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Large-scale high-throughput sequencing data sets have been transformative for informing clinical variant interpretation and
for use as reference panels for statistical and population genetic efforts. Although such resources are often treated as ground
truth, we find that in widely used reference data sets such as the Genome Aggregation Database (gnomAD), some variants pass
gold-standard filters, yet are systematically different in their genotype calls across genotype discovery approaches. The inclu-
sion of such discordant sites in study designs involving multiple genotype discovery strategies could bias results and lead to
false-positive hits in association studies owing to technological artifacts rather than a true relationship to the phenotype.
Here, we describe this phenomenon of discordant genotype calls across genotype discovery approaches, characterize the error
mode of wrong calls, provide a list of discordant sites identified in gnomAD that should be treated with caution in analyses, and
present a metric and machine learning classifier trained on gnomAD data to identify likely discordant variants in other data
sets. We find that different genotype discovery approaches have different sets of variants at which this problem occurs, but
there are characteristic variant features that can be used to predict discordant behavior. Discordant sites are largely shared
across ancestry groups, although different populations are powered for the discovery of different variants. We find that
the most common error mode is that of a variant being heterozygous for one approach and homozygous for the other,
with heterozygous in the genomes and homozygous reference in the exomes making up the majority of miscalls.

[Supplemental material is available for this article.]

Although massively parallel sequencing technologies have been
transformative for genomics research, they have an appreciable er-
ror rate (Ma et al. 2019) as a cost of their high-throughput capacity.
To account for this, sophisticated pipelines have been developed
for the detection and removal of incorrect sequencing calls
(Anderson et al. 2010; McKenna et al. 2010; Highnam et al.
2015; Adelson et al. 2019; Lam et al. 2019; Li et al. 2019).
However, even with gold-standard filtering, spurious genotype
calls can infiltrate data sets and potentially skew results. This is
of particular importance with data sets that aggregate calls generat-
ed by multiple genotype discovery approaches, as different strate-
gies have distinct error modes. Identifying variants that have
technical artifacts affecting genotype calls is of major importance,
as such loci give misleading information regarding population al-
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lele frequencies (AFs) and could be incorrectly identified as being
phenotypically meaningful in gene discovery.

By leveraging the unprecedented size and depth of the
Genome Aggregation Database (gnomAD) (Lek et al. 2016;
Karczewski et al. 2020), we comprehensively characterize trends
in genotype calling depending on the sequencing technology.
Specifically, we note that a subset of variants, despite passing stan-
dard quality filters (Karczewski 2017), produce discordant AFs in
data generated using different genotype discovery approaches,
stemming from unreliable variant calling. This cannot be ex-
plained by population stratification, as this effect is observed
even when looking at the same set of individuals. Such unreliably
genotyped variants should therefore be screened out of analyses.
Including these variants in gene discovery efforts, particularly in
study designs in which case and control data are represented by
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different combinations of sequencing platforms or genotype dis-
covery approaches, could result in their appearance as false-posi-
tive associations.

In this article, we comprehensively characterize the observa-
tion of discordant genotyping depending on a genotype discovery
approach using a large set of diverse individuals from the gnomAD
database, including a subset of participants who underwent both
whole-exome and whole-genome sequencing (WES/WGS). We
then validate our findings in two external data sets for which
data from multiple genotype discovery approaches are available:
the 1000 Genomes Project and the All of Us Research Program
(Auton and Salcedo 2015; The All of Us Research Program
Investigators 2019). Correcting for this technical error, whether
by removing the gnomAD discordant variants provided here or
by identifying user-identified spurious calls with our freely distrib-
uted machine learning predictor, should be incorporated as a step
in QC pipelines to avoid spurious associations, particularly in
large-scale studies aggregating data from multiple sources.

Results

Discordance in genotype calls across genotype discovery
approaches replicates across ancestries

We sought to compare AFs across variants found within exome
and genome sequencing data sets in gnomAD to test whether there
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Figure 1.

are regions with significant bias associated with genotype discov-
ery approach. We first focused on the largest population represent-
ed in gnomAD 0.2: the non-Finnish Europeans (NFE). Using the
full release of gnomAD version 2.1.1, we filtered the data to include
only sites that were present and had a quality determination of
PASS in both the genomes and exomes (Karczewski et al. 2020).
To ensure sufficient power, we filtered for sites with allele count
(AC) greater than 10 and ran a Fisher’s exact test on the difference
in the number of alternate AC to total alleles (allele number [AN])
between these two data sets. A nonnegligible fraction of sites was
significantly discordant in their calls (Fig. 1A). We also tested other
less-stringent AC thresholds (AC>1 and AC >5) and observed that
the trends of discordance between the genotype discovery ap-
proaches were consistent across AC cutoffs (Supplemental Fig. S1).

When comparing AFs between sequencing strategies, it is crit-
ical to control for ancestry, as populations will have differing fre-
quencies at many loci simply owing to demography (Gravel
et al. 2011; Auton and Salcedo 2015; Bergstrom et al. 2020). To as-
sess if ancestry affected discordance rates, we ran Fisher’s exact test
concordance checks across all gnomAD continental groups (Fig.
1B). The total discordant variant counts were directly related to
the sample size of the population in question and were not en-
riched for any given ancestry (Supplemental Fig. S2). Although
novel discordant variants were discovered in each population,
most variants observed in other populations were shared with
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Discordance in genotype calls across high-throughput genotype discovery approaches. (A) Fisher’s exact test concordance test P-value for shared,

PASS sites in the gnomAD NFE exomes and genomes. Bars are colored by variant type: insertion (ins), deletion (del), or single-nucleotide variant (snv). (B) “Bad”
sites are replicated across ancestry groups in gnomAD. Sites flagged as discordant in both the NFE and another ancestry group are plotted in gray; those new sites
not in the NFE are shown in black. (C) QQ plot for the Fisher’s exact test P-value of shared variants in a set of 946 individuals for whom both WES and WGS data
were available. (D) Different exome captures’ contribution to discordant sites. Bars are colored by the error mode that was observed for the discordant genotype
call: heterozygous (Het), homozygous reference (HomRef), or homozygous variant (HomVar) in either the exomes (E) or genomes (G).
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Discordant genotyping across approaches

the NFE (86.9%) (Fig. 1B; Supplemental Table S1). Replication of
the same variants across multiple ancestries strengthens the argu-
ment of a shared technical artifact and suggests that ancestral bias
between exome and genome data sets is unlikely to be a confound-
ing factor. Future work may wish to investigate other biological
and nonbiological factors for an impact on discordance.

Error mode of discordant calls

Next, we aimed to classify the typical error mode that results in dis-
cordant calls using individuals with both WES and WGS data. As
946 gnomAD individuals underwent both WES and WGS, we
were able to examine the rates and error modes of discordant geno-
type calls without concern over population structure or differing
sample composition; because these are the same individuals, any
difference in AF and/or genotype calls can be conclusively deter-
mined to be owing to technical artifacts. We tallied the number
of sites in each pairwise exome-genome genotype category
(6333 sites) (Supplemental Fig. S3) to classify miscall error mode.
Of the six possible error modes (homozygous reference/heterozy-
gous, homozygous reference/homozygous variant, or homozy-
gous variant/heterozygous for both data set directions), we find
that the majority of calls, 57.7%, are a heterozygous genotype
call in the genomes but a homozygous reference genotype call in
the exomes (Fig. 1D; Supplemental Fig. S4). We also note that dif-
ferent sequencing platforms have different rates of discordant
calls; although because of sharing restrictions, we cannot identify
platform names with certainty. Overall, ~16% of the variants that
were present and PASS in both exomes and genomes in the over-
lapping individuals had at least one discordant call.

Next, we examined the discordance of AFs, again with a
Fisher’s exact test. Usually in cohort-based comparisons, the ex-
pected distribution of Fisher’s exact test P-values is represented
by a uniform distribution. Because we are looking at the same in-
dividuals, it is expected that AFs should be identical (i.e., P=1).
We observe the presence of many variants substantially deviating
from expectations, representing loci with significantly different
MAF in the exomes versus the genomes (Fig. 1C).

Identification of discordant sites

We next sought to identify problematic sites failing a Fisher’s exact
test of concordant WGS/WES frequency estimates in the largest
subset of gnomAD, the NFE. Based on the distribution of P-values
from this test, we decided upon a threshold of P< 1 x 10~ to deter-
mine the classification of a variant as “bad” or “good” (Fig. 1;
Supplemental Fig. S5). Of the 283,287 PASS/PASS variants tested
with MAF>0.01 and AC> 10, 51,255 (18.1%) failed the Fisher’s ex-
act test and were deemed “bad,” whereas 231,631 (81.8%) passed
and were deemed “good.” Distributions of metadata features for
the good versus bad sites do show trends in several features, al-
though no feature alone perfectly explains the phenomenon
(Supplemental Fig. S6). They also highlight a difference in discord-
ance patterns of indels versus SNVs (Supplemental Fig. S7).
Specifically, SNVs show a pattern of higher AF in genomes com-
pared with exomes, whereas indels do not have this trend. Indels
are also generally less stable in AF estimates than SNVs. It therefore
appears that two distinct technical error modes might be affecting
miscalls in indels versus SNVs, rather than one shared mechanism.
As many of these indels fell in the low complexity regions of the
genome, it is likely that a mapping issue is responsible for their
miscalls. A comprehensive description of gnomAD structural vari-
ant calling and considerations is published and can be found in

a gnomAD blog post (Collins et al. 2020; https:/gnomad
.broadinstitute.org/news/2019-03-structural-variants-in-gnomad/).
To correct this, we therefore recommend excluding the low com-
plexity regions from stringent analyses. In general, when there
was discordance, the genomes were found to have a higher MAF
than the exomes (Supplemental Fig. S1B). The trend in MAF differ-
ence aligns with the most commonly observed error mode in
genotyping.

Having confirmed that there was a systematic and significant
AF discordance between genotype discovery approach, we used
our Fisher’s exact tests to generate a list of sites harboring this tech-
nical artifact that may be excluded from analyses. Again, these dis-
cordant sites represent variants that were a PASS in gnomAD QCin
both the exomes and genomes but are unreliably genotyped de-
pending on the sequencing technology used. Given a situation
in which, for example, a case cohort has been exome-sequenced
and the control cohort has been genome-sequenced, such sites
could give false-positive associations owing to the resulting AF dif-
ferences. We, therefore, recommend they be treated with caution
or broadly excluded (in addition to standard cohort QC) unless
thorough confirmation of their validity in a particular data set
has been performed.

Our analysis of variant AF discordance reflects technical dif-
ferences between whole-exome and whole-genome high-through-
put sequencing approaches in recovering coding DNA variation.
Similarly, we performed this concordance analysis on the All of
Us Research Program data set to compare AFs between WGS and
microarray genotyping to quantify any similar effect arising be-
tween these genotype discovery approaches in primarily noncod-
ing variation. We subsampled the All of Us primary release cohort
down to the 95,596 samples who have both WGS and microarray
genotyping data available. Call rate, HWE, and MAF > 0.05 filters
were applied to ensure only good-quality common variants en-
tered the analysis. Out of 102,631 variants (7944 coding), 2344
had Fisher’s exact test P<0.05 (Supplemental File S1). Note that
because of identical samples being analyzed, the expected P-value
distribution is centered at one (Supplemental Fig. S8). We evaluat-
ed the overlap between the variants flagged in All of Us and
gnomAD, finding that only seven out of them were found in
both samples, likely owing to the focus of gnomAD on coding var-
iation (given comparisons included WES) versus on noncoding
variation in All of Us. Out of these seven variants, rs4951250 was
found to be significantly discordant in both data sets (P<1x
107'° genome vs. exome; P=4 x 10~° genome vs. array).

Recovering filtered concordant sites

In addition to generating this discordant list of bad sites that
should be excluded or treated with caution despite being a PASS
in gnomAD QC, we investigated whether additional trustworthy
sites could be rescued from the “non-PASS” list based on our AF
concordance criteria. Non-PASS variants are those that did not
meet all required passing criteria in the gnomAD QC pipeline
(Karczewski et al. 2020). We tested this by conditioning on PASS
in one data set, non-PASS in the other, and reran the concordance
pipeline, requiring the following threshold in both data sets to add
a higher level of stringency for recovering sites: AC>1, DP> 10,
and AF >0.01%. In total, there were 41,584 sites that met these cri-
teria, of which 30,683 were instances in which the genomes are a
non-PASS and the exomes are a PASS. Approximately half of these
sites had P-values greater than 1 x 10~°, which we consider to be re-
liable. The exomes represent the vast majority of sequences in
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gnomAD, which may make their results
more stable. For analyses that require
less stringent QC, we provide these sites
that can be optionally retained, given
that they pass cohort QC in the individu-
al data set.

Predicting technical bias for variants

We used features based on variant anno-
tations generated during variant calling
(e.g., variant quality, mapping quality,
etc.) to build a random forest predictor
that detects the presence of technical
bias for a particular variant (Supplemen-
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Fisher’s exact test P-value threshold dis-
criminating the groups, we performed
ROC analysis. Because representation of
the classes varies depending on the selec-
ted threshold, we used the class weights
for balancing the classes (in this and
the following tests, the weight for the
“bad” class was set as the fraction of “bad” variants in the training
data, and the weight for the “good” class was set to one). The area
under the ROC curve (ROC AUC) for such a model was estimated as
0.841 (Fig. 2A).

Next, we used variant annotations from the gnomAD ge-
nomes data set for training and variant annotations from the
gnomAD exomes as a test sample. These are two separate data
sets that are well powered to detect biases in AFs and ensure full in-
dependence between test and training samples. In this setting, our
model again reliably predicted discordant variants, with ROC AUC
=0.803 (Fig. 2A). Feature importance analysis of the model sug-
gests that variant quality, inbreeding coefficient, and quality by
depth are the key parameters discriminating variants with and
without evidence for technical bias. Therefore, current protocols
for alignment and variant calling are leaving a notable footprint
that can be used to detect platform biases (Fig. 2B).

Finally, we used data from The 1000 Genomes Project (The
1000 Genomes Project Consortium 2012) as an independent pub-
lic data set for testing the predictor. Exome sequences from 1393
samples (Supplemental Table S3) were used to create the variant
call set following GATK best practices. Variant annotations were
used to classify variants using the gnomAD genomes data as a
training sample. Because of sample size, 1000 Genomes data are
significantly less powered to detect technical biases compared
with gnomAD. Therefore, it is harder to confidently identify the
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Reliable classification of discordant variants based on variant annotations. (A) ROC analysis
for two random forest predictor validation approaches either using leave-one-out analysis on the exomes
or using the genomes as a training set to classify exome variants. (B) Feature importance analysis for the
random forest model. (C) Comparison of concordance analysis Fisher’s exact test P-values for variants
from the 1000 Genomes classified using the random forest predictor trained on the gnomAD genomes
data set. MeanDecreaseGini is a measure of how each variable contributes to the homogeneity of the
nodes and leaves in the resulting random forest. The higher the value of mean decrease accuracy or
mean decrease Gini score, the higher the importance of the variable in the model.

ground truth for discordant variants. Identical 1000 Genomes
samples from exome and genome sequencing were used to detect
variants with a signature of technical bias using the AF concor-
dance Fisher’s exact test described here. Because of the power lim-
itations, instead of performing ROC analysis, we compared the
Fisher’s exact test P-values for the variants classified as having ev-
idence of technical bias (“bad”) and those without such evidence
(“good”) (Fig. 2C).

This random forest model trained on the gnomAD genome
v2.1 data set was incorporated into a freely distributed R package
called DNA DISCOrdant Variant IdentifiER (DNAdiscover) (R Core
Team 2021; https://github.com/na89/DNAdiscover). The package
uses variant annotations to predict whether a variant is likely to be
“discordant” or “concordant” in user input data and performs well
with both genome and exome sequencing data.

Discordant variants are reported in published studies
and are predicted to be functionally important

We first observed the phenomenon of variant discordance
through the investigation of GWAS variants in the COVID host ge-
netics initiative and the UK Biobank (COVID-19 Host Genetics
Initiative 2021). When inspecting top associated variants that
did not have strong LD friends, we noticed that many had discord-
ant frequencies between GWAS arrays and gnomAD, and this
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often corresponded to variants that had discrepant frequencies be-
tween the gnomAD exomes and genomes. We thus suggest that
the discordant site list provided herein can be used for quality con-
trol of GWAS variants.

To investigate whether discordant variants may be spuriously
attributed phenotypic relevance, we annotated all variants with
their predicted functional consequence using the Ensembl
Variant Effect Predictor (VEP) (McLaren et al. 2016). Discordant
variants appear in all functional consequence categories, includ-
ing 11,536 that are annotated as missense (Supplemental Fig. S9;
Supplemental Table S4). Such variants are tempting to prioritize
for functional follow-up given their apparent functional impor-
tance despite having GWAS signal likely driven by the observed ge-
notype calling artifact. Technical artifacts are actually expected to
be enriched in functionally important categories given that they
are immune from the effects of natural selection, a phenomenon
that has been previously observed for putatively loss-of-function
somatic variation (Buckley et al. 2017).

To see if discordant sites have been reported in peer-reviewed
publications, we intersected genome-wide significant variants (P<
5x 1078) from the GWAS catalog (Welter et al. 2014) with our dis-
cordant sites list. Seventeen bad variants were found in the GWAS
catalog, underscoring the importance of controlling for this arti-
fact, as it may impact downstream interpretation of association
findings (Supplemental Table S5). Variants in this list have been as-
sociated with multiple health-related phenotypes, including schiz-
ophrenia, telomere length, and blood protein levels. Of these 17,
half are multiallelic and approximately a third are indels, echoing
our earlier results of a higher discordance rate for these variant
types than biallelic SNVs. Additionally, more than half of the 17
are present in the first megabase of the chromosome, suggesting
that areas flanking the telomeres should be treated with caution.

Discussion

The need for extremely large sample sizes to obtain sufficient sta-
tistical power in genetic studies requires the creation of data sets
that may go beyond the financial capabilities of many individual
research groups. This leads to the creation of metadata sets that
have contributions from many individual studies, thus creating
heterogeneity in the genotype discovery approaches that were
used for genotyping. Therefore, identification of DNA variants
that are susceptible to technical bias when genotypes originate
from multiple discovery strategies is vital in order to avoid false-
positive associations and analyses of the artificially inflated AFs.
This is of particular concern in instances in which cases may orig-
inate from one data generation effort and controls from another.

Here, we identify and describe a technical artifact arising in
various genotype discovery approaches that may affect cohort
data variant quality despite the following of gold-standard QC
procedures. We present our metric for the identification of discord-
ant sites, provide a list of the discordant variants identified in
gnomAD that should be treated with caution, and release an open-
ly available software package containing our random forest predic-
tor that reliably classifies untrustworthy variants in user cohort
data. Excluding variants with signals of discordance across se-
quencing platforms results in higher-quality results and reduces
the risk of spurious associations in gene discovery. This is particu-
larly important as we observe that technical artifacts are enriched
in functionally important annotations.

Additionally, we show that discordance in AFs is also present
in the All of Us Research Program data set when comparing WGS to

microarray genotyping for overlapping samples. This finding indi-
cates that variants in both coding and noncoding DNA could have
discordant genotype calls. Importantly, in our predictor, we use
the variant annotations, which often are used in variant quality
score recalibration and filtration pipelines. Our results indicate
that stricter filtration thresholds might be helpful for the elimina-
tion of some discordant variants; however, more cautious consid-
eration of discordance is warranted in heterogeneous data sets.

We note that although we provide a discordant list of variants
failing our discordance test in the gnomAD v2 data set for ready ex-
clusion, the specific sites that are discordant in a given cohort de-
pends on the genotype discovery approach used and data set
composition. Therefore, for optimal precision, we recommend
identification of discordant sites within user cohorts with the pro-
vided classifier rather than a blanket restriction of variants identi-
fied in gnomAD. We freely provide an R package with a predictor
trained on gnomAD WGS data, DNAdiscover, for such use in other
cohort data to identify cohort-specific sites with features indicative
of unreliable genotype calls.

Our work is primarily aimed to show that our methodology is
effective in detecting technical biases in high-throughput se-
quencing approaches and to call attention to this important con-
sideration for aggregated data sets. We also believe that our
findings can pave the way for even more robust approaches to
detect such artifacts in the future. Specifically, we propose that a
meta-analysis could be performed across all ancestral groups simul-
taneously, which would provide increased statistical power in
identifying discordant variants. This would allow for the detection
of smaller biases and could potentially extend this approach to less
common variants.

Based on the examinations presented in this paper, we recom-
mend that researchers using aggregated cohort data implement
the following conservative QC procedures to ensure the elimina-
tion of discordant sites:

e Drop any variant that fails in both the gnomAD exomes and

genomes;

Consider dropping any variant that fails in the gnomAD

exomes, as these represent the bulk of gnomAD data;

¢ Drop the discordant list variants presented here that are PASS in
both the gnomAD exomes and genomes but that are discordant
in frequency across the genotype discovery approach;

e Drop variants that are flagged by our random forest predictor,

DNAdiscover, in an independent data set, as each genotype dis-

covery approach has a distinct genotyping error mode;

Remove the low complexity regions; and

Optionally, skeptically retain sites that are on the “recovered”

list here.

Methods

Characterizing discordance in genotype calls across gnomAD
exomes and genomes

All analyses were conducted using the Hail software program on
the Google Cloud platform (GCP 2021). Plots were created using
Bokeh and ggplot2 (Wickham 2011; Jolly 2018). Concordance
metrics for genotype calls were generated from the overlapping in-
dividuals with the command hail.methods.concordance(). Using
the full release of gnomAD version 2.1 (Karczewski et al. 2020),
we filtered to include only sites that were both present and had a
quality determination of PASS in the genomes and exomes. We
split multiallelic variants and retained only sites that were present
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and PASS in both exomes and genomes, filtering to only biallelic
sites with AC>1 and AF>0.01% in either data set for the NFE.
Starting with all sites with at least one alternate allele, and subse-
quently for sites with AC>5 and 10, we calculated the AF in the ge-
nomes and exomes separately and ran a Fisher’s exact test on the
difference in the number of alternate AC to total alleles (AN) be-
tween these two data sets. Specific filters for various steps
are described in their relevant Results section. gnomAD
summary data are freely available at gnomAD (https://gnomad
.broadinstitute.org). Additional information and a discussion of
the best practices for using gnomAD can be found at https
://macarthurlab.org/blog/. The list we have curated of variants fail-
ing the discordance test in gnomAD is provided with this paper in
the Supplemental Materials. Further details regarding data treat-
ment are described throughout the paper for context.

All of Us data were subsampled to 95,596 with both WGS and
microarray genotyping (WGA) available. MAF>0.05, HWE>
0.0001, and MAC > 10 filters were applied to keep only common
variants. Multiallelic variants were split. A variant call rate >0.8
was required in both the WGS and WGA data sets. Variants with
a call rate difference between data sets greater than 0.05 were
also eliminated from analysis. The R libraries dplyr, reshape2,
PROC, ROCR, and RandomForest were used to process variant anno-
tations, evaluate predictor quality, and build our classifier package,
DNAdiscover, using R-4.0.3 (Liaw and Wiener 2002; Sing et al.
2005; Robin et al. 2011; https://github.com/hadley/reshape;
https://CRAN.R-project.org/package=dplyr).

Software availability

Our DNAdiscover package for prediction of the presence of techni-
cal bias in variants coming from high-throughput sequencing,
alongside a user manual, is available at GitHub (https://github
.com/na89/DNAdiscover), and source code is presented as
Supplemental File S2.
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