressure endpoints at baseline and immediately after WSP challenge 

in the total unstratified cohort. Asterisk denotes paired t-test.
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Figure 3: Sputum Inflammatory Response to WSP of responsive volunteers as defined by 
%PMNs at 6 hours.
Sputum % PMN (Panel A), PMN/mg sputum (Panel B), IL‐1β (Panel C), IL-6 (Panel D), 

IL-8 (Panel E) and TNFα (Panel F) at baseline, 6- and 24-hours post WSP challenge in 

the cohort of volunteers responsive to WSP based on a change from baseline of the 6-hour 

%PMN of at least 10% (N=30). Asterisk denotes mixed model analysis using a compound 

symmetry covariance matrix where fit used Restricted Maximum Likelihood (REML) to 

allow for overall and multiple comparisons and missing data.
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Figure 4. Spirometric (Panel A) and blood pressure (Panel B) endpoints at baseline and 
immediately after WSP challenge of responsive volunteers as defined by %PMNs at 6 hours.
Spirometric and blood pressure endpoints at baseline and immediately after WSP challenge 

in responders and non-responders defined at 6 hours. Asterisk denotes paired t-test test.
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Figure 5. Sputum Inflammatory Response to WSP of responsive volunteers as defined by 
%PMNs at 24 hours.
Sputum % PMN (Panel A), PMN/mg sputum (Panel B), IL‐1β (Panel C), IL-6 (Panel D), 

IL-8 (Panel E) and TNFα (Panel F) at baseline, 6- and 24-hours post WSP challenge in the 

cohort of volunteers responsive to WSP based on a change from baseline of the 24-hours 

%PMN of at least 10% (N=28). Asterisk denotes mixed model analysis using a compound 

symmetry covariance matrix where fit used Restricted Maximum Likelihood (REML) to 

allow for overall and multiple comparisons and missing data
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Figure 6. Spirometric (Panel A) and blood pressure (Panel B) endpoints at baseline and 
immediately after WSP challenge of responsive volunteers as defined by %PMNs at 24 hours
Spirometric and blood pressure endpoints at baseline and immediately after WSP challenge 

in responders and non-responders defined at 24 hours. Asterisk denotes paired t-test.
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Table 1:

Subject Demographics.

Total Subjects N=52

Healthy N=40

Asthmatic N=12

Female N=26 (50%)

Race

Asian N=2

Black N=9

White N=40

Other N=1

BMI 25.6+0.7 (range 17.4–38)

Age (years) 27.4+0.8 (range 19.4–40.3)

GSTM1 null N=20

GSTM1 sufficient N=26

Refused GSTM1 testing N=6

Subject Demographics
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Table 2:

Systemic Endpoints of the Entire Cohort at 6 and 24 hours Post WSP Exposure

Endpoint
Baseline 6hr post 24 hr post

Mean SE N Mean SE N Mean SE N

%PMN blood 54.90 1.08 53 61.65* 0.88 52 57.21 1.09 53

PMN 10 6 /ul blood 3.10 0.12 53 4.52* 0.14 52 3.50* 0.16 53

IL-8 blood 13.60 1.60 48 9.59 0.75 50 10.88 0.88 43

IL-6 blood 0.80 0.10 47 1.01 0.11 50 0.82 0.11 43

IL-1 beta blood 0.10 0.02 41 0.08 0.02 49 0.06 0.01 38

TNFalpha blood 2.36 0.21 48 2.09 0.17 50 2.15 0.15 43

CRP blood 2.60 0.40 45 2.60 0.42 44 2.67 0.46 45

Descriptive data (mean, standard error and n for available sample) for each systemic endpoint of the overall cohort at baseline, 6 and 24 hours 

after two-hour controlled exposure to 500ug/m3 WSP. Cytokines in blood are measured as pg/ml. Significance (p<0.05) was obtained only for 

circulating PMN differential count (%PMN) and absolute PMN levels (106/ul blood). Asterisk denotes mixed model analysis using a compound 
symmetry covariance matrix where fit used Restricted Maximum Likelihood (REML) to allow for overall and multiple comparisons and missing 
data.
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Table 3.

Correlative Analysis for Inflammatory Biomarkers

6 hours correlations % change in %PMN vs. % change in 
inflammatory biomarkers

24 hours correlations % change in %PMN vs. % change in 
inflammatory biomarkers

rho p n rho p n

IL‐1β 0.06 0.70 42 0.39 0.02 36

IL-6 −0.25 0.10 43 0.36 0.04 34

IL-8 −0.08 0.60 43 0.37 0.02 37

TNFα 0.03 0.80 43 0.09 0.60 36

PMN/mg 0.35 0.02 47 0.60 <0.01 41

Correlative analysis outcomes for inflammatory biomarkers. Correlations (rho) between the % change in %PMN and the % change in inflammatory 
biomarkers at 6 and 24 hours post WSP exposure. Correlation (rho) values were determined by non-parametric Spearman rank correlational 
analysis
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