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Synthetic glucocorticoids, such as dexamethasone, have been used as a treatment for many immune conditions, such as asth-

ma and, more recently, severe COVID-19. Single-cell data can capture more fine-grained details on transcriptional variability

and dynamics to gain a better understanding of the molecular underpinnings of inter-individual variation in drug response.

Here, we used single-cell RNA-seq to study the dynamics of the transcriptional response to glucocorticoids in activated pe-

ripheral blood mononuclear cells from 96 African American children. We used novel statistical approaches to calculate a

mean-independent measure of gene expression variability and a measure of transcriptional response pseudotime. Using

these approaches, we showed that glucocorticoids reverse the effects of immune stimulation on both gene expression

mean and variability. Our novel measure of gene expression response dynamics, based on the diagonal linear discriminant

analysis, separated individual cells by response status on the basis of their transcriptional profiles and allowed us to identify

different dynamic patterns of gene expression along the response pseudotime. We identified genetic variants regulating

gene expression mean and variability, including treatment-specific effects, and showed widespread genetic regulation of

the transcriptional dynamics of the gene expression response.

[Supplemental material is available for this article.]

The immune system exerts its function through a delicate and
timely balance of pro- and anti-inflammatory processes. An effec-
tive response of the immune cells ensures that pathogens are neu-
tralized, yet it is equally crucial that inflammatory processes are
timelymodulated to avoid pathological states, such as systemic in-
flammation (Varela et al. 2018), cytokine storm (Fajgenbaum and
June 2020), and sepsis (Shankar-Hari et al. 2016). Specificity in rec-
ognizing potential pathogens and mounting a proportionate re-
sponse is important to prevent or resolve infectious diseases;
importantly, dysregulation of these processes leads to chronic con-
ditions, including autoimmune, allergic diseases, and asthma. The
hypothalamic–pituitary–adrenal axis plays a central role in the
balance between pro- and anti-inflammatory processes through
regulation of glucocorticoids in the bloodstream. Because of
their potent anti-inflammatory effects, synthetic glucocorticoids
have widespread pharmacological applications. Steroid anti-in-
flammatory drugs are used to treat asthma (budesonide) (Jenkins
et al. 2020), autoimmune diseases (budesonide, dexamethasone
[DEX], prednisone, methylprednisolone) (Snider and Potter
2011; Hughes et al. 2017; Mieli-Vergani et al. 2018; Wang et al.

2018; Mithoowani and Arnold 2019; Strum et al. 2020), and sever-
al other inflammatory conditions. DEX is a potent synthetic gluco-
corticoid that is used to treat leukemia because of its ability to
inhibit lymphocyte proliferation (Pui and Evans 2006). Most re-
cently, DEX has been recognized as the first effective drug to pre-
vent severe complications from coronavirus disease 2019
(COVID-19) (Horby et al. 2021). Severe COVID-19 is thought to
be a consequence of an exaggerated response of the immune sys-
tem to SARS-CoV-2 infection (Anka et al. 2021). Elevated produc-
tion of proinflammatory cytokines results in tissue damage in
severe COVID-19 patients and can ultimately be fatal. By activat-
ing anti-inflammatory processes, DEX can prevent this “cytokine
storm” and improve disease outcome (Horby et al. 2021).

Despite an obviously large contribution of environmental ex-
posures (e.g., allergens, pathogens), genetic and gene–environ-
ment interaction effects have a major role in immunological
phenotypes (Martin et al. 2021). Genome-wide association studies
(GWAS) have successfully identified hundreds of variants associat-
edwith autoimmune and allergic disease risk. For example, genetic
associations from GWAS explain up to 33% of the heritability of
childhood asthma (Pividori et al. 2019). Common genetic variants
also explain a large fraction of inter-individual variation in the
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response to pathogens (Sanz et al. 2018). In addition to large-scale
GWAS, in vitro studies of the immune transcriptional response to
pathogens have identified thousands of variants that contribute to
inter-individual variation (Barreiro et al. 2012; Idaghdour et al.
2012; Çalisķan et al. 2015; Nédélec et al. 2016; Quach et al.
2016; Alasoo et al. 2018; Rotival et al. 2019). These studies have
mostly focused on molecular phenotypes, including gene expres-
sion, RNA processing, and chromatin accessibility. The same mo-
lecular quantitative trait locus (QTL) mapping approaches have
also identified genetic variants that modify an individual’s re-
sponse to glucocorticoids (Maranville et al. 2011, 2013), thus high-
lighting how genetic variation can regulate the important balance
between pro- and anti-inflammatory processes.

A key component of the immune system function is the mo-
lecular signaling between the different cell types that compose it.
This communication is crucial to enable an accurate response to
pathogens. However, it is only with the advent of single-cell tech-
nology that we can deeply characterize transcriptional responses
of individual cell types, while preserving their cross talk through
stimulation of the entire PBMC fraction. Single-cell technology
also enables the analysis of cell-to-cell transcriptional variability.
Gene expression variability plays an important role in biological
systems. It has been suggested that in the immune system, gene ex-
pression variability increases the ability to respond to immune
stimuli (Hagai et al. 2018). In vitro studies show that immune stim-
uli can modify expression variability in CD4+ T cells (Eling et al.
2018), and variation of gene expression variability is also observed
across individuals in human populations (Sarkar et al. 2019;
Morgan et al. 2020).

With the great heterogeneity of function between the differ-
ent cell types comprising the immune system, it is expected that
the genetic effects on gene expression will vary across cell types
as well. Indeed, multiple studies have leveraged single-cell RNA-
seq (scRNA-seq) technologies to map cell type–specific eQTLs
across the different subpopulations comprising complex tissues.
Studies in peripheral blood mononuclear cells (PBMCs) (van der
Wijst et al. 2018), fibroblasts (Neavin et al. 2021), tumor samples
(Ma et al. 2022), and pluripotent and differentiating cells
(Cuomo et al. 2020; Jerber et al. 2021; Neavin et al. 2021;
Elorbany et al. 2022) found several eQTLs that would have been
missed in bulk sequencing approaches owing to being active in
only one or a few cell types. Although in many single-cell studies
most of the detected eQTLs were only found in a single cell type
(Kanget al. 2018; Liuet al. 2021;Neavinet al. 2021), this likelyover-
estimates the overall cell type specificity of genetic effects on gene
expression owing to incomplete power of eQTL discovery in these
data sets (Oelen et al. 2022). Previous approaches have successfully
mapped the genetic determinants of responses to infection, drugs,
and other stimuli (Barreiro et al. 2012; Idaghdour et al. 2012;
Mangravite et al. 2013; Fairfax et al. 2014; Lee et al. 2014;
Maranville and Di Rienzo 2014; Siddle et al. 2014; Çalisķan et al.
2015; Moyerbrailean et al. 2016; Nédélec et al. 2016; Quach et al.
2016; Kim-Hellmuth et al. 2017; Knowles et al. 2017, 2018;
Manry et al. 2017; Alasoo et al. 2018; Rotival et al. 2019; Huang
et al. 2020; Ward et al. 2021) using bulk RNA-seq. However, these
genotype-by-environment (GxE) effects are also likely to be cell
type–specific (Findley et al. 2021), especially in the context of high-
ly specialized immune responses, as investigated in recent
studies of response eQTL (reQTL) mapping using single-cell tech-
nology in immune cells exposed to pathogens, bacteria and yeast
(Oelen et al. 2022), and influenza A (Randolph et al. 2021).
Although different immune stimuli have been studied at single-

cell resolution, the response to glucocorticoids has not been previ-
ously examined.

Here, we used scRNA-seq to study the dynamics of the tran-
scriptional response to glucocorticoids in activated PBMCs from
96 African American youths with asthma and the genetic basis
of variation in gene expression mean and variability across
individuals.

Results

Identification of major cell types and gene expression patterns

To systematically characterize genetic determinants of transcrip-
tional response to glucocorticoids at single-cell resolution, we
studied PBMCs of 96 African American children with asthma.
We stimulated the PBMCs with phytohemagglutinin (PHA; a
T cell mitogen) or lipopolysaccharide (LPS; a component of the
bacterial membrane) and treated with the glucocorticoid DEX for
a total of five conditions (including the unstimulated control)
(Fig. 1A).We generated a total of 292,394high-quality cells and de-
tected 46,384 expressed genes from 96 individuals across five con-
ditions (Supplemental Table S1; Supplemental Fig. S1).

We clustered the cells and identified four major clusters (Fig.
1B): B cells, monocytes, natural killer (NK) cells, and T cells. T cells
formed the largest cluster with 183,289 cells (about 63%), followed
by NK cells (47,824, ∼16%), B cells (30,888, ∼11%), and mono-
cytes (30,393, 10%).We confirmed the cell identity using gene ex-
pression for cell type–specific genes (Supplemental Fig. S2).
Although cells are clustered primarily by cell types in the UMAP
plot, we did observe partial separation by treatment when analyz-
ing each major cluster separately (Supplemental Fig. S3).

Using this data set, we will explore the more fine-grained de-
tails on transcriptional response to immune treatments, including
gene expression (Fig. 1C), variability (Fig. 1D), and dynamics in a
short-term span within the treatment (Fig. 1E). Then, we identify
the genetic variants regulating gene expressionmean and variabil-
ity (Fig. 1G), including treatment-specific effects (Fig. 1F), and also
examine genetic regulation of the transcriptional dynamics of the
gene expression response (Fig. 1H).

Cell type–specific gene expression response

To identify genes differentially expressed in response to the treat-
ments in each cell type, we first aggregated the count data for each
cell type–treatment–individual combination. We considered four
contrasts in each cell type (Supplemental Fig. S4; Supplemental
Table S11): (1) LPS versus CTRL; (2) LPS+DEX versus LPS; (3)
PHA versus CTRL; (4) PHA+DEX versus PHA. We detected a total
of 6571 differentially expressed genes (DEGs; FDR=10% and fold
change> 1.41) (Fig. 2A; Supplemental Fig. S5). Monocytes showed
the strongest gene expression response compared with the other
cell types across all treatments (4460DEGs). LPS induced theweak-
est gene expression response in all cell types except monocytes.
This was expected because LPS stimulates myeloid cells pre-
ferentially (Li et al. 2016; Tucureanu et al. 2018). Glucocorticoids
induced stronger responses than LPS and PHA across most
cell types. In general, we observed that the transcriptional re-
sponse to glucocorticoids and immune stimuli was highly cell
type–specific, such that the majority of DEGs were identified in
only one cell type across the four conditions (86% in LPS, 63.7%
in LPS+DEX, 66.7% in PHA, and 59.6% in PHA+DEX)
(Supplemental Fig. S6).

Resztak et al.

840 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276765.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276765.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276765.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276765.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276765.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276765.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276765.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276765.122/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.276765.122/-/DC1


When we considered the global patterns of treatment effects
on gene expression, we observed that effect sizes of DEX and im-
mune stimuli on gene expression were negatively correlated (Fig.
2B), which indicated, as expected, that glucocorticoids reversed
the gene expression effects induced by immune stimuli (Fig. 2A;
Supplemental Fig. S7). The antagonistic effect of glucocorticoids
compared with the immune stimuli was observed also at the path-
way level usingGeneOntology (GO) enrichment analysis (e.g., the
type I interferon [IFN] signaling pathway, the response to LPS, the
cytokine-mediated signaling pathways, and innate immune re-
sponse [Fig. 2C; Supplemental Figs. S8, S9, S10A–C]). These im-
mune-related pathways shared across cell types appeared to be
themolecular basis of how immune stimuli and glucocorticoids af-

fect the immune system transcriptome in
opposite directions. To better character-
ize these gene expression shifts at the
pathway level, we derived a pathway-spe-
cific score that combines the gene expres-
sion changes of all the genes that belong
to that pathway term (for more details,
see Methods). Here, we considered the
type I IFN signaling pathway as an exam-
ple (Fig. 2C). This pathway was only
enriched in genes up-regulated for
immune stimuli (LPS or PHA) and
down-regulated for the DEX conditions.
We also observed that the score of IFN in-
creased after LPS or PHA stimulation,
whereas the score in the DEX condition
was similar to thoseof unstimulated cells.
Type I IFNs play important roles in the in-
nate and adaptive immune responses not
only to viruses but also to bacterial path-
ogens (Ivashkiv and Donlin 2014;
McNab et al. 2015; Boxx and Cheng
2016). Genes enriched in the type I IFN
signaling pathway include JAK1, STAT1,
STAT2, IRF1, IRF7, IRF8, and OAS1.
Treatment with LPS or PHA significantly
increased expression of genes in the IFN
I pathway, whereas DEX counteracted
this effect. We also observed that genes
up-regulated in response to immune
stimuli or down-regulated in response to
DEX were enriched in the COVID-19
pathway, and this enrichmentwas shared
across cell types except monocytes (Fig.
2D).

Moreover, we revealed some DEX-
specific pathways, such as the cellular re-
sponse to glucocorticoid stimulus path-
ways (FDR<0.1) (Fig. 2E) and the stress
response to metal ion pathways (FDR<
0.1) (Supplemental Fig. S10D), which
are both enriched in genes up-regulated
in response to treatment with DEX and
are consistent with previous findings
that glucocorticoids can modulate ion
channel activity (Tootell et al. 1983;
Hidalgo et al. 1994). In addition, we
found that DEX repressed gene expres-
sion of the asthma pathway with high

cell type specificity, mainly in B cells (FDR<0.1) (Fig. 2F). B cells
play an important role in the induction of asthma by releasing
IgE molecules (Romagnani 2000).

Gene expression variability is modified by glucocorticoids and

immune stimuli

Beyond looking at the transcriptional response to immune stimuli
for each cell type separately, single-cell data provide an unprece-
dented opportunity to study gene expression dynamics (mean
and variability) in response to treatments. Here, we aimed to inves-
tigate changes in gene expression variability induced by treat-
ments. We implemented a method based on the negative
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Figure 1. Study overview. (A) PBMCs were collected from 96 African American donors with asthma.
Cells were stimulated with phytohemagglutinin (PHA) or lipopolysaccharide (LPS) and treated with glu-
cocorticoid dexamethasone (DEX) for a total of five conditions (including a control), for a total of 480
samples. (B) UMAP visualization of the scRNA data for a total of 293,394 high-quality cells, colored by
four major cell types: B cells (green), monocytes (purple), NK cells (maroon), and T cells (orange). (C)
Density plot exemplifying changes in mean gene expression between conditions (PHA+DEX vs. PHA).
(D) Density plot exemplifying changes in gene variability between conditions (PHA+DEX vs. PHA).
(E) Scatterplot representing the low-dimensional manifolds obtained by diagonal linear discriminant
analysis (DLDA) in the T cells treated with PHA and PHA+DEX; x-axis denotes the PHA+DEX response
pseudotime, and y-axis denotes the PHA response pseudotime. (F) Example of an LPS +DEX response
eQTL (reQTL) for DIP2A gene in the T cells. The boxplots depict normalized gene expression levels for
the three genotype classes in the two treatment conditions contrasted to identify the reQTL: LPS +
DEX (right) and LPS (left). (G) Example of a variability QTL without an effect on themean gene expression
for the ARL6IP4 gene in T cells treated with PHA+DEX. The boxplots depict normalized variability (right)
and mean (left) gene expression for the three genotype classes. (H) Example of a DEX response dynamic
eQTL for the MRI1 gene in the T cells treated with PHA+DEX.
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binomial (NB) distribution to calculate two gene dynamic-related
parameters: gene expression mean (μ) and dispersion (ϕ), based
on the work of Sarkar et al. (2019). To avoid the mean-variability
dependency and detect treatment effects that affect solely variabil-
ity, we regressed out any residual mean effects on dispersion and
used thismean-corrected dispersion as themeasure of gene expres-
sion variability in the following analyses (Supplemental Fig. S11).
Similar to the above differential expression analysis, we compared
gene expression variability in four paired contrasts (i.e., LPS, LPS +
DEX, PHA, and PHA+DEX) (Supplemental Fig. S12; Supplemental
Table S12).We detected a total of 1409 differentially variable genes
(DVGs; FDR=10% and fold change >1.41) across cell types and
conditions (Fig. 3A; Supplemental Fig. S13). We identified the
most DVGs in monocytes (910) followed by T cells, NK cells, and
B cells. DEX induced changes in gene expression variability for
50 to 351 genes, with the most DVGs in monocytes treated with
PHA and DEX. When considering gene expression variability, we
also observed negative correlations between differential effects of
immune stimuli (LPS or PHA) and those of DEX, similar to the
findings from differential gene expression analysis (Fig. 3B,C;
Supplemental Fig. S14). These findings indicate that DEX damp-
ens the immune response not only by changing gene expression
mean but also by altering gene expression variability.

We then considered the effects of the treatments on mean
and variability estimated from the samemodel.We first confirmed

that the fold changes identified with this parametric method are
highly correlated with those obtained with DESeq2 (correlation
0.76–0.97) (Supplemental Fig. S15). Among the genes only under-
going changes of mean expression levels, TAP1was overexpressed
in T cells after LPS and PHA stimulation, whereas its expression lev-
els in the DEX conditions were similar to those of unstimulated
cells (Fig. 3D). In contrast, we did not observe any changes in
gene expression variability of TAP1 across the immune treatments.
The TAP1 and TAP2 proteins form a protein complex, called trans-
porter associated with antigen processing (TAP), helping transfer
peptides from pathogens into the endoplasmic reticulum (ER)
(Eggensperger and Tampé 2015). One example of a gene in which
the treatment modifies expression variability without changes in
mean expression was RPL23A in T cells following immune stimu-
lation (Fig. 3E). This gene encodes a ribosomal protein, whichmay
be one of the target molecules involved in mediating growth inhi-
bition by IFN (Jiang et al. 1997).

When comparing the effect size of treatments on gene expres-
sionmean and variability, we observed genes following twomajor
patterns: independent effect on the mean and the variability, or a
negative correlation between the effects on the mean and variabil-
ity. This last pattern was more pronounced in monocytes (Fig. 3A,
C; Supplemental Fig. S16), for 16%–23% genes across contrasts.
One such gene is CCL3L1, which encodes a cytokine involved in
many inflammatory and immunoregulatory processes, such as
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Figure 2. Identification of differentially expressed genes (DEGs). (A) Heatmap of log2 fold change (LFC) of 6571 DEGs (column) across 16 conditions
(four contrasts × four cell types; row). (B) Heatmap of Spearman’s correlation of LFC across 16 conditions (four cell types × four contrasts). (C–F )
Pathway analysis across cell types and treatment conditions for enrichment in DEG (top) and boxplot for average pathway score (bottom) for four pathways:
(C ) type I interferon (IFN) signaling, (D) coronavirus disease (COVID-19), (E) glucocorticoid stimulus, and (F) asthma.
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inhibiting HIV entry by binding to a protein of CCR5 (Fig. 3F;
Dolan et al. 2007). Nevertheless, DEGs and DVGs were largely en-
riched for similar biological pathways, especially in monocytes
and in response to glucocorticoids in all cell types (Supplemental
Fig. S17). However, in B cells, NK cells, and T cells, DEGs in re-
sponse to LPS are enrichedmostly in different pathways compared
with DVGs in response to the same treatment (Supplemental Fig.
S17). Shared enriched pathways included cytokine-mediated sig-
naling, type I IFN signaling, and innate immune response
(Supplemental Fig. S18). We also identified several pathways that
only appeared to be enriched in DVGs, including ribosome, trans-
lation, mRNA catabolic process, protein localization to the ER, and
protein targeting to the membrane and to the ER (Supplemental
Fig. S19).

Characterizing dynamic responses

Single-cell transcriptomics can also be used to studyheterogeneous
cell states during important biological processes, such as cell type
differentiation during development (Mohammed et al. 2017;
Cuomo et al. 2020). Most algorithms developed to study cell type
differentiation rely on finding a path (i.e., lower-dimensionalman-
ifold) with cells connecting the initial and final states that can be
summarized with a trajectory. The gene expression changes of
each cell over the trajectory can bemapped to time, or pseudotime.

Methods to study gene expression dynamics have focused on cell
cycle, differentiation trajectory, and long duration treatments
(Cao et al. 2020; Cuomo et al. 2020) and are generally unsuper-
vised. To investigate treatment effects in a short time span, we
have used a novel approach based on the diagonal linear discrimi-
nant analysis (DLDA) to construct a robust low-dimensional repre-
sentation of the transcriptional response dynamics for each cell
type and treatment. This method is supervised as we know the
treatment labels and the two end points in the high-dimensional
space where most of the cells (i.e., their centroids) will be.
Because this method uses supervised learning and has a well-
known solution, the resulting trajectory (i.e., the line connecting
the two centroids) should be more stable and reproducible.

We performed resampling analysis to show the robustness
and stability of the DLDA compared with two existing methods:
Monocle 3 (Qiu et al. 2017) and SCANPY (Wolf et al. 2018). We
focused on the T cells treated with PHA+DEX or PHA, as this is
the most abundant cell type and the condition with the largest
number of DEG. To validate the effectiveness of the novel
approach (DLDA), we randomly resampled half the data set for
50 replications. In each replication, we applied our novel ap-
proach DLDA and the two other methods to compute response
pseudotime.

We do not have the underlying ground truth on how the cells
should be exactly ordered according to response pseudotime, yet
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Figure 3. Identification of differentially variable genes (DVGs). (A) Number of the genes with differential mean or variability across cell types and con-
trasts: genes with significant changes on gene mean only (dark shading), genes with significant changes on gene variability only (medium shading), and
genes with significant changes on both gene mean and gene variability (light shading). (B) Heatmap of Spearman’s correlation of LFC of gene variability
across 16 conditions (four cell types × four contrasts). (C) Scatterplot of the Z-score of differential gene expression (x-axis) and the Z-score of differential
gene variability (y-axis) in monocytes across four contrasts. Each dot represents a gene with colors indicating significant (FDR <10%) changes on gene
mean expression only (green), gene variability only (blue), both (purple), and neither (gray). (D) Violin plot of gene expression variability (bottom) and
mean expression (top) for the gene (TAP1), an example of a gene that undergoes significant changes only to gene expression in response to immune treat-
ments in T cells. (E) Violin plot of gene expression variability (bottom) and mean expression (top) of the gene (RPL23A), which does not show significant
changes in gene expression mean but with significant changes in gene expression variability after immune treatment in T cells. (F ) Violin plot of gene ex-
pression variability (bottom) and mean expression (top) of the gene (CCL3L1), which shows changes in both gene expression mean and gene expression
variability after immune treatment in monocytes.
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we can still assess how expression for each of the responding genes
correlates with the estimated pseudotime in each iteration across
all cells. Ideally, the cells would be sorted similarly in each itera-
tion, and the correlation of the gene expression with the pseudo-
time would stay constant. If large variation is observed, it
indicates that the pseudotime inference is not robust. We comput-
ed the variance of correlation coefficient for each gene across 50
replicates and observed that ourmethod shows the lowest variance
(Supplemental Fig. S20A).

For each replicate, we can also pick the top 20 most highly
correlated genes with the pseudotime variable, which ideally
would always be the same. However, across 50 iterations, we iden-
tified the following number of most highly correlated genes: 103,
154, and 24 for Monocle, SCANPY, and DLDA, respectively. This
result shows that only for DLDA, the most highly correlated genes
remain mostly constant across iterations (24 vs. 20 ideally). Not
only these genes kept changing for the othermethods, but the cor-
relation of these genes with the pseudotime variable was very
highly variable (Supplemental Fig. S20B–D). The median value of
the Jaccard index for those 20 top genes across all resampling pairs
are 0.29, 0.11, and 0.90, for Monocle, SCANPY, and DLDA, respec-
tively (Supplemental Fig. S20E).

In summary, the resampling analysis showed our approach
outperforms previous approaches in stability and accuracy of pseu-
dotime and the consistency of the pseudotime-determined genes.

Then, we applied our novel approach to calculate four DLDA
axes corresponding to four contrasts for each cell type as follows:

LPS (comparedwith unstimulated), PHA (comparedwith unstimu-
lated), LPS +DEX (compared with LPS), and PHA+DEX (compared
with PHA). As expected, we observed that the first two DLDA axes
were able to distinguish cells treated with immune stimuli (LPS or
PHA) from the unstimulated group across all cell types (Fig. 4A,B;
Supplemental Fig. S21). We observed the clearest separation in
monocytes, in line with the strongest gene expression response
to stimuli found in monocytes. The latter two DLDA axes clearly
divided the cells into two groups (Fig. 4A,B; Supplemental Fig.
S21): one treated with DEX and the other treated with immune
stimuli. Based on these observations, we defined the first two
DLDA axes as immune-stimuli pseudotime and the third and
fourth axes as the DEX response pseudotime.

We next sought to analyze gene expression dynamic changes
along the response pseudotimewithin each treatment for each cell
type separately and identified different dynamic patterns of gene
expression. For example, in T cells treated with PHA+DEX,
four distinctive gene expression dynamic patterns were identified
among 1617DEGs thatwere differentially expressed in PHA+DEX
(Fig. 4C). Expression of genes within clusters 1 and 2 decreased
along DEX pseudotime, and genes in cluster 1 are relatively lower
expressed than those of cluster 2.Most of themwere down-regulat-
ed in theDEX condition comparedwith PHA (Fig. 4D). In contrast,
the genes within clusters 3 and 4 tended to first slightly decrease in
expression and then burst at a later point. Most of the genes con-
stituting these clusters were up-regulated. In line with above en-
richment analysis for DEGs, the genes within cluster 1 and 2

A
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Figure 4. Characterization of dynamic changes along immune response pseudotime. (A) Scatterplot of the DLDA pseudotime for LPS +DEX (x-axis) and
the DLDA pseudotime for LPS (y-axis) in T cells. Each dot represents a cell, with the color indicating the treatment condition: gray for unstimulated, pink for
LPS, and red for LPS +DEX. (B) Scatterplot of the DLDApseudotime for PHA+DEX (x-axis) and theDLDApseudotime for PHA in T cells. Each dot represents a
cell, with the color indicating the treatment condition: gray for unstimulated, light blue for PHA, and dark blue for PHA+DEX. (C) Heatmap of relative gene
expression for 1617 DEGs (rows) averaged over windows containing 10% of T cells (columns) sliding at a step of 0.1% of T cells along the PHA+DEX re-
sponse pseudotime. For each gene, gene expression is expressed relative to the highest expression across pseudotime. Red color denotes high expression
value, yellow denotes medium expression value, and blue denotes low expression value. The LFC column on the right indicates the LFCs for each DEG be-
tween PHA and PHA+DEX. (D) Dynamic patterns of relative gene expression averaged across all genes within each cluster using the same sliding window
approach as in C.
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were mostly enriched in immune-related pathways, such as re-
sponse to LPS (Supplemental Fig. S22), whereas genes from cluster
4 were preferentially enriched inmetal ion–related pathways, such
as stress response to copper ion, cellular response to zinc ion, and
cell response to cadmium ion (Supplemental Fig. S22). Cluster 4
thus captures the dynamic response that is specific to DEX.
Collectively, this novel supervised approach (DLDA) provides a
more fine-grained resolution of the dynamics of gene expression
response to immune stimuli.

Genetic effects on gene expression across cell types

and treatments

To dissect the genetic contributions to the diversity of immune re-
sponse dynamics, we mapped the cis-regulatory variants affecting

gene expression response to immune stimuli across cell types and
treatment conditions. First, we performed cis-eQTLmapping using
FastQTL (Ongen et al. 2016) in each cell type–condition combina-
tion separately, and discovered 5190 unique genes with genetic ef-
fects on gene expression (eGenes, 10% FDR) (Supplemental Tables
S3, S13; Supplemental Fig. S23). Genetic effect sizes discovered
across cell types and conditions were significantly correlated
with those discovered in bulk leukocyte gene expression data on
a larger sample that included the same individuals analyzed here
(Supplemental Fig. S24A; Resztak et al. 2021). Expectedly, genetic
effects on gene expression best correlated with those from bulk
data from T cells as these are the most abundant PBMC type,
thus contributingmost to the eQTL signal discovered in bulk data.

Wenext sought to investigate if the genetic effectswere shared
or context-specific in PBMCs. For this analysis, we used

A
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Figure 5. Genetic effects on gene expression. (A) Barplot of the number of genes with eQTLs (eGenes) in each condition significant in multivariate adap-
tive shrinkage analysis (10% LFSR). (B) Barplot of the number of eGenes (y-axis) with genetic effects in the same direction across the number of conditions
shared (x-axis). (C) Boxplot of Spearman’s correlations between significant genetic effects on gene expression for each pairwise comparison of two treat-
ment conditions within each cell type and for each pairwise comparison of two cell types within each treatment condition; color reflects cell types (as in A)
or treatment: control (gray), LPS (pink), LPS +DEX (red), PHA (light blue), and PHA+DEX (dark blue). (D) Barplot of the number of genes with response
eQTLs (reGenes). (E) Boxplot of normalized gene expression for SEC61G gene in NK cells treated with LPS (left) and LPS +DEX (right) across the three ge-
notype classes of the reQTL rs1031486 (x-axis). (F) Forest plot of the estimated genetic effect for rs1031486 minor allele on the expression of the SEC61G
gene across all conditions (values reflect slopes as in E). Each line represents the 95% confidence interval around the estimate. (G) Boxplot of normalized
gene expression for RBMS1 gene in T cells treatedwith PHA (left) and PHA+DEX (right) across the three genotype classes of the reQTL rs142470489 (x-axis).
(H) Forest plot of the estimated genetic effect of rs142470489minor allele on the expression of the IRF3 gene across all conditions (values reflect slopes as in
G). Each line represents the 95% confidence interval around the estimate.
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multivariate adaptive shrinkage (mash)method (Urbut et al. 2019)
on eQTL summary statistics.Mash uses an empirical Bayesmethod
to estimate patterns of similarity in effect sizes across conditions
and then uses these patterns to improve accuracy of effect size esti-
mates while also increasing power. Here, mash takes advantage of
parallel measures of genetic effects across the different cell types
and conditions, thus improving the power of eQTL discovery.
Indeed, we found approximately an order of magnitude more
eGenes in each condition at 10% LFSR (Fig. 5A; Supplemental
Fig. S25; Supplemental Tables S3, S14, S15) compared with condi-
tion-by-conditionanalysis at 10%FDRusing FastQTL. The increase
in power is owing to a high degree of sharing of genetic effects
across conditions. Borrowing informationacross conditionsalsoal-
lows us to increase the precision of genetic effect size estimation.
Correlations between genetic effects estimated in each condition
and in bulk leukocyte gene expression data are all close to 0.6
(Spearman’s correlation, P-value<0.01) (Supplemental Fig. S24B),
which is a marked improvement over correlations between
FastQTL estimates in single-cell and bulk data (Supplemental Fig.
S24A). Additionally, 41% of the eGenes we discovered were novel
compared to eGenes discovered in the bulk leukocyte data set
(Supplemental Fig. S26).

Genetic effects on gene expression were in the same direction
across all 20 conditions for the majority of eGenes (2832) (Fig. 5B;
Supplemental Figs. S27–S29). A subset of eGenes (84) shared genet-
ic effects in the same direction across 10 conditions (Fig. 5B), rep-
resenting a subdivision between NK cells and T cells in one group
andmonocytes and B cells in the other group.We observed higher
correlations of genetic effect sizes across treatment conditions
within the same cell type than across cell types for the same treat-
ment condition (Fig. 5C; Supplemental Figs. S30, S31), with higher
within cell type correlations formonocytes andB cells (Spearman’s
ρ>0.99) compared with NK cells (Spearman’s ρ> 0.95) and T cells
(Spearman’s ρ>0.97). A similar resultwas observedwhen consider-
ing eGenes that were shared across pairs of conditions, with the
cell type–specific eGenes (6%–51%) representing a larger fraction
than the treatment-specific eGenes (1%–5%) in the pairwise com-
parisons (Supplemental Fig. S29). This result highlights the stron-
ger contribution of cell type effects compared with environmental
perturbations on genetic regulation of gene expression, which we
have observed previously in other cell types (Findley et al. 2021).

We analyzed pairs of treatment and control conditions with-
in each cell type to discover response eQTLs (reQTLs). Overall, we
found 328 genes with reQTLs (reGenes) (Fig. 5D). For the treat-
ments including DEX, the number of reQTLs was roughly similar
across cell types. In contrast, among the different cell types stimu-
lated with LPS or PHA, the largest number of reGenes were found
in monocytes (LPS and PHA) and T cells (PHA). eGenes were en-
riched for DEGs across all contrasts and for DVGs in 14/16 con-
trasts (Fisher’s exact test P<0.05) (Supplemental Table S4).
reGenes were enriched for DEGs only in B cells treated with LPS
+DEX and for DVGs in three conditions (B cell LPS +DEX, mono-
cyte PHA+DEX, and NK cell PHA+DEX; Fisher’s exact test P<
0.05) (Supplemental Table S5).

DEX reGenes varied between 47 in T cells treated with PHA+
DEX and 65 in monocytes treated with LPS+DEX. Three of these
genes (RETREG1, MS4A7, and BIRC3) are among 26 genes previ-
ously reported as DEX reGenes in EBV-transformed B lymphocytes
(Supplemental Table S6; Maranville et al. 2011). Additionally, we
found a reQTL for the SEC61G gene in NK cells, where the A allele
was associated with higher expression after DEX treatment (Fig.
5E,F; Supplemental Fig. S32). SEC61G is a subunit of the SEC61

translocon responsible for translocation of newly synthesized pro-
teins into the ER. This complex is required for replication of flavi-
viruses in human cells (Shah et al. 2018). Although SEC61G is
primarily known as a proto-oncogene in several types of cancers
(Lu et al. 2009; Gao et al. 2020; Liang et al. 2021; Meng et al.
2021), it has previously been found to be up-regulated in NK cells
upon IL2 stimulation (Dybkaer et al. 2007). To understand the
phenotypic relevance of the reGenes, we considered genes associ-
ated with diseases in transcriptome-wide association studies
(TWAS) and found that 61 reGenes have previously been implicat-
ed in immune diseases (Supplemental Table S16). For example,
rs142470489 is a reQTL for the RBMS1 gene, which encodes a
member of a small family of proteins that bind single-stranded
DNA/RNA, involved in the process of DNA replication, gene tran-
scription, cell cycle progression, and apoptosis. TWAS implicated
RBMS1 in inflammatory bowel disease (Zhang et al. 2020). The G
allele at rs142470489 increases the DEX immunomodulatory ef-
fect on expression of RBMS1 in T cells treated with PHA+DEX
(Fig. 5G,H; Supplemental Fig. S33).

Genetic effects on gene expression variability

Single-cell data combined with our new modeling approach al-
lowed us to quantify changes across contexts and individuals in
gene expression variability independently of the changes in the
mean gene expression. To identify genetic effects on gene expres-
sion variability that account for inter-individual variation, we used
a QTL mapping approach to discover variability QTLs (vQTLs).
We discovered 123 genes with vQTLs (vGenes), with highest
numbers of vQTLs detected in T cells across all conditions (Fig.
6A; Supplemental Fig. S34A; Supplemental Tables S7, S17–S19).
vGenes were highly enriched for ribosomal proteins (GO enrich-
ment for “cytosolic ribosome” P-value= 1.6 ×10−43). However,
overall genetic effects across contexts for vQTLs were less correlat-
ed than for eQTLs (Supplemental Fig. S35). We observed the high-
est correlations of genetic effects across treatment conditions
within monocytes compared with the other cell types
(Supplemental Fig. S36A), as well as an overall decrease in pairwise
correlations across cell types in treatment conditions compared
with the control (Supplemental Fig. S36B). Similar to eGenes, ge-
netic effects on gene expression variability were shared in the
same direction for most of the vGenes (98) across all cell types
and treatment conditions (Fig. 6B; Supplemental Fig. S37).
In contrast to eGenes, for vGenes we observed similar correlations
of genetic effect sizes across treatment conditions within the same
cell type than across cell types for the same treatment condition
(Fig. 6C). This is confirmed also when considering sharing
of genetic effects across conditions (0.05–0.32 for cell type–
specific vGenes and 0.06–0.34 for treatment-specific vGenes)
(Supplemental Fig. S38).

To identify response vQTLs, we performed a direct compari-
son of genetic effect sizes across conditions in each cell type. We
discovered 61 unique variability response genes (rvGenes) (Fig.
6D), including a total of 47 for DEX response. We identified 16
rvGenes that were previously implicated in immune diseases via
TWAS. For example, ARL6IP4 is associated with multiple sclerosis
and allergic rhinitis, and we found the T allele at rs7296418 to
decrease gene expression variability of this gene in T cells treated
with PHA+DEX but not in the PHA condition (Fig. 6E;
Supplemental Fig. S39). ARL6IP4 may have a role in splicing regu-
lation (Ouyang 2009) and was reported to inhibit splicing of the
pre-mRNA of herpes singlex virus (HSVI) (Li et al. 2002).
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Mapping of dynamic eQTLs using response pseudotime

Although reQTLs represent genetic variants that modulate the av-
erage response to treatments across cells, our dynamic analysis un-
covered more complex cellular response trajectories, which we
have quantitatively analyzed through DLDA. Through the charac-
terization of the dynamic response patterns above, we observed
that cluster 4, representing late response genes, in T cells treated
with PHA+DEX was enriched for genes with genetic effects on
gene expression (OR=2.53, Fisher’s exact test P-value=3.5×10−3).
This indicated the potential role of genetic effects in the regula-
tion of dynamic gene expression changes.We therefore systemati-
cally investigated genetic variants that modulate these response
trajectories (dynamic eQTLs) (Supplemental Fig. S44) and discov-
ered a total of 3899 dynamic eQTLs corresponding to 588
eGenes across all the conditions (Supplemental Tables S10, S23).

The largest number of dynamic eGenes were identified in T cells,
with dynamic eGenes in the immune-stimuli pseudotime (244
for LPS and 225 PHA) and DEX response pseudotime (18 LPS+
DEX and 54 for PHA+DEX). We also observed that dynamic
eQTLs are enriched among eGenes and reGenes (Supplemental
Figs. S45, S46), yet a large number of them are novel. This pattern
is particularly noticeable in T cells (Fisher’s exact test P-value <
0.01) (Supplemental Fig. S47A,B). To investigate whether these dy-
namic eGenes are potentially causal genes for immune diseases, we
tested their overlap with immune-related genes identified from
TWAS (Zhang et al. 2020) and revealed a total of 92 dynamic
eGenes (Supplemental Table S10) in T cells that have previously
been implicated in 22 immune-related diseases in TWAS (Zhang
et al. 2020).

To illustrate genetic effects on dynamic response patterns
along pseudotime, we focused on T cells treated with PHA+DEX.
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Figure 6. Genetic effects on gene expression variability. (A) Barplot of the number of genes with eQTLs (eGenes) for which we did not detect genetic
effects on variability (dark shading), number of genes with vQTLs (vGenes) for which we did not detect any genetic effects on gene expression (medium
shading), and genes with both eQTLs and vQTLs (light shading). (B) Boxplot of the Spearman’s correlations between significant genetic effects on gene
expression variability for each pairwise comparison of two treatment conditions within each cell type and for each pairwise comparison of two cell types
within each treatment condition; color reflects cell types (as in A) or treatment: control (gray), LPS (pink), LPS +DEX (red), PHA (light blue), and PHA+DEX
(dark blue). (C) Barplot of the number of vGenes (y-axis) with genetic effects in the same direction across the number of conditions shared (x-axis). (D)
Barplot of the number of genes with response vQTLs (rvGenes). (E) Boxplot of normalized gene expression variability for ARL6IP4 gene in T cells treated
with PHA (left) or PHA+DEX (right) across the three genotype classes of the vQTL rs7296418 (x-axis). (F ) Scatterplot of genetic effects on mean gene ex-
pression (x-axis) versus genetic effects on gene expression variability (y-axis) for T cells treated with PHA+DEX; color represents genetic variants with sig-
nificant effects on mean gene expression only (green), gene expression variability only (blue), both (purple), and neither (gray). (G) Boxplot of normalized
mean gene expression (left) and normalized gene expression variability (right) for PSMB9 gene in B cells treated with LPS +DEX, with significant genetic
effect of rs2071464 on mean gene expression but no effect on gene expression variability. (H) Boxplot of normalized mean gene expression (left) and nor-
malized gene expression variability (right) for RPS18 gene in monocytes treated with PHA+DEX, with significant genetic effect of rs1197452483 on gene
expression variability but no effect on mean gene expression. (I) Boxplot of normalized mean gene expression (left) and normalized gene expression var-
iability (right) for RNASET2 gene in T cells treated with PHA+DEX, with significant genetic effect of rs400063 both on mean gene expression and on gene
expression variability.
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We showed a dynamic eQTL forABO, whichwas previously report-
ed to be associated with allergic rhinitis in TWAS (Zhang et al.
2020). This gene encodes an enzyme responsible for glycosyltrans-
ferase activity to determine the blood group in an individual. This
gene has been linked to the strongest signal for severe COVID-19
by GWAS (Niemi et al. 2021; Shelton et al. 2021). We discovered
a dynamic eQTL modulating ABO gene expression along DEX re-
sponse pseudotime such that ABO expression rapidly increased
in heterozygous individuals along DEX pseudotime but remained
relatively stable in individuals homozygous for the alternate allele
(Fig. 7A). As a result, we observed a negative genetic effect of the
alternate allele on ABO gene expression in the mid and late pseu-
dotime. Another example was a dynamic eQTL for the HLA-
DRB5 gene, which has been implicated in 14 immune-related dis-
eases, including asthma. The protein product of HLA-DRB5 forms
the beta chain of MHC II. MHC II molecules are used by antigen-
presenting cells to display foreign peptides to the immune system
to trigger the body’s immune response but have also been found
on activated T cells, where they function as signal-transducing re-
ceptors (Holling et al. 2004). We observed divergent genetic regu-
lation effects on this gene across the three pseudotime tertiles:
negative genetic effects on this gene in early pseudotime, no genet-
ic effects in mid pseudotime, and positive genetic effects in late
pseudotime (Fig. 7B).We revealed very distinct patterns of dynam-
ic changes inHLA-DRB5 gene expression along pseudotime for the
three genotype classes such that the gene expression sharply de-
creased in individuals homozygous for A allele at rs116611418,
displayed the least gene expression changes in heterozygous indi-
viduals throughout the pseudotime, and rapidly increased in the
late pseudotime in individuals homozygous for the alternate allele

(Fig. 7B). Additionally, we discovered a dynamic eQTLmodulating
GADD45G expression along DEX response pseudotime such that
GADD45G expression appeared to be extinguished most rapidly
in individuals homozygous for the G allele at rs11265809, with
heterozygous individuals following an intermediate slope, and car-
riers of two A alleles displaying the least changes to GADD45G ex-
pression along the pseudotime (Fig. 7C). As a result, we observed a
genetic effect on GADD45G expression only in the first tertile of
the DEX response pseudotime. The protein encoded by this gene
responds to environmental stresses (Takekawa and Saito 1998;
Ying et al. 2005). This genewas reported to be associatedwith asth-
ma and systemic lupus erythematosus in the TWAS studies (Zhang
et al. 2020).

Biological insight into the mechanism underlying asthma

Glucocorticoids are the common drugs used to treat asthma and
other autoimmune diseases by suppressing immune response.
We wanted to explore how genes associated with asthma respond
to these immune treatments. We considered 78 asthma-associated
genes identified by a probabilistic transcriptome wide association
study (PTWAS) by integration of eQTLs from whole-blood tissue
in Genotype-Tissue Expression (GTEx) with asthma GWAS co-
horts (Zhang et al. 2020). This type of analysis connects disease
risk with gene expression levels. We identified a total of 30 genes
that were differentially expressed in at least one condition in our
data and were also associated with asthma (Fig. 8A).

Examples include interleukin 1 receptor type 2 (IL1R2), en-
coding a cytokine receptor that belongs to the interleukin 1 recep-
tor family (Anderson et al. 2011; Peters et al. 2013). This protein

A CB

Figure 7. Identification of dynamic eQTLs along immune response pseudotime. For the genes ABO (A), HLA-DRB5 (B), and GADD45G (C), the boxplots
on the top represent normalized gene expression in T cells treated with PHA+DEX for each DLDA pseudotime tertile and genotype, and the bottom plots
represent the smoothed dynamic gene expression changes along response trajectory pseudotime for each genotype separately (trend lines are fit using
locally estimated scatterplot smoothing).
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binds interleukin 1 alpha (IL1A), interleukin 1 beta (IL1B), and
interleukin 1 receptor type 1 (IL1R1; previously known as IL1RA)
and acts as a decoy receptor that inhibits the activity of its ligands.
This gene is up-regulated in response to DEX in all cell types
(Fig. 8A,B).

The expression of lymphotoxin beta (LTB; previously known
as TNFC) is significantly repressed by glucocorticoids via inhibit-
ing the activity of the upstream regulatory factor NF-kB across
cell types (Fig. 8A,C; Voon et al. 2004). LTB is down-regulated in
response to DEX in all cell types and is also an eGene in T cells
treated with DEX (PHA+DEX). The protein encoded by LTB forms
a heterotrimer with LTA on the surface of lymphoid cells
(Browning et al. 1993), which is involved in a variety of inflamma-
tory responses (Young et al. 2010). This genewas found to decrease
gene expression in children with bronchopneumonia following
treatment with methylprednisolone in combination with azithro-
mycin (Ye et al. 2021).

CD52 was functionally verified to be a potential candidate
causal gene linked to asthma in a previous study (Han et al.
2020). In vivo experiment validated that anti-CD52 antibody re-
duced the inflammatory response in lymphoid cells and airway ep-
ithelium (Han et al. 2020). CD52 displays a cell type–specific
transcriptional immune response to DEX, with increased levels
in B cells (Fig. 8D) but decreased levels in NK cells (Fig. 8E) after
DEX treatment.

Discussion

Single-cell technologies allow the study of all aspects of the gene
expression response to stimuli—mean, variability, and dynamics
—across different cell types. Here, we used scRNA-seq to study
the dynamics of the transcriptional response to glucocorticoids
in activated PBMCs. Using this system, we showed that both
gene expressionmean and variability can bemodified by glucocor-

ticoids and immune stimuli. Further, we identified the genetic var-
iants regulating gene expression mean and variability across
treatments. We introduced a novel computational approach that
allowed us to track the short-term transcriptional response dynam-
ics to treatments at single-cell resolution. Using this method, we
identified different dynamic patterns of gene expression along
the response pseudotime and showed widespread genetic regula-
tion of these dynamics.

Studies of glucocorticoid response in tightly controlled exper-
imental settings of individual cell types found varied effects of glu-
cocorticoids on different cells (Li et al. 2015; Xing et al. 2015; Tu
et al. 2017; Quatrini et al. 2018, 2021; Maeda et al. 2019;
Tokunaga et al. 2019). However, glucocorticoid response could
not be studied in the context of the cellular complexity of the im-
mune system before the advent of single-cell technologies. Here,
we studied the gene expression response of four cell types to gluco-
corticoids within activated PBMCs. The choice to only focus on
four cell types was in order to have enough cells to perform eQTL
mapping.We acknowledge that amore fine-grained analysis of dif-
ferent cell subtypesmayyield additional insight of cell type–specif-
ic responses; however, this is beyond the scope of this study. We
revealed an opposite pattern of effect on gene expression between
immune stimuli and DEX in all cell types analyzed, which was ev-
ident at both the gene level and pathway level. These pathways
with antagonistic patterns mainly contained immune-related
pathways, such as IFN, response to LPS, cytokine-mediated signal-
ing, and innate immune response, mostly shared across cell types,
in line with previous findings (Oelen et al. 2022). Our study also
highlighted the specialization in immune response of the different
cell types as the majority of DEGs were identified within only one
cell type.Weobserved these cell type–specific patterns on thepath-
way level, such as the asthma pathway mainly enriched in B cells
and T cells and such as granulocyte activation mostly enriched in
monocytes. Our results are obtained in a childhood asthma cohort
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Figure 8. The roles of treatments in the asthma-determined genes: (A) Scatterplots of the Z-score of DEX effects (x-axis) on 18 asthma-associated genes
against the Z-score from PTWAS (y-axis). Each row and dot color represents the cell type. (B–E) Example genes: (B) IL1R2 in T cells, (C) LTB in T cells, and
(D,E) CD52 in B cells and NK cells. Each violin plot summarizes individual average gene expression.
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andmay not be representative of gene expression levels in healthy
children or adult populations, yet the fundamental genetic and bi-
ological findings can be most likely extended to healthy individu-
als. Most importantly, our results provide a unique resource to
investigate the molecular underpinnings of immune diseases
such as childhood asthma. Many of the DEGs overlap with genes
associated with asthma in TWAS and also well-characterized bio-
markers. ForCD52, we can identify glucocorticoids actingwith op-
posite effects in two different cell types.

Previous studies implied the important role of gene expres-
sion variability in many aspects, such as developmental states
(Chang et al. 2008; Richard et al. 2016), T cell differentiation
(Eling et al. 2018), and aging (Martinez-Jimenez et al. 2017). Our
systematic study of gene expression variability in response to im-
mune treatments revealed major effects of immunomodulators
on gene expression variability, with a total of 1409 DVGs across
cell types and contrasts. We observed the same pattern of negative
correlation of effects of immune stimuli and DEX on gene expres-
sion variability as for gene expressionmean levels. Similarly, these
DVGs tended to be enriched in immune-related pathways in an
antagonistic way similar to the expression analysis. These findings
showed that immune treatments not only affected gene expres-
sion but also altered the transcriptional variability of genes in-
volved in the immune system. Although we regressed out the
effect of mean on gene expression variability, for a subset of genes,
we observed a negative correlation between the effects of each
treatment on gene expression variability and mean, respectively.
Although this negative correlation could be a consequence of cor-
recting for themean-variance dependency, our results suggest that
for a subset of genes, the treatment affects differently the mean
and the variance, thus resulting in different response dynamics.
Together, these findings can enhance our understanding of the
molecular basis of how individuals respond to immune stimuli
and suppress the activated immune system in response to drugs
at the cell type level.

Genetic effects or environmental perturbations can affect the
average gene expression, but disrupting the cis-regulatory code can
also reduce the tightness in the gene transcriptional response, re-
sulting in higher variability among individual cells. The mean
gene expression response may not be affected, but the dysregula-
tion in gene expression variability may ultimately result in a mod-
ified drug-response phenotype.

Previous single-cell studies in human induced pluripotent
stem cells (iPSCs) differentiating into neurons and in response to
oxidative stress identified a large fraction (46%) of eQTLs that
had not previously been found in the GTEx catalog (Jerber et al.
2021). Similarly, we found that 44% of the eGenes identified in
this study were not found in bulk leukocyte data from the same
population, which also includes the same individuals and had a
larger sample size (Resztak et al. 2021). These additional discoveries
were likely owing to cell type–specific genetic effects. However,
when we consider genes expressed in all conditions (treatments
andcell types) anduse a rigorous statistical framework todetermine
to what extent genetic effects are shared across conditions, we
found a high degree of sharing as indicated by the fact that 65%
of eGenes were significant in all 20 conditions. This is similar to
the findings of the GTEx Consortium that the majority of eQTLs
are shared across all 49 surveyed tissues (Aguet et al. 2020).
However, we found relatively fewer cell type–specific eQTLs com-
pared with GTEx data across tissues (Ongen et al. 2016), which in-
dicates higher sharing of genetic effects across cell typeswithin the
sametissues thanacrossdifferent tissues.This finding is in linewith

the higher sharing of genetic effects among related brain tissues in
GTEx data (Ongen et al. 2016).We previously explored the relative
contribution of cell type and treatments in modulating genetic ef-
fects on gene expression using allele-specific expression.We found
a greater variability of genetic effects across three cell types than
across 12 treatments (Findley et al. 2021). Similarly, here we find
more variation of genetic effects on gene expression across the
four PBMCcell types comparedwith the five treatment conditions.
Importantly, we observed a similar pattern in gene expression var-
iability and mean, although it was weaker for variability.

After filtering all eGenes with shared genetic effects across
treatments, we discovered that 25% of eGenes have reQTLs.
Although eGenes were more likely to be differentially expressed
and differentially variable in the majority of conditions, reGenes
were not enriched for DEGs and only enriched for DVGs in two
conditions, PHA-activated monocytes and PHA+DEX-treated T
cells. This means that genes responsive to environmental condi-
tions are also more likely to harbor genetic variants that affect
gene expression levels, whereas genes withGxE effects are less like-
ly to be detected as differentially expressed or differentially
variable.

Identification of the genetic variants underlying inter-indi-
vidual differences in cell-to-cell gene expression variability is tech-
nically more challenging than detecting genetic effects on mean
gene expression. Previously, researchers have estimated that
more than 4000 individuals would be needed to achieve 80%pow-
er to detect the strongest genetic effects on gene expression disper-
sion in iPSCs (Sarkar et al. 2019). This calculation was based on a
different technology, in which each cell is processed as an inde-
pendent library and the number of cells/individual that can be an-
alyzed is very limited. However, with the technology available
whenwe started our study,wewere able to interrogate a large num-
ber of cells and individuals in the same library, thus reducing tech-
nical noise. This likely resulted in greater power to detect genetic
effects on gene expression variability. Other factors that may con-
tribute to our ability to discover these vQTLs are the cell types used
and our study design.We observed that genetic effects on gene ex-
pression variability were most stable across different treatment
conditions for monocytes, despite the strongest gene expression
response to treatment in that cell type. We also showed that treat-
ments decrease the correlation of genetic effects on gene expres-
sion variability across the different cell types, indicating that
GxE effects on gene expression variability were cell type–specific.
We found high enrichment for ribosomal protein genes within
vGenes, which may be owing to higher expression levels of this
class of genes, leading to an increased power to detect effects on
gene expression variability.

Although we used a measure of gene expression variability
that does not have amean-variance dependency,we found genetic
effects affecting both gene expression mean and variability but
with opposite direction of effect for 13 genes. Even though
eQTLswere enriched in vQTLs, we did not detect significant genet-
ic effects on mean gene expression for most vQTLs. This shows
that genetic variants may increase variability of gene expression
across cells, without affecting mean gene expression levels.
Although eGenes were enriched for DEGs, vGenes were depleted
for them. This could be because genes responding to treatments
are required to be under tighter genetic control of expression var-
iability. Prior work on variance of gene expression and of its genet-
ic control was performed on bulk RNA-seq data sets, therefore
investigating variance in the population. These studies showed
that genes with a TATA box have increased noise at both the
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gene and allelic expression level (Mogno et al. 2010; Sigalova et al.
2020; Findley et al. 2021). TATA box promoters, as opposed toCpG
island-associated promoters, have been associated with tissue-spe-
cific genes and high conservation across species (Carninci et al.
2006). Findley et al. (2021) showed that genes that are more toler-
ant to loss-of-functionmutations showed greater allelic expression
residual variance, indicating that redundancy in gene function al-
lows for less stringent genetic control. This could allow for the evo-
lution of new regulatory elements, resulting in new patterns of
gene expression. Conversely, genes that are under negative selec-
tion (i.e., low dN/dS) have low residual variance, underscoring the
importance of preserving stable expression of these genes.
Single-cell studies allow analysis of variability within individuals,
as a newmolecular phenotype with potentially relevant biological
function. Our results suggest that a tighter genetic control of gene
expression variability is preserved in specific cell types and condi-
tions. Specifically, vGenes were depleted of DVGs within all con-
trasts in monocytes but enriched for DVGs in the other cell
types following immunostimulation and in T cells treated with
DEX. Additionally, we have shown that effects of genetic variation
on gene expression variability could vary across environmental
conditions. These GxE effects on gene expression variability and
the GxE effects on gene expressionmean affected genes associated
with the same immunological diseases.

Lastly, we introduced a novel computational approach de-
signed to track the short-term transcriptional response dynamics
to treatments at single-cell resolution. Our new method is super-
vised and easy to implement and can be directly applied to study-
ing the dynamics of transcriptional responses to other treatments
at the single-cell level to facilitate understanding the diversity in
response to environmental stimuli across heterogeneous tissues.
Previous studies investigated transcriptional dynamics in experi-
mental designs in which individual cells were sampled at a range
of various times (Cao et al. 2020) or collected from various cell
type differentiation stages (Cuomo et al. 2020). In these studies,
pseudotime was inferred from computational methods (Bergen
et al. 2020) or directly measured by experimental design (Cao
et al. 2020), but here, we show that the pseudotime trajectory for
these unsupervised methods is not very stable when resampling
the data. The pseudotime inferred from our novel approach re-
flects the transcriptional dynamics of the immune response and
is robust across resampling. Although our data were sampled at
one timepoint, we still revealed transcriptional response dynamics
using this projection, suggesting initial heterogeneity of cells,
probably arising from diversity in initial cell states. Alternatively,
this heterogeneity of response across cells may be a reflection of
the dynamics of the immune system. We purposely used a study
design in which all the cell types were cultured together to study
immune response to preserve the natural interactions between
cells that is key to orchestrate the immune response. This is reflect-
ed in the observed gene expression response to stimuli across all
the cell types, even though we used immune activators that pri-
marily affect one cell type. Thus, it is likely that in our study, the
observed heterogeneity of response across pseudotime reflects
the dynamics of secondary signal propagation (cytokine or direct
cell-to-cell interaction) across a population of cells. Using this
method, we identified different dynamic patterns of gene expres-
sion along the response pseudotime and showed widespread ge-
netic regulation of these dynamics. Importantly, we showed
genetic effects on the dynamics ofABO expression response to glu-
cocorticoids, which strongly correlated with susceptibility to
SARS-CoV-2 infection (Niemi et al. 2021; Shelton et al. 2021).

In summary, our study shows that a full understanding of
transcriptional response dynamics requires investigations beyond
changes inmean gene expression, which are enabled by single-cell
studies and robust computational methods. Elucidating gene ex-
pression variability and pseudotemporal response dynamics will
contribute to a fuller picture of the heterogeneity within and
across cell populations. Studies of transcriptional response dynam-
ics and genetic contributions to their heterogeneity in future ex-
periments of treatment response, tumor microenvironment
dynamics, and cell type differentiation across healthy and disease
states will uncover new disease mechanisms based on altered con-
trol of gene expression heterogeneity.

Methods

Biological samples and genotyping

PBMCs used in this study were collected as part of the longitudinal
study Asthma in the Life of Families Today (ALOFT; recruited from
November 2010 to July 2018,Wayne State University Institutional
Review Board approval 0412110B3F) (Resztak et al. 2021) from
children 10–16 yr old and self-reported as Black. PBMCs were ex-
tracted using a previously published Ficoll centrifugation protocol
(Weckle et al. 2015), cryopreserved in freezingmedia, and stored in
liquid nitrogen until the day of the experiment. All individuals in
this study were genotyped from low-coverage (∼0.4×) whole-ge-
nome sequencing and imputed to 37.5 million variants using
the 1000 Genomes database by Gencove.

Cell culture and single-cell experiments

Cells were processed in batches of 16 donors. For each batch,
thawed PBMCs were incubated in starvation media overnight
(∼16 h) and subsequently treated with one of the following: 1
µg/mL LPS (Barreiro et al. 2010) + 1 µM DEX (Moyerbrailean
et al. 2016), 1 µg/mL LPS+vehicle control alone, 2.5 µg/mL PHA
(Moyerbrailean et al. 2016) + 1 µM DEX, 2.5 µg/mL PHA+vehicle
control alone, or vehicle control alone (control). After 6 h, cells
were pooled across individuals and loaded onto a separate channel
of 10x GenomicsChromium machine (10x Genomics), according
to themanufacturer’s protocol. Library preparationwas performed
according to the manufacturer’s protocol. Sequencing of the sin-
gle-cell libraries was performed in the Luca/Pique-Regi laboratory
using the Illumina NextSeq 500 and 75 cycles high-output kit.

scRNA-seq raw data processing (alignment, demultiplexing,

and cell type assignment)

The raw FASTQ files were mapped to the GRCh38.p12 human ref-
erence genome using the kb tool (a wrapper of kallisto and bus-
tools) with the argument of workflow setting to be lamanno
(Melsted et al. 2021). We removed debris-contaminated droplets
using the DIEM R package (Alvarez et al. 2020; R Core Team
2020). The aligned countmatrix was transformed into a Seurat ob-
ject for the subsequent functional analysis. To demultiplex the 16
individuals pooled together for each batch, we used the popscle
pipeline (dsc-pileup followed by demuxlet) with the default pa-
rameters (Kang et al. 2018). For 96 individuals, we had both con-
trol and LPS conditions, whereas the other three conditions (LPS
+DEX, PHA, PHA+DEX) were assayed for 64 individuals because
of instrument channel failure in batches 2 and 3 for those experi-
mental conditions. This clean data set had a median of 7994 cells
(Supplemental Fig. S48), a median of 4251 UMI counts, and 1810
genes measured on average in each cell (Supplemental Fig. S49).
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Seurat(V3) was used for preprocessing, clustering, and visual-
izing the scRNA-seq data (Stuart et al. 2019). We performed stan-
dard preprocessing steps (including log normalization and
scaling) for all the counts data using the default method in
Seurat. Next, we performed linear dimensionality reduction on
2000 highly variable features and obtained 100 principal compo-
nents (PCs). We also ran RunHarmony with chemistry as covari-
ates to correct chemistry-induced bias (Korsunsky et al. 2019).
The top 50 Harmony-adjusted PCs were then used for clustering
analysis. Finally, Uniform Manifold Approximation and
Projection (UMAP) was applied to visualize the clustering results
using the top 50 Harmony-adjusted PCs. Cells from different
chemistries, batches, and treatments shared similar clustering pat-
terns (Supplemental Figs. S51–S53).

We identified 13 clusters, then annotated cell clusters based
on the following canonical immune cell type marker genes
(Supplemental Figs. S2, S55), B cells (MS4A1 or CD79A), mono-
cytes (CD14 or MS4A7), NK cells (GNLY or NKG7), and T cells
(CD3D or CD8A). Clusters 0, 4, 5, and 7–12 were annotated as T
cells with 183,289 cells; clusters 3 and 6 were annotated as mono-
cytes (30,393); cluster 1 was defined as NK cells (47,824); and clus-
ter 2 was defined as B cells (30,888).

We generated pseudobulk RNA-seq data by summing the
spliced counts for each gene and each sample across all cells be-
longing to each of the four cell types (B cell, monocyte, NK cell,
and T cell), separately.We focused on protein-coding genes and fil-
tered out genes with fewer than 20 reads across cells and removed
combinations with less than 20 cells. This resulted in a datamatrix
of 15,770 protein-coding genes (rows) and 1419 combinations
(columns) of cell type + treatment + individual, which were used
for all subsequent differential expression and genetic analyses.

Differential gene expression analysis

We performed differential gene expression analysis for each of the
five batches separately using R DESeq2 package (Love et al. 2014)
and then combined the results across five batches using fixed-ef-
fect model of meta-analysis. For each batch, we estimated gene ex-
pression effects of the treatments using four contrasts: (1) LPS, LPS
versus CTRL; (2) LPS+DEX, LPS+DEX versus LPS; (3) PHA, PHA
versus CTRL; and (4) PHA+DEX, PHA+DEX versus PHA. To cor-
rect for multiple hypothesis testing, we used the qvalue function
to estimate the false-discovery rate (FDR) from a list of P-values
for each condition, separately. DEGs were defined as those with
FDR less than 0.1 and absolute estimated log2 fold change larger
than 0.5. We performed GO enrichment analysis (i.e., biological
process [BP], molecular function [MF], and cellular component
[CC]) for these DEGs identified across conditions using the R
clusterProfiler package (V3) (Yu et al. 2012).

Differential gene variability analysis

Based on the computational framework that was established by
Sarkar et al. (2019), we adapted an NB distribution to model the
count data for each gene j, using two main parameters for the
mean(µj) and dispersion(ϕj) in our scRNA data. Then, we derived
the variance of gene expression by m̂j

2
̂fj. Similar to what was re-

ported in previous studies (Fan et al. 2016; Eling et al. 2019a,b;
Fair et al. 2020), we observed that both gene variance or dispersion
linearly depended on mean parameters (Supplemental Fig. S11A,
B). To further correct the dependence between dispersion and
mean, we defined a residual dispersion, capturing the departure
from the global trend. The residual dispersionwas calculated by re-
moving the part of dispersion that could be predicted by the over-
all trend of gene mean across genes in each cell type separately.

This adjusted dispersionwas uncorrelated with the genemean val-
ue (Supplemental Fig. S11C) across genes.

To account for the noise from the batch, we implemented the
same strategy for differential gene expression analysis for differen-
tial gene variability and differential gene mean analyses via fitting
models by batch separately, and we meta-analyzed the summary
statistics. We first took the log2 transformation of residual disper-
sion and mean and then fitted models using linear regression in
which treatments were considered for each batch, separately.
The DVGs and DEGs were defined as those with an FDR less
than 0.1 and absolute value of log2 fold change greater than 0.5.

DLDA response pseudotime method

We developed a new pseudotime method based on DLDA to char-
acterize the degree to which single cells respond to immune treat-
ments. In DLDA, only a subset of genes that are highly
differentially expressed between the two conditions are used based
on the following formula (Pique-Regi et al. 2005):

g(x)A =
∑

p

i=1

m̂A(xi)− m̂B(xi)
ŝi

( )

xi − m̂(xi)
ŝi

( )

gi, (1)

where the subscripts of A and B represent the two conditions con-
sidered in each contrast, respectively, m̂i denoting mean gene ex-
pression of the ith gene for A, B or across groups and ŝi meaning
standard deviation of the ith gene across conditions. In this appli-
cation of DLDA, we only used the DEGs that were differentially ex-
pressed in the corresponding condition (10% FDR by DESeq2) by
introducing an indicator variable (γi), assigning to one if the ith
gene is a significant DEG in the contrast of A versus B or 0
otherwise.

Four kinds of DLDA axes were calculated by the following
contrasts for each cell type separately: (1) DLDA axis of LPS was es-
timated in theCTRL and LPS conditions to infer the response pseu-
dotime to LPS; (2) DLDA axis of LPS+DEX was computed in the
LPS and LPS+DEX conditions to calibrate the response pseudo-
time to DEX; (3) DLDA axis of PHA was estimated in the CTRL
and PHA conditions to characterize the response pseudotime to
PHA stimuli; and (4) DLDA axis of PHA+DEX was estimated in
the PHA and PHA+DEX conditions to characterize the response
pseudotime to DEX. After the DLDA representing the trajectory
pseudotime is calculated for each cell type and treatment, we
used a sliding window approach (10% cells in each window, slid-
ing along the defined pseudotime with a step of 0.1% cells), ana-
lyzed gene expression dynamic changes along the response
pseudotime within each treatment for each cell type separately,
and identified different dynamic patterns of gene expression using
the k-means algorithm.

Data normalization for genetic analyses

We quantile-normalized the count data using the voom function
in the R limma v3 package (Ritchie et al. 2015) and regressed out
the following confounding factors: experimental batch, sex, age,
and top three PCs of genotype PCs in each cell type treatment
combination, separately. For the parameter base models, we also
applied the same procedure but starting from the mean and vari-
ability estimates instead of the count data.

cis-eQTL mapping

We used FastQTL v2.076 (Ongen et al. 2016) to perform eQTL
mapping on gene expression residuals calculated for each cell
type and condition as outlined above. For each gene, we tested
all genetic variants within 50 kb of the transcription start site
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(TSS) and with cohort minor allele frequency (MAF) > 0.1. We op-
timized the number of gene expression PCs in the model to max-
imize the number of eGenes across all conditions combined. The
model that yielded the largest number of eGenes included four
gene expression PCs. eQTL discovery for mean and variability
data was performed similarly. The model that yielded the largest
number of significant genes at 10% FDR included five PCs of resid-
uals for variability and seven PCs of residuals for mean data.

Multivariate adaptive shrinkage

Weused themultivariate adaptive shrinkage (mash)method using
the mashr package v.0.2.40 in R v4.0 (Urbut et al. 2019). As input,
we provided the genetic effect sizes and standard errors from
FastQTL. We considered gene–variant pairs with posterior local
false sign rate (LFSR) < 0.1 to be eQTLs (Stephens 2017). To analyze
sharing of genetic effects across all conditions, we considered the
direction of genetic effect across all conditions. Genetic effects
are shared across conditions if they have the same sign and are sig-
nificant in at least one of the conditions considered. To analyze
treatment or cell type specificity, we focused on pairwise compar-
isons of genetic effect sizes. An eQTL is specific to a condition if it is
significant at LFSR<0.1 in either condition and either the direc-
tion of effect differs or the difference in the magnitude of the ge-
netic effects is at least twofold. A gene is considered shared/
specific if at least one eQTL for that gene is shared/specific across
the given set of conditions. To discover reQTLs, we considered
the pair-wise union of significant eQTLs in each of the 16 treat-
ment–control combinations. We defined reQTLs as genetic vari-
ants whose effect size on gene expression differed by at least
twofold between treatment and control conditions.Mash analyses
on mean and variability estimates were conducted following this
pipeline.

DLDA-eQTL mapping

For mapping dynamic eQTLs that have genetic effects on gene ex-
pression interactingwith pseudotime, we first equally divided cells
in one immune treatment into three tertiles of the corresponding
DLDA pseudotime. Then, we mapped eQTLs interacting with
these representative tertiles as dynamic eQTLs across cell types in
the corresponding immune treatments. We quantile-normalized
the data and regressed out confounding factors as described above.
To identify genetic variants interacting with each DLDA, we fitted
a linear model using the lm function that included both the geno-
type dosage and the DLDA bin (numerically encoded as 1–3), as
well as their interaction. We used the same cis-regions as in the
above analysis. We then applied Storey’s Q-value method on the
P-values for the interaction term using a stratified FDR approach
on significant and nonsignificant eGenes (from the FastQTL anal-
ysis) (Supplemental Fig. S45).

Integration with TWAS results

We considered the results of probabilistic TWAS (Zhang et al.
2020), where eQTL fromwhole-blood tissue in GTEx v8 were inte-
grated with the GWAS summary data of asthma. PTWAS identified
four, 16, 66, and 72 (union of 78 genes) genes associatedwith asth-
ma for four GWAS studies: GABRIEL (Moffatt et al. 2010), TAGC
(Demenais et al. 2018), and two from UK Biobank (self-reported
asthma and asthma diagnosed by doctor) (Pividori et al. 2019).
To combine multiple TWAS Z-scores across studies for the same
gene, we selected the one with the largest magnitude as represen-
tative. We then identified genes that were both associated with
asthma risk and differentially expressed in any of the treatment
conditions.

Data access

All raw andprocessed sequencing data generated in this study have
been submitted to the NCBI database of Genotypes and
Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap/) under
accession number phs002182.v3.p1. Large Supplemental Tables
have been deposited in Zenodo (https://doi.org/10.5281/zenodo
.7851053). Code and scripts used to make the results are available
at GitHub (https://github.com/piquelab/scaip and https://github
.com/piquelab/SCAIP-genetic) and as Supplemental Codes 1 and
2, respectively.
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