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Population-scale single-cell RNA-seq (scRNA-seq) data sets create unique opportunities for quantifying expression varia-
tion across individuals at the gene coexpression network level. Estimation of coexpression networks is well established
for bulk RNA-seq; however, single-cell measurements pose novel challenges owing to technical limitations and noise levels
of this technology. Gene–gene correlation estimates from scRNA-seq tend to be severely biased toward zero for genes with
low and sparse expression. Here, we present Dozer to debias gene–gene correlation estimates from scRNA-seq data sets and
accurately quantify network-level variation across individuals. Dozer corrects correlation estimates in the general Poisson
measurement model and provides a metric to quantify genes measured with high noise. Computational experiments estab-
lish that Dozer estimates are robust to mean expression levels of the genes and the sequencing depths of the data sets.
Compared with alternatives, Dozer results in fewer false-positive edges in the coexpression networks, yields more accurate
estimates of network centrality measures and modules, and improves the faithfulness of networks estimated from separate
batches of the data sets. We showcase unique analyses enabled by Dozer in two population-scale scRNA-seq applications.
Coexpression network–based centrality analysis of multiple differentiating human induced pluripotent stem cell (iPSC) lines
yields biologically coherent gene groups that are associated with iPSC differentiation efficiency. Application with popula-
tion-scale scRNA-seq of oligodendrocytes from postmortem human tissues of Alzheimer’s disease and controls uniquely
reveals coexpressionmodules of innate immune response with distinct coexpression levels between the diagnoses. Dozer rep-
resents an important advance in estimating personalized coexpression networks from scRNA-seq data.

[Supplemental material is available for this article.]

The advent of single-cell RNA sequencing (scRNA-seq) has provid-
ed unparalleled insights into the transcriptional programs of cell
types and cellular stages (Zeisel et al. 2015; Chen et al. 2017;
Travaglini et al. 2020). Emerging population-scale scRNA-seq
data sets are enabling investigations of population-level phenotyp-
ic variability as a function of transcriptomic variability at the sin-
gle-cell level (Bernardes et al. 2020; Cuomo et al. 2020; van der
Wijst et al. 2020; Jerber et al. 2021; Soskic et al. 2022). When com-
bined with individual-level genetic information, population-scale
scRNA-seq data sets enable mapping expression quantitative trait
loci (eQTL) across different cell types and in dynamic processes
(van der Wijst et al. 2018; Soskic et al. 2022).

A key opportunity unveiled by emerging scRNA-seq data sets
is the construction of personalized gene coexpression networks
that can be leveraged to link network-level properties to phenotyp-
ic variation, for example, discovering therapeutic targets in cancer
(Forbes et al. 2022) and identifying genetic variants (e.g., network
QTLs) that associate with network properties such as modules
(Langfelder and Horvath 2008) and network centrality (Savino
et al. 2020) measures. Gene coexpression network analysis
(Zhang and Horvath 2005), which estimates gene–gene correla-
tions, is a key inference tool for detecting latent relationships
that might be obscured in standard analysis of clustering and dif-
ferential expression. Studies examining protein–protein interac-
tions on a genome-wide scale have shown that proteins with a
high number of connections in protein–protein interaction net-
works are more vital for survival than proteins with fewer connec-

tions (Jeong et al. 2001; He and Zhang 2006). In a similar vein,
research on coexpression networks has pinpointed genes with
high centrality that participate in processes specific to the studied
phenotypes. One such study conducted on zebrafish heart regen-
eration found that genes associated with tissue regeneration occu-
pied central positions within the coexpression network (Azuaje
2014). These results underscore the importance of gene centrality
when identifying genes that influence the phenotypes of interest
(Lareau et al. 2015). Instead of focusing on high centrality genes
within a single coexpression network, detecting genes with differ-
ential centrality between phenotypic groups can elucidate regula-
tory alterations. Savino et al. (2020) offer insights into the
potential regulatory relationships that a genewith differential cen-
trality, but no differential expression,might signify. Modifications
in post-translational processes, the involvement of a cofactor, or
epigenetic mechanisms like DNAmethylation canmodify the reg-
ulatory function of a transcription factor (TF) without impacting
its expression.

Workflows, including data preprocessing, normalization, and
network transformation, for estimation of gene–gene correlations
in coexpression networks are well established for bulk RNA-seq
(Johnson and Krishnan 2022); however, single-cell measurements
of expression pose unique challenges owing to technical limita-
tions and noise levels inherent to the technology. Past research in-
novated numerous approaches to mitigate the noise and sparsity
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issues related to scRNA-seq technology when estimating gene–
gene correlations. MetaCell (Baran et al. 2019) aggregated profiles
of disjoint and homogeneous groups of cells to reduce sparsity in
expression counts. BigSCale2 (Iacono et al. 2019) leveraged pat-
terns of differential expression between clusters of cells to calculate
correlations from transformed scRNA-seq data. State-of-the-art
scRNA-seq data normalization and imputation methods, such as
SCTransform (Hafemeister and Satija 2019), MAGIC (Van Dijk
et al. 2018), SAVER (Huang et al. 2018), and DCA (Eraslan et al.
2019), perform well in estimating expression, removing technical
variability, and improving downstream dimension reduction and
clustering tasks. However, these widely used methods, notably ex-
cept for SAVER, rarely account for the estimation uncertainty in
their expression estimates and were observed to introduce correla-
tion artifacts for gene pairs that are not expected to coexpress
(Zhang et al. 2021). A noise regularization approach was intro-
duced by Zhang et al. (2021) to eliminate such correlation artifacts.
However, none of the existing methods have been evaluated with-
in the scope of population-scale scRNA-seq data sets with varying
levels of technical artifacts across individual data sets for their re-
producibility and stability. Furthermore, their performances in
terms of estimating network centrality measures have not been
assessed.

Here, we aim to fill this gap by developing Dozer to estimate
gene–gene correlations from scRNA-seq data. Unlike existing ap-
proaches, Dozer accounts for the noise in the normalized expres-
sion and automatically generates a “noise-to-signal” metric as an
index to select genes for reliable coexpression analysis. Through
large-scale simulations and data-driven computational experi-
ments, we show that Dozer yields robust estimates of gene–gene
correlations that are less sensitive to the overall expression levels
of the genes and the sequencing depths of the data sets compared
with alternatives. Furthermore, Dozer outperforms other methods
in estimating network centrality measures such as degree,
pagerank, betweenness, eigenvector centrality, and modules. We
show the utility of Dozer in two population-scale scRNA-seq data
sets in which Dozer-constructed coexpression networks have a
higher proportion of edges validated by external data sets com-
pared with others. These applications further showcase how net-
work centrality measures from personalized coexpression
networks can be leveraged to exploit phenotypic variation.

Results

Correction factors for correlations estimated from normalized
expression data

We consider a biologically motivated hierarchical model to disen-
tangle the biological signal and the measurement error resulting
from the sequencing procedure. Let gj represent the expression lev-
el of gene j, ℓ represent cell sequencing depth, andX represent cell-
level covariates, for example, batch labels; mitochondrial percent-
age denoting the mitochondrial transcript counts as a percentage
of the total transcript counts. The observedUMI count of gene j,Yj,
is modeled as

Y j|{g j, ℓ, X} � Poisson (ℓ exp(XTbj)g j). (1)

This Poisson measurement model succeeds in capturing variation
driven by sampling noise and stochastic technical noise (Sarkar
and Stephens 2021; Choudhary and Satija 2022) and is particularly
well suited for data sets with shallow depths common to popula-
tion-scale scRNA-seq studies. Although an explicit expression

model for gj is not required for correlation estimation, in our sim-
ulation studies, we consider a Gamma prior g j � G(vj, uj), where vj
and uj are shape and scale parameters. With this expression
model, UMI counts follow the widely used negative binomial dis-
tribution (Huang et al. 2018; Hafemeister and Satija 2019).

Let ℓ̃j := exp(XTbj)ℓ denote the normalizing size factor and

Ync
j := Y j/ℓ̃j denote the normalized counts. Elementary calcula-

tions result in

cov(g j, gk) = cov(Ync
j , Ync

k ), (2)

var(g j) = var(Ync
j )− E[g j/ℓ̃j] ≤ var(Ync

j ). (3)

Hence, the magnitude of the correlation of the normalized counts
Ync

j and Ync
k is an underestimate of the true correlation, cor(gj, gk),

of genes j and k. We use the ratio Rj :=
E[g j/ℓ̃j]

var(Ync
j )

[ [0, 1] to define a

“noise ratio” indicating the quality of normalized expression of
gene j. Quantification of this ratio across a wide range of genes
in both simulated and actual data sets indicates that the high noise
ratio corresponds to low expression and high sparsity
(Supplemental Fig. S1; Supplemental Sec. S2.1). This aligns well
with the intuition that the sparser the gene expression, the harder
to recover the underlying signal. The corrected correlation be-
tween the expression values of gene j and k is then given by

cor(g j, gk) =
cor(Ync

j , Ync
k )�������������������

(1− Rj)(1− Rk)
√ . (4)

For a given data set, Yj, j = 1 · · · , G are the observed UMI counts of
the genes. The cell sequencing depth ℓ is typically approximated
with the total number of UMI counts per cell (e.g., work by
Hafemeister and Satija 2019), which is further justified with an ap-

proximation errorOp(1/
��
ℓ

√
) under the Poissonmeasurementmod-

el and probability simplex constraint
∑G

j=1 exp(X
Tbj)g j = 1

(Zhang et al. 2020a). We used trimmed total UMI counts
(Methods), amodification of total UMI counts, to reduce the influ-
ence of high expression genes on the estimation, as a default esti-
mator for the sequencing depth. Parameters for the covariates {βj}j
are estimated through a Poisson regression. The numerator and

denominator of the noise ratio E[g j/ℓ̃j], var(Y
nc
j ), and the gene

pair correlation cor(Ync
j , Ync

k ) are estimated through the sample

mean, variance, and correlation. We denote Sj=1/(1−Rj) as the
correlation correction factor for gene j and represent cor(gj, gk) in
Equation 4 as cor(Ync

j , Ync
k )

�����
SjSk

√
. Because the variance of a plug-

in estimator Ŝj := 1/(1− R̂j) is inflated for genes with a high noise
ratio (Rj close to one), we adopt two strategies to stabilize the esti-
mation of the corrected gene–gene correlations: a weighting
scheme that allocates higher weights to cells with higher depths
in the estimation of gene noise ratio, and a variance reduction
transformation to stabilize the gene correction factor estimates
(Methods; Supplemental Fig. S2). Direct evaluation of biases and
variances in the gene–gene correlations estimated by Dozer vali-
dates the effectiveness of our strategies in achieving a well-
balanced trade-off between estimation bias and variance
(Supplemental Sec. S2.2; Supplemental Figs. S3–S5).
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Dozer reduces false positives in coexpression network edge
estimation

We first designed a data-driven permutation experiment with the
Jerber_2021 data (Jerber et al. 2021), leveraging proliferating floor
plate progenitor (P_FPP) cells from 20 donors, each with at least
500 cells, to study the overall false-discovery rates of coexpression
network construction methods in terms of edge estimation
(Supplemental Secs. S1.1, S1.2). We also leveraged these computa-
tional experiments to investigate the factors that affected the num-
ber of false-positive edges associated with each gene within each
method. Given an expression matrix, we randomly split genes
into two disjoint sets and permuted the cell ordering in one set
so that gene pairs with one gene in each set have zero correlation
by construction. We then constructed a coexpression network for
gene pairs with one gene fromeach set using the permuted data set
by each method. Because the networks with permuted data are
null networks, all the discovered edges are deemed as false
positives.

Quantification of the empirical false-discovery rates of each
method across the data splitting experiments revealed that Dozer
has a smaller false-discovery rate than the other methods irrespec-
tive of the correlation threshold (one-sided Wilcoxon rank-sum
test P-values comparing Dozer vs. the next best method are
≤0.077 across all percentile thresholds) (Fig. 1A). We next asked
how the numbers of false-positive edges of genes varied as a func-
tion of the overall expression of the genes and their sparsity, that
is, proportion of cells with zero expression for a given gene (high
proportion indicatinghigh sparsity) (Fig. 1B). Networks constructed
by SAVER and SCT.Pearson have more false positives among genes
with high expression or low sparsity. SCT.Spearman tends to over-
estimate the number of edges for genes with high sparsity. This ap-
pears to be an artifact owing to oversmoothing of the normalization
procedure and has been observed by others as well (Supplemental
Fig. S6; Zhang et al. 2021). In contrast, Dozer, MetaCell, Noise.Reg,
and bigSCale2 do not show any discernible association between the
numbers of false-positive edges and the overall sparsity levels of the
genes or the overall expression levels of the genes. Next, to elucidate
the aggregated effect of the overall mean expression and sparsity
levels of the genes, we compared the estimated degrees of the genes,
that is, the total number of edges of a gene, obtained from the net-
works with the permuted and the unpermuted data. The gene de-
grees estimated from the networks with unpermuted and
permuted data are correlated for methods SAVER, SCT.Pearson,
and SCT.Spearman (Fig. 1C). This indicates that some of the high
centrality genes in these networks are driven by the edge identifica-
tion bias toward genes of certain expression patterns, for example,
high expression genes for SAVER and SCT.Pearson and sparse genes
for SCT.Spearman. Dozer, MetaCell, Noise.Reg, and bigSCale2, to a
large extent, show a uniform behavior across the genes, with Dozer
having a lower number of false-positive edges compared withMeta-
Cell, Noise.Reg, and bigSCale2, respectively (an average of 3.4 vs.
9.2, 11.3, and 9.8 in Fig. 1C).

Dozer yields more accurate estimates of gene centrality scores
and modules in coexpression networks

Coexpression network construction methods are traditionally
benchmarked for their accuracy in detecting individual edges us-
ing the area under precision recall curve (AUPR) and F1 score met-
rics (Pratapa et al. 2020; Johnson andKrishnan2022;McCalla et al.
2023). Although inferential analysis of coexpression networks
commonly use gene centrality measures and modules to prioritize

genes and elucidate biological processes (Iacono et al. 2019; Wang
et al. 2021), existing methods for estimating coexpression net-
works from scRNA-seq data are not benchmarked for their perfor-
mance in estimating these inferential parameters.

To create simulation scenarios that accurately reflect real-
world conditions, we relied on Cuomo_2020 (Cuomo et al.
2020), which provides a high sequencing depth per cell (averaging
about 530,000 total counts per cell), to simulate from realistic
gene–gene correlation structures. We combined these correlations
with marginal gene distributions and sequencing depth estimates
obtained from Jerber_2021 (Jerber et al. 2021) to simulate popula-
tion-scale scRNA-seq data (Methods). In addition to the standard
evaluation of network edge recovery, we evaluated each method’s
performance in identifying top centrality genes, as defined by a va-
riety of network centrality measures (setting A). We also assessed
their abilities to avoid confounding between differential gene ex-
pression and differential gene centrality (setting B) and the perfor-
mance in gene module identification in terms of identifying gene
modules in the ground truth network (settingC). The former is im-
portant for coexpression analysis of population-scale scRNA-seq
data because genes that are differentially expressed between popu-
lations might also spuriously show differential network centrali-
ties owing to the computational biases as observed in the false-
discovery analysis (Fig. 1).

Performances of the methods in terms of edge and high cen-
trality gene identification as a function of noise ratios of the genes
(i.e., with four different noise ratio thresholds as {0.6, 0.7, 0.8,
0.9}), the numbers of cells (four different cell sample sizes as
{125, 250, 500, 1000}), and average sequencing depths (four dif-
ferent sequencing depths as {1500, 3000, 6000, 12000}) in the
first simulation setting (setting A) are summarized in Figure 2, A
and B, and Supplemental Figures S7 and S8. Specifically, SAVER
tends to outperform the rest in terms of edge identification, where-
as Dozer shows superior performance in terms of identifying high
centrality genes. The discrepancy in edge and high centrality gene
identification performances of SAVER can be attributed to its up-
ward bias toward high expression genes, which was also prevalent
in the FDR analysis (Fig. 1B). Correlation estimation from SAVER
tends to be larger inmagnitude for high expression genes. This up-
ward bias favors higher rankings for correlations between high ex-
pression genes, resulting in a greater number of selected edges
among these genes (Supplemental Fig. S9). Exploring the impact
of the noise ratio and the numbers of cells for coexpression analy-
sis yielded that, for all methods, noise ratio and sample size have a
large impact on edge identification but a much smaller impact on
the centrality measures of the genes (Fig. 2A,B; Supplemental Figs.
S7, S8). For the three top-performing methods, Dozer, SAVER, and
SCT.Pearson, the AUPR of edges reduces by 47% (F1 score reduces
by 38%) when we relax the noise ratio threshold from 0.6 to 0.9 or
decrease the numbers of cells from 1000 to 250, whereas the AUPR
of gene centrality is attenuated by only 18% (F1 score reduces by
15%). Visualizing the general trends in the leftmost panels of Fig-
ure 2, A and B (also Supplemental Figs. S7, S8), we observe a clear
drop in performance when going from 250 to 125 cells (AUPRs
of edge and degree centrality identification are (0.22, 0.58) with
250 cells and (0.12, 0.42) with 125 cells), especially for data sets
with low sequencing depths. This indicates the importance of ex-
tra caution and additional robustness checks when constructing
networkswith fewer than 100 cells. Further extension of these sim-
ulations by varying the sequencing depths of the cells reveals that
the sequencing depth is not a key factor for network construction
performance as long as genes with high noise ratio are filtered.
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However, sequencing depth plays a key role on the numbers of
genes retained, hence the size of the network that can be accurate-
ly recovered (Supplemental Fig. S10).

Although Dozer does not assume a Gamma expression mod-
el, we further evaluated its robustness under additional data-gener-
ative settings. Specifically, we compared Dozer with the other
state-of-the-art methods using scDesign2 (Supplemental Sec. S2.
3; Sun et al. 2021). scDesign2 chooses the marginal distributions

of the genes adaptively among a larger set of count distributions
(Poisson, negative binomial, zero-inflated Poisson, and zero-inflat-
ed negative binomial) and uses a Copula model to generate gene–
gene correlations. In experiments with scDesign2, Dozer showed
robustness to the violation of the Poisson-Gamma assumption
and outperformed other methods (Supplemental Figs. S11, S12).

Next, we designed a second batch of simulations (simulation
setting B) to evaluate potential confounding between changes in

A B C

Figure 1. Impact of the overall expression and sparsity levels of genes on false-discovery rates of coexpression network edge detection. (A) Empirical false-
discovery rates of the methods across multiple permutation experiments with the Jerber_2021 samples at multiple distinct thresholds set by the percentiles
of the absolute values of the estimated correlations. The P-values from a one-sided Wilcoxon rank-sum test between Dozer and the second-best method,
SAVER, for the five quantile thresholds are 0.077, 0.0014, 4.1 × 10−5, 9.5 × 10−6, and 0.00016, respectively. (B) Numbers of false-positive edges of genes
stratified by mean expression levels and the proportion of zeros in gene counts (sparsity). Percentages on the x-axis denote the percentage of genes in the
expression and sparsity intervals. (C) Estimated gene degrees (i.e., numbers of edges connected to a gene) from the coexpression network with the per-
muted (y-axis) versus unpermuted (x-axis) data. Coexpression networks are constructed between the two groups of genes that result from splitting of the
genes. Gene degrees are estimated from coexpression networks with the original data (unpermuted; x-axis) and data in which cells are permuted for one set
of the genes (permuted; y-axis). Because the correlation of genes in the permuted data is zero, the corresponding gene degrees are contributed by falsely
detected edges, highlighting the aggregated impact of mean expression levels and proportion of zeros in deriving the genes’ overall associations. Results
are pooled from multiple permutation replicates across the genes.
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expression and changes in network centrality of the genes. This
type of confounding can lead to inaccurate inference. For example,
an increase in expression of a group of genes owing to perturbation

might be inferred as having interactions with larger groups of
genes owing to biased correlation estimation. Each simulation in-
stance contains two data sets generated from the same underlying

A

B

C D

Figure 2. Evaluation for gene centrality and module estimation. (A,B) Summary of simulation results in terms of AUPR scores for edge and high degree
centrality gene identification. The leftmost panel depicts the average AUPR scores of Dozer for edge (A) and degree (B) centrality identification as a function
of gene noise ratios (x-axis), number of cells (y-axis), and average sequencing depths (rows). The remaining panels highlight the performances of other
methods as quantified by the ratio of their AUPR scores over the AUPR score of Dozer. Results for the identification of high centrality genes with respect
to pagerank, betweenness, and eigenvector centrality are in Supplemental Figure S7. (C) Robustness of estimated gene centrality measures against differ-
ential expression. Box plots of Spearman’s correlations between log2 fold changes (logFCs) of expression and centrality across genes are displayed for in-
dividual methods. Although the two batches of simulated data sets have induced differential expression, they share the same coexpression network
structure, leading to differential expression but similar centrality measures of the genes across the two batches. (D) Proportion of times each module is
identified by each method. A gene module was deemed as identified by a method if it has a Jaccard index overlap of at least 0.5 with WGCNA estimated
modules of the method. The table below the bar plot provides the average sparsity, expression, and noise ratio of genes in each module.
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network (i.e., same gene–gene correlation matrix) but with differ-
ent gene expression levels controlled by the shape and scale pa-
rameters of the Gamma-Poisson distribution. After constructing
coexpression networks with each method, we quantified, for
each gene, the log2 fold change (logFC) of centrality between the
two data sets in the same simulation instance. We also quantified
the logFC of gene expression across the same twodata sets for each
gene. Figure 2C displays the associations of these twofold changes
as quantified by the Spearman’s correlation across the genes.
Because the centralities are estimated from data originating from
the same underlying network,methods robust to differences in ex-
pression levels are expected not to yield significant associations be-
tween logFC of gene centrality measures and expression. We
observe that bigSCale2 and Dozer shows relatively small correla-
tions between differential expression and centrality measures. In
contrast, the logFCs of gene expression and centrality have strong
positive associations for SAVER, SCT.Pearson, and Noise.Reg and
strong negative association for SCT.Spearman. This result aligns
with the upward bias of edges toward high expression genes for
methods SAVER and SCT.Pearson and the oversmoothing issue
with SCT.Spearman observed in the FDR analysis.

Finally, we evaluated the methods in terms of their coexpres-
sion module identification performances (simulation setting C).
The ground-truth modules, which were balanced with 80 to 100
genes per module, were set as WGCNA (Langfelder and Horvath
2008) computational modules with the true network as input to
the WGCNA. The table in Figure 2D summarizes the general char-
acteristics of the modules in terms of the sparsity, expression, and
noise ratio, calculated by averaging over genes in each module.
Each method’s coexpression modules were derived by WGCNA.
In a simulation instance, a true module was considered as identi-
fied by a given method if one of its coexpression modules over-
lapped with the true model with a Jaccard index of at least 0.5
(overall results appeared robust to this choice of cutoff). Figure
2D displays the proportion of times the modules are identified
by eachmethod and indicates that modules with high noise ratios
(modules 4, 5, and 6 with noise ratios greater than 0.65) are harder
to identify for all the methods. Dozer shows a robust performance
for all themodules with an average noise ratio less than 0.75. None
of the methods were able to consistently identify module 6
because the correlation among genes with such high noise ratios
shrank toward zero, leaving these genes as singletons in the net-
work. SAVER, Noise.Reg, andMetaCell are also challenged in iden-
tifying module 1 despite the lowest noise ratio of this module. A
closer investigation revealed that, without correction, these genes
tend to have high spurious correlations with the other genes. As a
result, genes in module 1 were merged with genes in other mod-
ules, which hindered the identification of module 1. Overall,
Dozer is more robust in identifyingmodules with an average accu-
racy of 0.74 across the modules, 68% higher than the second-best
method SCT.Pearson.

Dozer is robust against sequencing depth differences
of the scRNA-seq data sets

In large-scale scRNA-seq studies, data are typically generated in
separate batches owing to logistical constraints, for example, at dif-
ferent times, laboratories, with different library preparation tech-
nologies, and so on. Although this can cause systematic
differences in expression between batches and requires correction
(Tran et al. 2020) before the data can be analyzed jointly, it further
provides an opportunity to evaluate the impact of sequencing

depth on estimated network features as the underlying coexpres-
sion networks of these batches are realizations from the true coex-
pression network. Although we evaluated the robustness of
estimated network features against differential expression with
simulation setting B in the previous section, we reasoned that
the multiple batches setting can further corroborate our findings
with actual data. Figure 3A displays sequencing depths of two bio-
logical replicate data sets sequenced in different batches (labeled as
pool2 and pool3) from the Jerber_2021 (Jerber et al. 2021) study.
Median total read counts in pool2 is 70% of the median total
counts in pool3. There is also a clear separation of cells in the
two batches in the UMAP (Becht et al. 2019) visualization (Fig.
3A). We used gene–gene correlations estimated from pool3 (with
the higher depth) as the reference to quantify the effect of lower
sequencing depth on correlation estimation. Specifically, we eval-
uated the root mean square error of the absolute correlations (Fig.
3B) to quantify the similarity of the correlations from the two
batches. Dozer, SAVER, and SCT.Pearson yielded lower root
mean squares than other methods regardless of the noise ratios
of the genes, indicating robustness of estimated correlations
against sequencing depth differences of the scRNA-seq data sets.

Next, we considered the impact of expression differences ow-
ing to batch effects on gene centrality estimates from the coexpres-
sion networks. With population-scale data, a key downstream
analysis is to detect network-level differences associated with phe-
notypic or genotypic variation (van der Wijst et al. 2018). If a net-
work constructionmethod is biased by the actual expression levels
of the genes, differential expression will impact the detection of
network-level changes.We reasoned that although the differences
in sequencing depths or other experimental artifacts would lead to
differentially expressed genes between the two batches, robust es-
timation of gene correlations should not result in genes with dif-
ferential network centrality measures. A differential expression
analysis with DESeq2 (Love et al. 2014) identified 231 (270) genes
with significantly higher expression in pool2 (pool3) compared
with pool3 (pool2). The choice of DESeq2 ensured that all the
methods had access to the same set of differentially expressed
genes. We then assessed if a spurious change in expression is per-
formed to a change in gene centrality measures. This revealed
significant associations between differential expression and
centrality, including degree, pagerank, and eigenvector centrali-
ties, for all methods except Dozer (Fig. 3C,D). Overall, Dozer pro-
vides the most protection against the carry-over effects from
changes in expression to centrality.

Personalized coexpression network analysis of donor
iPSC lines under neuronal differentiation identifies genes
central to differentiation efficiency

The Jerber_2021 (Jerber et al. 2021) study, with multiple human
induced pluripotent stem cell (iPSC) lines differentiating toward
a midbrain neural fate, is one of the pioneering population-scale
genetic studies with scRNA-seq profiling. The neuronal differenti-
ation efficiency score is quantified for each donor iPSC line in the
original study as a phenotypic trait. We specifically focused on the
P_FPP cells to discover genes related to neuronal differentiation ef-
ficiency and evaluate the resulting coexpression networks from
different methods with external data sources.

For each donor, we constructed a gene coexpression network,
by keeping edges with absolute estimated correlations greater than
the xth percentile, x∈ {90, 95, 99}, of all of the absolute estimated
correlations. We first evaluated the edges identified in the
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coexpression networks with the STRING protein–protein interac-
tion database (Supplemental Sec. S1.3; Szklarczyk et al. 2021).
Across all the methods, a larger fraction of network edges over-
lapped with the interactions in the STRING database with a higher
threshold (Fig. 4A), suggesting that the gene pairs with large abso-

lute correlations are better supported by the corresponding pro-
tein–protein interactions. Overall, edges from Dozer network had
the highest validation ratewith the STRINGdatabase for all thresh-
olds, with an average increase of 13%, 25%, and 56% in the per-
cent validations, for the percentile thresholds of 90%, 95%, and

A

C D

B

Figure 3. Robustness in coexpression networks against sequencing depth differences of the scRNA-seq data sets. (A) Distribution of sequencing depths
across cells and UMAP visualization of the cells in biological replicates pool2 and pool3. (B) The root mean square error (RMSE) of absolute correlation es-
timates in pool2 using the higher depth pool3 as the gold standard. Before computing the RMSE, the absolute correlations in pool2 and pool3 were scaled
by the standard error of all absolute correlations. (C) Genes are separated into three groups as “higher expression in pool2,” “higher expression in pool3,”
and “no significant differential expression” using an adjusted P-value threshold of 0.05. For each gene group, the boxplot displays the differences in gene
centrality scores between the pool2 and pool3 data sets. Methods robust to sequencing depth differences have centrality differences centered at zero re-
gardless of the gene group. (D) P-values from testing the association of differential expression and differential centrality. Dashed line is the Bonferroni-cor-
rected P-value threshold of 0.05/4.
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Figure 4. Coexpression network analysis of the Jerber_2021 multiple donor scRNA-seq data. (A) The percentage of coexpression network edges validat-
ed by the STRING protein interaction database across donors. The x-axis denotes the percentile cutoff for thresholding the estimated correlations. The
dashed line is the percentage of randomly selected gene pairs validated in the STRING database. The P-values from one-sided Wilcoxon rank-sum test be-
tween Dozer and the second-best method for the three percentile thresholds are 1.1 × 10−11, 3.9 × 10−12, and 4.1 × 10−12, respectively. (B) Transcription
factors (TFs) enriched in gene coexpression networks of the donors, evaluated using TF–target pairs documented in the hTFtarget database. (C)
Comparison of estimated gene degrees from coexpression networks with gene degrees in the STRING database. (D) Visualization of donor-specific net-
works using the first two principal components of the network degree centralities. (E) Average silhouette scores from the first two principal components
of the two groups of donors based on their gene centralities in neuronal differentiation. The dashed line represents the average silhouette score based on
principal components of donors’ bulkified expression. (F ) Comparison of differential degree centralities of the genes from the Dozer coexpression networks
with their differential expression. The x-axis displays the signed –log10 (adjusted P-value) from differential expression with positive (negative) values denot-
ing higher (lower) expression in the failure group. The y-axis denotes the signed –log10 (adjusted P-value) from differential degree centrality with positive
(negative) values showing higher (lower) centrality in the failure group. (G) Comparison of the degree centralities from the Dozer coexpression networks
and expressions of select genes associated with “neurodegeneration” across the donors in the two neuronal differentiation efficiency groups. Significance
levels are coded as follows: (∗) adjusted P-value < 0.05, (∗∗) adjusted P-value < 0.01, (∗∗∗) adjusted P-value < 0.001.
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99%, compared with the next best method (one-sided Wilcoxon
rank-sum test P-values for Dozer vs. the next best method in Fig.
4A are 1.1 ×10−11, 3.9 × 10−12, and 4.1 ×10−12 under the three
thresholds, respectively).

Next, we used hTFtarget (Zhang et al. 2020b), a database of
human TF targets, for further validation of the edges connected
to TFs. Specifically, we tested whether the targets of TFs were en-
riched among the edge genes of TFs in the coexpression networks
(Supplemental Sec. S1.4). Four TFs showed significant enrichment
in the Dozer networks (Fig. 4B), whereas most networks did not
yield any enrichment (MetaCell, Noise.Reg, bigSCale2), and
SAVER, SCT.Spearman, and SCT.Pearson resulted in one, four,
and three TFs enriched for edges by their hTFtarget targets, respec-
tively. Of these, lamin B1 (LMNB1), which is identified only by
Dozer, modulates differentiation into neurons (Mahajani et al.
2017). SMC3 is a member of the cohesion complex, which plays
a critical role in regulating changes in chromatin structure and
gene expression (Ball et al. 2014). In a study with Smc3-knockout
mice, reduced cohesion expression in the developing brain result-
ed in alterations in gene expression, which subsequently caused
distinct and abnormal neuronal characteristics (Fujita et al. 2017).

We next turned our attention to gene centrality measures es-
timated from these coexpression networks. First, to validate gene
degrees, we compared the network gene degrees in the coexpres-
sion networks and in the networks formed by gene pairs with in-
teractions in the STRING database (Fig. 4C). The Spearman’s
correlation between the degrees of the genes in coexpression net-
work and the STRINGnetwork is the highest for Dozer, at a level of
0.44. This reinstates that Dozer does not sacrifice accuracy of gene
degrees for edge accuracy.

In the Jerber_2021 (Jerber et al. 2021) study, the donors are di-
vided into two groups in terms of their neuronal differentiation ef-
ficiency, namely, neuron differentiation failure (neuronal
differentiation efficiency <0.2) and neuron differentiation success
(neuronal differentiation efficiency≥0.2). We asked whether net-
work gene centrality measures can highlight differences between
the two phenotype groups. After estimating a variety of gene cen-
trality measures from each donor’s coexpression network, we visu-
alized the separation of the two donor groups with principal
components (PCs) and assessed the level of separation with the sil-
houette score (Rousseeuw 1987), higher positive values of which
indicate good separation between the two groups (Methods).
Centrality measures estimated from the Dozer coexpression net-
works show a clear separation between the two neuronal differen-
tiation efficiency groups in the PC plots for all the four centrality
measures (Fig. 4D; Supplemental Fig. S13). The silhouette score as-
sociated with Dozer is also the largest, with an average of 0.38
among the four centrality types (Fig. 4E).

Centrality measures from coexpression networks can lead to
identification of biologically relevant genes that might be missed
by standard analysis of differential expression and clustering. To
this end, we tested for differences in gene centrality measures of
the two phenotype groups and compared the differential centrali-
ty and differential expression quantification of the genes
(Supplemental Sec. S1.5). This analysis identified 51 genes that
showed differential degree but equal expression between the suc-
cess and failure groups at an FDR of 0.05 (Fig. 4F; for the other cen-
trality measures, see Supplemental Fig. S14). We performed gene
set enrichment analysis (Supplemental Sec. S1.6) separately on
KEGG pathways and GO biological processes for genes that
showed significantly higher centralities in the failure group (ad-
justed P-value<0.05 and logFC(failure/success) > 0) and the suc-

cess group (adjusted P-value<0.05 and logFC(failure/success) <
0). We identified a set of 13 genes (COX5A, COX5B, COX4I1,
COX6B1, COX7B, CTNNB1, FUS, NDUFA11, NDUFA4, TUBB2B,
UQCRH, UQCRQ, XBP1) that showed significantly higher centrali-
ty in the failure group and were associated with “Pathways of neu-
rodegeneration.” This set of genes does not appear to be
identifiable through differential expression analysis, with four
genes showing higher expression in the failure group, five genes
with higher expression in the success group, and four genes yield-
ing equal expression in both groups (Fig. 4F,G). Furthermore, this
set of genes overlapped with gene sets enriched in neurodegener-
ative diseases, such as Parkinson’s disease, amyotrophic lateral
sclerosis, and Alzheimer’s disease (AD), as well as GO terms related
tomitochondrial electron transport (Supplemental Figs. S15–S17).
The biological relevance of the latter is supported by the growing
body of literature that suggests that mitochondria are central reg-
ulators in neurogenesis (Arrázola et al. 2019; Brunetti et al.
2021).Mitochondrial dysfunction, especially in the electron trans-
port chain, is responsible for neurodegenerative diseases (Guo
et al. 2013;Hroudová et al. 2014; Kausar et al. 2018).Wenext asked
whether bigSCale2, which had been used for identifying genes
with coexpression network centrality differences (Iacono et al.
2019), could similarly reveal biologically relevant gene groups
with differential centrality between the two phenotype groups.
Although bigSCale2 identified a total of 11 genes with differential
centrality across the four centrality measures (with only two genes
in the gene set not showing differential expression), this set of
genes lacked enrichment for neuronal differentiation GO and
KEGG terms.

Differential analysis of personalized coexpression networks
uniquely identifies a dense innate immune response module
in the AD diagnosis donors

The Morabito_2021 data set (Morabito et al. 2021) profiled tran-
scriptome of nuclei isolated from the prefrontal cortex (PFC) of
postmortemhuman tissues from 11 late-stage AD subjects and sev-
en age-matched cognitively healthy controls. A coexpression anal-
ysis is performed in the original paper with single-nucleus
consensus WGCNA (scWGCNA) using both single-cell and bulk
RNA-seq data. To directly compare donor-specific coexpression
networks with the scWGCNA results, we started with the same
set of 1252 genes that scWGCNA used leveraging both the
snRNA-seq and bulk RNA-seq data. When using only the snRNA-
seq data, 682 of these were filtered either because of their zero ex-
pression in one or more donor data sets or because of high gene
noise ratios (Supplemental Fig. S18). We primarily focused on oli-
godendrocytes because this cell type constituted, on average, 60%
of donor cells, hence providing a sizable sample per donor.

We first established that donor-specific coexpression net-
works are biologically sound by a largest-clique, that is, a largest
fully connected subnetwork, analysis that was validated in the
independent snRNA-seq data set from Nagy et al. (2020)
(Supplemental Sec. S4.1; Supplemental Fig. S19). Next, to identify
subnetworks, that is, modules, driving the variation of coexpres-
sion networks between the AD and control diagnoses, we con-
structed a “difference network” by first averaging the donor-
specific unsigned Dozer networks within the AD and the control
diagnoses separately and then taking the differences of these two
averaged networks. Hierarchical clustering of the difference net-
work yielded three gene modules: Dozer-A1, Dozer-A2, and
Dozer-A3 (Fig. 5A). Taking advantage of the coexpressionnetworks
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at the donor level, we askedwhether densities (i.e., connectedness)
of these modules varied between the two diagnoses and observed
that module Dozer-A3, with 57 genes, has significantly higher
module density in AD compared with the control diagnosis (t-
test P-value of 0.0084) (Fig. 5B). We found that the majority of
the GO terms enriched in this module are related to innate im-
mune response (Fig. 5C).Wenext explored the expression patterns
of the genes in Dozer-A3 (Fig. 5D; Supplemental Figs. S20–S22). It
is evident, especially in the hive plots of Dozer-A3 (Fig. 5D;
Supplemental Fig. S22), that the genes with high degrees are not

expressed at high levels. More critically, genes driving the differ-
ences in the connectivities of the AD and control groups are also
not differentially expressed. Further investigation into these genes
revealed that they tend to coexpress in a small group of immune
oligodendrocyte cells (immune ODCs) (cluster ODC13 in
Morabito et al. 2021) and suggested immune ODCs as the primary
source driving themodule density differences between the AD and
control groups. This is corroborated by the significant coexpres-
sion levels of Dozer-A3 module genes in cells of immune ODCs
(Supplemental Fig. S23). Furthermore, the association between

A
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D

Figure 5. Coexpression network analysis of theMorabito_2021multiple donor scRNA-seq data. (A) Heatmap of the “difference network” (average of AD
networks− average of control networks). Genes are ordered by gene modules (singleton, Dozer-A1, Dozer-A2, Dozer-A3), which are obtained by hierar-
chical clustering on the “difference network” (Methods). (B) Violin plots of module densities for AD and control donor networks. Module density is a func-
tion of the average absolute correlation of gene pairs in the given module (Methods). (C) Bar plot of GO enrichment terms for module Dozer-A3. (D) Hive
plot visualization of module Dozer-A3 in AD and control groups. Genes are ordered from high (top) to low (bottom) by their average expression across all
donors. Genes are further divided into three groups as “down-regulated in AD,” “up-regulated in AD,” and “equally expressed” according to their differ-
ential expression status between the control and AD diagnoses. The arcs between the genes in this linear layout depict the edges in the average networks of
AD (left) and control (right) donors, with colors representing edge weights.
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the coexpression of Dozer-A3 genes and whether a cell is an im-
mune ODC cell is stronger among the AD diagnosis compared
with the control (Supplemental Sec. S1.7; Supplemental Fig.
S24). To further validate that immune ODCs are driving the dis-
covery of Dozer-A3, we repeated the difference network analysis
with Dozer with a restricted ODC cell population excluding the
immune ODCs and observed that the immune-related gene mod-
ule Dozer-A3 was no longer discoverable (Supplemental Fig. S25).
This corroborated the driver role of immune ODCs in the original
Dozer-A3 module.

We next performed differential centrality analysis for degree,
pagerank, betweenness, and eigenvector centralities to infer the
key genes in the Dozer-A3module. This revealed that TLR2, which
encodes a primary receptor for Alzheimer’s amyloid beta-peptide
to trigger neuroinflammatory activation (Liu et al. 2012), has sig-
nificantly higher degree centrality in AD than in the control
(Supplemental Fig. S26). In the broader context, innate and adap-
tive immune responses play a key role in the pathological process-
es of AD as well as other neurodegenerative diseases (Shi and
Holtzman 2018). Recent studies have shown that oligodendroglia
becomes immune-reactive in a mouse model of multiple sclerosis
(Kirby et al. 2019) and in human iPSC-derived oligodendrocytes
from Parkinson’s disease and multiple system atrophy patients
(Azevedo et al. 2022), providing further support for the discovery
of this module by Dozer.

Repeating the same type of difference network analysis with
the other methods revealed that Dozer, SAVER, and SCT.Pearson
are the only three network construction methods that unearthed
coexpression modules with densities significantly correlated
with diagnoses and significantly enriched GO terms (Supplemen-
tal Figs. S27–S32). The three modules that show changes in densi-
ties between diagnoses are Dozer-A3, SAVER-A3, and SCT.Pearson-
A3. These three modules from independent methods are suppor-
tive of each other, as they share 23 genes (Supplemental Fig. S33)
and as the common set of genes are significantly enriched for
the GO term “innate immune response” (Supplemental Fig. S34).

Finally, we askedwhether the association of the diagnosis with
the coexpression networks of innate immune response genes is also
revealed with the scWGCNA analysis (Morabito et al. 2021) that
combines data from all donors to construct a single coexpression
network. Although Morabito et al. (2021) observed that the cell-
type composition of late-stage AD shifted toward more immune
ODCs, the eigengene expression of their immune response–related
gene module (OM3) within oligodendrocytes is not correlated with
the AD diagnosis in the scWGCNA analysis (Fig. 8 of Morabito et al.
2021). As a consensus clustering approach, scWGCNAused external
bulk RNA-seq data from the UCI (Morabito et al. 2021) and ROS-
MAP (Mostafavi et al. 2018) cohorts to mitigate the issue of sparsity
in expression data. Nevertheless, the inclusion of these external
data may have obscured signals that are unique to single-cell
RNA-seq. To elucidate the factors that contribute to the differences
in findings between scWGCNAand personalized gene coexpression
networks, we reimplemented scWGCNA on data set Mora-
bito_2021, following the gene filtering procedure used in Dozer to
exclude genes with high sparsity and noise ratios. Our implementa-
tion considered two comparable variants of scWGCNA as follows:
(1) scWGCNA-I, data were combined from donors within a diagno-
sis group to construct diagnosis-specific coexpressionnetworks, and
then the consensus modules were computed; and (2) scWGCNA-II,
a difference network between the diagnoses from diagnosis-specific
coexpression networks was constructed, andmodules on the differ-
ence network were inferred. scWGCNA-I follows the prescribed

scWGCNA pipeline ofMorabito et al. (2021) with a small modifica-
tion by using diagnosis-specific networks, whereas scWGCNA-II is
more similar to our differencenetwork analysis for personalizednet-
works, and it aims to detectmodules showingdifferences in connec-
tivity between diagnoses. A key difference of both of these
implementations from our approach is that they pool the donor
data before constructing networks; hence, the resulting networks
are not at the individual donor level. In these analysis,
scWGCNA-I detected three coexpression modules (scWGCNA-
brown, scWGCNA-blue, and scWGCNA-turquoise) and left a large
group of genes as singletons, that is, deemed as not forming a coex-
pression module (scWGCNA-gray) (Supplemental Fig. S35). Eigen-
gene analysis of these modules revealed only the scWGCNA-
brownmodule as weakly associated with the AD diagnosis (Supple-
mental Sec. S1.8; Supplemental Fig. S35). Furthermore, innate im-
mune response genes, discovered in our personalized networks
analysis, appeared as singletons, prohibiting them to be identified
as enriched within a module. This can be explained by
scWGCNA-I’s intrinsic focus onmodules common to both diagnos-
es, as a result of which it loses power to detect module-level differ-
ences between the diagnoses. scWGCNA-II builds modules on the
difference network between the AD and control diagnoses. One of
its eight coexpression modules (scWGCNA-A4) harbors the innate
immune response genes. However, expression of none of the mod-
ule eigengenes of scWGCNA-II has a significant association with
the AD diagnoses (Supplemental Fig. S36). In fact, visualization of
the Dozer-A3 genes within the scWGCNA networks of the AD
and control groups does not show any discernible differences be-
tween the two (Supplemental Fig. S37). scWGCNA-II pools cells
from all donors and loses the ability to directly test differences in
module connectivity between diagnoses through module density.
This further reinstates that although module eigengene expression
is representative of module gene expression level, when the differ-
ences in the expression levels between the diagnoses are small, it
might hinder the association of the module with the diagnosis.
Constructing personalized coexpression networks, as we do with
Dozer, enables a formal testing framework for downstream associa-
tion analysis with the modules.

Discussion
Excess sparsity and measurement error in scRNA-seq data sets dis-
tort gene–gene correlation estimation, introducing downward bias
for genes with low expression and in low-depth data sets. The dis-
tortion of estimated correlations has amajor influence on the con-
struction of coexpression networks, by uplifting high expression
genes to be network hub genes and confounding differential ex-
pression with changes in coexpression networks. Dozer, built on
a Poisson measurement model, provides correction for gene–
gene correlation estimates and offers a gene-specific noise ratio
score to reliably filter genes for coexpression network analysis. In
our analysis, no restrictions were put on the expression model,
that is, distributional assumption on gi in Equation 1, except for
simulation purposes. A large variety of observationmodels, includ-
ing negative binomial (Love et al. 2014; Huang et al. 2018), zero-
inflated negative binomial (Risso et al. 2018), and other flexible
models used by Wang et al. (2018), can be accounted for by com-
bining Poisson measurement error model with Gamma, point
Gamma, or point exponential family expression models (Sarkar
and Stephens 2021). Although the Poisson measurement model
usually suffices in practice, in the cases in which a more complex
measurement model is more adequate, a gene correction factor
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should be derived accordingly to adjust for the underestimation of
absolute corrections owing to measurement error.

For network validation, instead of solely focusing on network
edges, that is, highly correlated gene pairs, we also validated a
broader set of network features used in downstream inference, in-
cluding gene modules and gene centrality measures. We observed
a significant discrepancy between edge accuracy and centrality/
module accuracy. Most notably, our computational experiments
revealed that an upward bias toward high expression genes could
lead to an increase in edge accuracy; however, this comes at the
cost of decreased accuracy for identifying high centrality genes
among low expression genes. This broadly suggests that bench-
marking studies of coexpression networks focusing solely on net-
work edges may be inadequate. Both data-driven simulation and
computational experiments showedDozer’s superior performance
in mitigating the sequencing depth differences between donor-
specific data sets and faithfully preserving the coexpression net-
work structures both at edge, centrality, and module levels, in
the presence of expression differences owing to technical reasons.

Construction of donor-specific networks enables exploring
association ofmultiple classes of network features with phenotype
or genotype information. In contrast, with the existing scWGCNA
analysis that pools individual level data before network construc-
tion, only the expression of eigengenes of modules can be associ-
atedwith subject-level information. TheMorabito_2021 reanalysis
showcased how constructing donor-level coexpression networks
can discover amodule of genes with significantly differentmodule
density between the diagnosis groups even when these genes are
coexpressed only in a small subpopulation of the cells and are
not differentially expressed between the diagnosis groups.
Similarly, in the analysis of Jerber_2021, we identified a group of
neurodegeneration-associated genes with differences in network
centrality between the donors that succeeded or failed in neuronal
differentiation. However, a considerable proportion of these genes
were not differential expressed between the two phenotype
groups. This further highlights that donor-specific coexpression
networks offer an opportunity to quantify a broader set of network
traits. In our implementation, we integrated four commonly used
centrality measures in Dozer, namely, degree, pagerank, between-
ness, and eigenvector centrality. Degree centrality detects hub
genes with extensive connections (Prifti et al. 2010; Serin et al.
2016), whereas pagerank and eigenvector centrality pinpoint in-
fluential genes (Mistry et al. 2017; Iacono et al. 2019). In contrast,
elevated betweenness values signify genes functioning as bottle-
necks for information transfer (Prifti et al. 2010; Serin et al.
2016). The framework for calculating these centrality measures is
general and can be extended to include other customized central-
ity measures. We recommend exploring multiple centrality mea-
sures because their significance depends on the topology of the
coexpression network in specific biological contexts.

In conclusion, Dozer is tailored for coexpression analysis with
population-scale scRNA-seq data sets and enables further down-
stream analysis such as network differences between different phe-
notypic groups with the constructed individual coexpression
networks. We envision that similar differential analysis might be
of interest between coexpression networks of different cell types.
Alternatively, one can formally test whether coexpression net-
works of different cell types are the same by using recent theoret-
ical developments on testing of large dimensional correlation
matrices (Zheng et al. 2019). Additionally, we expect that Dozer-
derived coexpression networks, when combined with genetic in-
formation, can facilitate network QTL analysis.

Methods

Gene–gene correlations in the Poisson measurement model

Let random variable gj represent the expression level of gene j, ℓ
represent cell sequencing depth, and X represent cell-level covari-
ates. The UMI count of gene j, Yj, follows a Poisson measurement
model (Sarkar and Stephens 2021),

Y j|{g j, ℓ, X} � Poisson (ℓ exp(XTbj)g j). (5)

The correlation between the expression levels of gene j and k,
cor(gj, gk), is the signal we aim to recover for quantifying coexpres-
sion between genes j and k.

Let ℓ̃j := exp(XTbj)ℓ denote the size factor per cell and
Ync

j := Y j/ℓ̃j represent the normalized counts. Under the condi-
tional independence of the observedUMI counts given the true ex-
pression levels and cell sequencing depths

Y j⊥⊥Yk|{g j, gk, ℓ, X}, (6)

we have

cov(Ync
j ,Ync

k )=E(cov(Ync
j ,Ync

k |{g j,gk,ℓ,X}))

+cov(E(Ync
j |{g j,gk,ℓ,X}), E(Ync

k |{g j,gk,ℓ,X}))=cov(g j,gk),

(7)
var(Ync

j ) = E(var(Ync
j |{g j, gk, ℓ, X}))+ var(E(Ync

j |{g j, gk, ℓ, X}))

= E(g j/ℓ̃j)+ var(g j). (8)

Because of the inflation in the var(Ync
j ) comparedwith the true var-

iance var(gj), the proxy cor(Ync
j , Ync

k ) is an underestimate of cor(gj,
gk) in terms of its magnitude. The deviation between the true ex-
pression variance of gene j and the variance of normalized expres-

sion depends on the ratio Rj =:
E[g j/ℓ̃j]

var(Ync
j )

, which we denote as gene

j’s “noise ratio,” indicating the quality of gene j’s normalized ex-

pression. Let Sj := 1
1− Rj

, and then the expression correlation of

genes j and k can be represented through the following equation
with the correction factors:

cor(g j, gk) = cor(Ync
j , Ync

k )
�����
SjSk

√
. (9)

Estimation of the gene correction factors in the Poisson
measurement model

Given the UMI counts Yj and sequencing depths of the cells ℓ, we
fit the Poissonmeasurementmodel in Equation 5 and estimate {βj}j
via a Poisson generalized linear model,

log E(Y j|X) = log (ℓ)+ XTbj. (10)

The cell size factor ℓ̃j is estimated by plugging in b̂j aŝ̃
ℓj := exp(XT b̂j)ℓ. The numerator and denominator of the noise ratio
are estimated through sample mean and variance with weightsw as

R̂j :=
mw(Y j/

ˆ̃
ℓ
2
j )

s2w(Y j/
ˆ̃
ℓj)

. (11)

Similarly, the correlation of normalized counts is estimated through
sample correlation:

ĉor(Ync
j , Ync

k ) := rw(Y j/
ˆ̃
ℓj, Yk/

ˆ̃
ℓk), (12)

where μw( · ), s2w(·), and ρw( · , · ) denote weighted sample mean, vari-
ance, and correlation with weights w=ℓ, to account for the
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heteroscedasticityofYj/ℓ conditional on ℓ.Without loss of generality,
the settingwith βj=0 provides further insights into this apparent het-
eroscedasticity. We express the var(Yj/ℓ|ℓ) by using the law of total
variance,

var(Y j/ℓ|ℓ) =
var(g j)ℓ+ E(g j)

ℓ
, (13)

and observe that the conditional variance of Yj/ℓ given ℓ decreases
with depth ℓ. The weight, inspired by the weighted least-square ap-
proach, is proportional to ℓ/(1+ ℓvar(g j)/E(g j)). The second term
ℓvar(g j)/E(g j) in the denominator of theweight is the overdispersion
parameter of gene j. To avoid the extra variability introduced by esti-
mation of overdispersion, we use ℓ as weights for cells.

The correction factors Sj, j = 1, · · · , G cannot be reliably esti-
mated directly by plugging in corresponding R̂j because the result-
ing plug-in estimator can be arbitrarily large for sparse genes with
noise ratios close to one. To robustly estimate the gene correction
factor Sj, we opted to balance the bias and variance by shrinking
the estimator of Sj toward one when its variance is large. Given a
plug-in estimator Ŝj of correction factor Sj with the estimated noise
ratio as

Ŝj := 1

1− R̂j
, (14)

we obtain an initial plug-in estimator of the variance of Ŝj as

var(Ŝj) ≈
[mw(Y j/

ˆ̃
ℓ
2
j )]

2
var(s2w(Y j/

ˆ̃
ℓj))+ [s2w(Y j/

ˆ̃
ℓj)]

2
var(mw(Y j/

ˆ̃
ℓ
2
j ))

(mw(Y j/
ˆ̃
ℓ
2
j )− s2w(Y j/

ˆ̃
ℓj))

4 .

(15)

Because the variance of Ŝj increases with its mean, we consider a
penalized correction factor and obtain a shrinkage estimator as

Ŝ0j := Ŝj
1+ var(Ŝj)

_ 1. (16)

Finally, to borrow information across genes, we fit a local polyno-
mial regression of Ŝ0j � f (R̂j) with the R (R Core Team 2021) func-
tion loess. The fitted function is naturally unimodal, because for
genes with a noise ratio close to one, Ŝ0j is close to one. However,
the true value of Sj increases with Rj. To turn it into a monotone
function, we set the turning point r0 = argr max f̂ (r), where f̂ is
the estimated local polynomial regression function, and set the fi-
nal estimate that we refer to as truncated shrinkage estimator Ŝj

1 as

Ŝj
1 = f̂ (R̂j) if R̂j , r0,

f̂ (r0) o.w.

{
(17)

Sequencing depth estimation

Sequencing depth in cells is typically estimated by the total UMI
counts per cell (Vallejos et al. 2017). Normalizing gene counts by
the total UMI counts imposes a “sum to one” constraint on the
normalized expression. This constraint can result in negative cor-
relations between highly expressed genes. For instance, in a simu-
lation setting without any correlation between gene pairs, this
simple normalization process induced a negative correlation of
−0.07 between pairs of genes, which accounted for 10% of the to-
tal UMI counts (Supplemental Fig. S38). Prior research has suggest-
ed approaches for clipping influential genes, such as the “median
of ratios” estimator proposed by Love et al. (2014) and “trimmed
mean of M values” of Robinson and Oshlack (2010). Following
these ideas, we consider “trimmed total UMI count” as an estima-

tor designed to mitigate the influence of highly expressed genes.
First, we compute the expression proportion of each gene across
all cells. These proportions serve as gene weights. Subsequently,
we normalize the UMI counts for each gene, ensuring an average
value of one. We then set a threshold for gene weights to prevent
any single gene fromdominating the sequencing depth estimation
(e.g., empirically set as 0.02 as this reduced the apparent negative
correlation to −0.01 in the simulation setting of Supplemental Fig.
S38). By limiting the weights of highly expressed genes to the
threshold value, we effectively trim their contributions. Finally,
we compute the trimmed total UMI count for each cell by sum-
ming the weighted UMI counts across all genes as its estimated se-
quencing depth.

Next, to determine whether a global normalization factor
(i.e., same for all the genes) is sufficient for normalization, we per-
form a diagnostic analysis. Global normalization factors are used
to account for a presumed count-sequencing depth relationship
that is consistent across all genes. However, when genes of differ-
ent expression levels grow disproportionately with sequencing
depth, normalization through global scale factors can result in
overcorrection for weakly and moderately expressed genes
(Bacher et al. 2017). As part of the diagnostic process, raw gene
counts and trimmed total UMI counts are divided by their mean
to achieve an average value of one. Then, for each gene j, scaled
gene counts (Yj/ �Yj) are regressed on scaled trimmed total UMI
counts ℓ̂/�̂ℓ as

Yj
�Yj

� ℓ̂

�̂
ℓ

, (18)

and the slope is estimated from this regression using cell-level data.
The diagnostic plots visualize (1) the distribution of these estimat-
ed slopes of genes across multiple expression groups and (2) distri-
bution of the correlations between the expression of genes
normalized with the trimmed total UMI counts. Proportionate
growth yields regression slopes around one and correlations near
zero, whereas disproportionate growth causes regression slopes
and correlations to diverge from these values. When dispropor-
tionate growth is detected for a given data set, Dozer adopts
a regression-based gene-specific cell size factor approach for
sequencing depth adjustment. This involves first grouping genes
into K bins based on their raw mean expression quantiles. Next,
the trimmed total UMI counts of each gene group, denoted as
{lk}

K
k=1, are used as regressors in a Poisson regression to facilitate

gene-specific adjustment for sequencing depth. More specifically,
for gene j with UMI counts Yj, we conduct a Poisson regression
analogous to Equation 5 while replacing the global cell size factor
ℓ with a set of covariates L,

Y j|{g j, X, L} � Poisson(exp(XTb j1 + Lb j2)g j), (19)

whereX represents cell-level covariates as before (e.g., batch labels,
percentage of mitochondrial genes), and L= [logl1, …, loglK] de-
notes the designmatrix that harbors the trimmed total UMI counts
of each gene group for each cell.K is chosen incrementally by start-
ing from one and gradually increasing it up to 10 until themode of
the correlation between normalized expression and trimmed UMI
drops below 0.1 for all gene groups. The estimated cell size factor
for gene j is then given by

eX
T b̂j1+Lb̂j2 . (20)

An illustration of how these diagnostics plots and the resulting
gene-specific size factors work are provided in Supplemental
Figure S39 for two donors from the Jerber_2021 data set. The right
panels of the Supplemental Figure S39, A andB, display the density
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of correlations between expression normalized with the gene spe-
cific cell size factors and trimmed total UMI counts across all the
genes. These plots highlight how the apparent correlations be-
tween the global size factor and expression normalized with the
global size factor are reduced when gene-specific size factors are
adopted.

Simulations

Three simulation settings were considered to evaluate the perfor-
mances of the coexpression network construction methods in re-
covering network edges and gene centrality measures (setting A),
reducing false discoveries in differential network centrality mea-
sures in the presence of differential expression (setting B), and de-
tecting modules (setting C). The following base procedure was
used in settings (A–C) to generate the gene expression Yij for
gene j,= 1, · · · , G, in cell i, i = 1, · · · , N. First, aG-dimensional rel-
ative gene abundance vector g was generated through a multivar-
iate Gamma distribution, with shape parameters v, scale
parameters u, and correlation matrix Σ. The sequencing depth ℓi

of cell i was simulated from a log normal distribution Lognormal
(lℓ, sℓ). The UMI count for each gene jwas sampled independently
from Poisson distribution for cell i as Yij � Poisson(ℓigij). Under
this simulation framework, Σ specifies the coexpression structure
of the genes.

To ensure that these simulations yield data with high fidelity
to actual population-scale scRNA-seq data, the Cuomo_2020
scRNA-seq data (Cuomo et al. 2020), which offer high sequencing
depth per cell (averaging ∼530,000 total counts per cell) was used
to generate realistic gene–gene correlations. These correlations
were then combinedwithmarginal expression count distributions
from Jerber_2021 (Jerber et al. 2021). Realistic data sets similar to
those of Jerber_2021 and Morabito_2021 were simulated by mod-
ulating the library sizes. The shape and the scale parameters vj, uj
for gene j were estimated by

vj =
∑

i Yij/N
( )2∑

i Y
2
ij/N

( )
− ∑

i Yij/N
( )2 − ∑

i Yij/N
( ) ,

u0j =
∑

i Yij/N
vj

,

uj =
u0j∑
j u

0
j vj

.

(21)

The scaling in Equation 21 for the scale parameter ensures that the
total counts in cell i are approximately equal to its sequencing
depth ℓi. The parameters (lℓ, sℓ) of the sequencing depth distribu-
tionwere estimated by fitting a log normal distribution to the total
read counts. The correlation matrix Σ was estimated through a
SCTransform normalized expression matrix of the data set
Cuomo_2020.

Further details on the parameters of the simulation settings A,
B, and C are as follows.

Setting A

This setting considered four average sequencing depth levels
(1500, 3000, 6000, 12,000) and four sample sizes (125, 250, 500,
1000 cells). For each depth and sample size combination, 10 sim-
ulation replications were generated from the base model described
above. When generating coexpression networks, four noise ratio
thresholds, namely, 0.6, 0.7, 0.8, and 0.9, were used for gene filter-
ing. Gene pairs with the top 1% of absolute correlations and genes
with the top 10% gene centrality measures were set as true edges

and true high centrality genes. The same quantiles were applied
to estimated networks for AUPR and F1 score calculations.

Setting B

For each simulation instance out of 20 replications, two data sets
with the same gene–gene correlation structure but different gene
expression levels were generated by reshuffling the Gamma shape
and scale vectors. Gene pairs with the top 1% of absolute correla-
tions were used to set the network edges. Both the logFC of gene
expression and the logFC of centrality were computed across the
two data sets of the simulation instance. To avoid taking log of ze-
ros, the first percentile of positive centrality values across all genes
was added to centrality values before taking the log. The
Spearman’s correlation between logFC in expression and logFC
in centrality was computed to assess the impact of differential ex-
pression on detecting spurious differential centrality.

Setting C

Across 20 simulation replications, six genemodules, with balanced
module sizes of 80 to 100 genes and large differences in average
gene noise ratios, were simulated with a block diagonal correlation
matrix, with six genemodules and 2434 singletons.Module detec-
tion was performed with WGCNA (with default parameter set-
tings) that took as input the estimated correlation matrices to
generate modules. Module detection performances were quanti-
fied with the Jaccard index between the inferred and the true
gene modules after excluding singletons. If a true gene module
had a Jaccard index of 0.5 or larger with an inferred gene module,
it was deemed as detected for the purposes of quantifying the em-
pirical probability of detecting gene modules.

Computation of network metrics and gene centrality measures

Thresholding correlations for edges and network centrality measures of genes

Unless otherwise specified, hard-thresholding was adapted for
keeping edges between the genes in the coexpression networks
and labeling genes based on their network centrality measures.
Genes i and j were set to be connected with an edge in the coex-
pression network if the absolute value of their estimated expres-
sion correlation was larger than threshold τ. τ was set using the
percentiles of the absolute values of the correlations as specified
in the analyses throughput the paper.

Centrality measures in coexpression networks

Four centrality measures, namely, degree, pagerank, betweenness,
and eigenvector centrality, were considered to quantify the “im-
portance” of a gene in the coexpressionnetworks. Thesewere com-
puted using the following functions from the R package
igraph (https://cran.r-project.org/web/packages/igraph): degree,
page_rank, betweenness, and evcent.

Module

Module identification from coexpression networks was performed
through the R package WGCNA (Langfelder and Horvath 2008)
with the default parameter settings with an exception for the dif-
ference networks. The canonical WGCNA module identification
pipeline starts out with unsigned coexpression similaritymeasures
between nodes/genes as weights. However, the edge weight be-
tween two genes in the “difference network,” with positive and
negative values, represents whether the association of the genes
is higher in AD or in the control rather than a similarity between
the two. To accommodate this, we considered a network
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transformation while still keeping the hierarchical clustering and
dynamic tree cut components of the WGCNA pipeline.
Specifically, we let [djk]j,k∈{1,…,G} denote the edge weight between
genes j and k in the “difference network.” Then,
Cjk =

∑
r:r[[G]\{j,k}d jrdkr defines a connectivity similarity for genes

j and k. A distance between nodes j and k can be obtained as
Djk = max j′,k′Cj′k′ − Cjk. Finally, the gene modules of the “differ-
ence networks” are inferred by hierarchical clustering and dynam-
ic tree cut algorithm (R function hclust and cutreeDynamic)
using the distance matrix with entriesDjk and the default parame-
ter settings.

Module density

Module density, D(M), measuring the average connectivity of
genes within a module, was calculated as follows for module M

with n genes: D(M) =
∑

i:i[M
∑

j:j[M,j.i|sij|
n× (n− 1)/2

, where sij∈ [0, 1] is the

absolute correlation between gene i and j.

Largest clique

The largest clique was computed using function largest_

cliques from the R package igraph.

Silhouette score

Silhouette score (Rousseeuw 1987) is used to measure the consis-
tency of gene centrality profile of donors under the same pheno-
typic group. Silhouette score is computed using function
silhouette in R package cluster (https://cran.r-project.org/
web/packages/cluster) with Euclidean distance as the distance
metric.

Data sets

The single-cell RNA-seq data set Jerber_2021 (Jerber et al. 2021) is
available from Zenodo (https://doi.org/10.5281/zenodo.4333872);
the data set Cuomo_2020 is available from Zenodo (https
://zenodo.org/record/3625024); and the data set Morabito_2021 is
available from Synapse (https://www.synapse.org/#!Synapse:
syn22079621/). Comprehensive details regarding the description
and specific utilization of the three data sets can be found in
Supplemental Section S6.

Software availability

The R (R Core Team 2021) package Dozer, along with its vignette,
can be accessed at GitHub (https://github.com/keleslab/Dozer),
and the Supplemental Code files also provide additional resources
for reference.
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