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Abstract

Background: attention‐deficit/hyperactivity disorder (ADHD) is associated with

both polygenic liability and environmental exposures, both intrinsic to the family,

such as family conflict, and extrinsic, such as air pollution. However, much less is

known about the interplay between environmental and genetic risks relevant to

ADHD—a better understanding of which could inform both mechanistic models and

clinical prediction algorithms.

Methods: Two independent data sets, the population‐based Adolescent Brain

Cognitive Development Study (ABCD) (N = 11,876) and the case‐control Oregon‐
ADHD‐1000 (N = 1449), were used to examine additive (G + E) and interactive

(GxE) effects of selected polygenic risk scores (PRS) and environmental factors in a

cross‐sectional design. Genetic risk was measured using PRS for nine mental health

disorders/traits. Exposures included family income, family conflict/negative senti-

ment, and geocoded measures of area deprivation, lead exposure risk, and air

pollution exposure (nitrogen dioxide and fine particulate matter).

Results: ADHD PRS and family conflict jointly predicted concurrent ADHD symp-

toms in both cohorts. Additive‐effects models, including both genetic and envi-

ronmental factors, explained significantly more variation in symptoms than any

individual factor alone (joint R2 = .091 for total symptoms in ABCD; joint R2 = .173

in Oregon‐ADHD‐1000; all delta‐R2 p‐values <2e‐7). Significant effect size het-

erogeneity across ancestry groups was observed for genetic and environmental

factors (e.g., Q = 9.01, p = .011 for major depressive disorder PRS; Q = 13.34,

p = .001 for area deprivation). GxE interactions observed in the full ABCD cohort

suggested stronger environmental effects when genetic risk is low, though they did

not replicate.

Conclusions: Reproducible additive effects of PRS and family environment on

ADHD symptoms were found, but GxE interaction effects were not replicated and

appeared confounded by ancestry. Results highlight the potential value of
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combining exposures and PRS in clinical prediction algorithms. The observed dif-

ferences in risks across ancestry groups warrant further study to avoid health care

disparities.

K E Y W O R D S

ADHD, environment, gene‐environment interplay, geocoding, polygenic scores

INTRODUCTION

It has long been known that attention‐deficit/hyperactivity disorder

(ADHD) is associated with social disadvantage (Russell et al., 2016),

even after adjusting for co‐occurring disruptive behavior problems

(Miller et al., 2018). More recently, evidence has emerged of a

possible role for other exposures. Notable is the limited study of

potential effects of pollution measures, especially in a genotype‐by‐
environment interaction (GxE) context. Yet these are important for

their public health significance, ubiquity, and ease of standardized

evaluation by geospatial coding. Here, we examine lead exposure risk

(Moore et al., 2022; Nigg et al., 2016) and measures of air pollution

exposure: nitrogen dioxide (NO2) and fine particulate matter (PM2.5)

(Donzelli et al., 2019; Thygesen et al., 2020). Mixed results from

previous studies highlight the need for further investigation of the

association of these air pollutants with conditions such as ADHD

(Zhang et al., 2022). These exposures can be considered extrinsic to

the family environment.

Another set of relevant environments are intrinsic to the family.

While family income is one obvious risk related to low social eco-

nomic status, others pertain. Most commonly noted are features of

the family emotional climate, such as conflict, criticism, and negative

tone/sentiment (Harold et al., 2013; Musser et al., 2016; Peris &

Hinshaw, 2003; Richards et al., 2014).

How and to what extent these intrinsic and extrinsic risks

intersect with ADHD's well‐established genetic liability is of sub-

stantial importance but remains poorly described. Clarification of the

joint contributions of exposure and polygenic measures can inform

both mechanistic understanding and potential clinical prediction

algorithms.

The literature on GxE and ADHD has focused on candidate gene

variants that are not captured in genome wide association studies

(GWAS), such as the DRD4 and MAOA variable tandem repeats

(Kanarik et al., 2022), along with intrinsic risk factors (e.g., parenting).

The opportunity provided by GWAS studies to further evaluate ad-

ditive and interactive models is substantial and warrants broader

investigation.

A recent large‐scale genome‐wide association study (Demontis

et al., 2019) underscored the highly polygenic nature of ADHD.

Numerous subsequent studies have demonstrated that a polygenic

risk score (PRS), representing the cumulative risk of common single

nucleotide polymorphisms across the genome, significantly predicts

ADHD diagnosis, and is significantly correlated with ADHD symp-

toms and related traits in the general population (Demontis

et al., 2019; Green et al., 2022; Ronald et al., 2021; Taylor

et al., 2019), as well as associated features such as executive func-

tioning and emotional dysregulation (Nigg et al., 2018, 2020).

However, the fact that many psychiatric disorders share genetic

risk factors, previously known from behavioral genetic studies, has

also been demonstrated recently using GWAS data. The significant

genetic correlation among many neurodevelopmental and mental

health conditions suggests that PRS are not entirely specific to in-

dividual disorders, and that combining information from multiple PRS

may improve predictive models (Barnett et al., 2022; Neumann

et al., 2022; Waszczuk et al., 2021).

Studies using whole‐genome PRS derived from GWAS in a GxE

context are still relatively new (Palladino et al., 2019). Yet, because

PRS explain significantly more trait variation than individual ge-

netic variants, they are becoming an important approach for

investigating the interplay between genetic and environmental risk

factors for complex diseases, including mental health‐related traits

(Agnew‐Blais et al., 2022; He & Li, 2022; Stojanovski et al., 2019,

Øtergaard et al., 2020). Nevertheless, robust evidence of in-

teractions between PRS and environmental exposures for ADHD

and other disorders has so far been elusive (He and Li, 2022,

Øtergaard et al., 2020).

Here, we take advantage of increasingly informative PRS, the

growing availability of geospatial coding of environmental risk factors

to standardize assessment in large samples, and the large‐scale
American Adolescent Brain Cognitive Development℠ study (ABCD

Study®) of over 11,000 children selected from around the nation,

along with the unique Oregon‐ADHD‐1000 case‐control sample

(Nigg et al., 2023). Examination of results across both population and

case‐control (community recruited) samples can clarify both public

Key points

� Both attention‐deficit/hyperactivity disorder (ADHD)

polygenic risk score (PRS) and family environment were

robustly associated with ADHD symptoms in two inde-

pendent cohorts.

� Additive effects of PRS and environment explained

significantly more variation in symptoms than either

domain alone, indicating the potential utility of

combining risk factors in clinical prediction algorithms.

� Genotype‐by‐environment interaction interactions

observed were confounded by ancestry and did not

replicate, suggesting these effects are likely small for the

PRS and exposures examined here.

� Differences in effects of PRS and exposures across

ancestry groups warrants further research to avoid

health care disparities.
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health and clinically relevant effects, as well as the reproducibility of

findings.

In the present study we aimed to test the following hypotheses:

(1) that multiple genetic (PRS) and environmental risk factors are

additively associated with both dimensional measures and ADHD/

non‐ADHD status, and (2) that genetic effects are dependent upon

environmental context (or vice versa). Novel features of this report

include the use of multiple PRS, geocoded exposure variables, and

the inclusion of risk factors both intrinsic and extrinsic to the family

in a GxE study of ADHD. Moreover, risk‐inducing environmental

exposures are more heavily concentrated among minoritized racial

and ethnic groups in the U.S. (Liu et al., 2021; Mullen et al., 2020), and

differential rates of identification and treatment of ADHD across

racial and ethnic groups remains a complex challenge for under-

standing population needs, risks, and outcomes in ADHD (Chung

et al., 2019; Yang et al., 2022). Yet studies of polygenic scores in non‐
European ancestry populations are rare, leaving a critical gap in

knowledge. Therefore, despite some power limitations, we also

include ancestry‐stratified analyses here to begin to supply the

necessary data for future reviews.

MATERIALS AND METHODS

Participants

All analyses were done in two independent cohorts, the ABCD Study

cohort (N = 11,876) and the Oregon‐ADHD‐1000 (N = 1449). The

ABCD cohort is a large, 21‐site, diverse sample of children aged

9–10 years at baseline (Jernigan et al., 2018; Volkow et al., 2018),

which is publicly available on the NIMH Data Archive (http://dx.doi.

org/10.15154/1523041) (Barch et al., 2018; Uban et al., 2018). The

children have been genotyped and are followed with extensive

behavioral, cognitive, clinical, and MRI measures annually. Baseline

data were examined here. Dimensional measures of ADHD symp-

toms were studied and a matched case‐control subsample was

created as explained in Supporting Information S1.

The Oregon‐ADHD‐1000 is a community recruited case‐control
cohort of youth age 7–11 years (Karalunas et al., 2017; Mooney,

Bhatt et al., 2020; Mooney, Ryabinin, et al., 2020; Nigg et al., 2018,

2020) followed longitudinally for 12 years. Baseline data were

examined here. Human subject protection and ethics approval were

obtained from the local University Institutional Review Board. A

parent/legal guardian provided written informed consent, and chil-

dren provided written assent.

ADHD assessments

In ABCD, total ADHD symptoms were measured using the Child

Behavior Checklist (CBCL) ADHD DSM‐oriented scale (Achenbach &

Rescorla, 2001). In the Oregon‐ADHD‐1000, total ADHD symptoms

were measured using the parent‐reported ADHD Rating Scale

(ADHDRS) (DuPaul et al., 1998). Norm‐referenced T‐scores were

used for both symptom measures. A sensitivity analysis examining

the consistency of polygenic and environmental effects on additional

measures of ADHD symptoms, and on inattention and hyperactivity/

impulsivity symptoms separately, is described in Supporting

Information S1.

In the ABCD cohort, ADHD/non‐ADHD status was based on the

Tier 4 criteria described by Cordova et al. (2022), but was expanded

to include participants who met diagnostic criteria in the past and still

had elevated symptoms, as explained in the supplement to (Cordova

et al., 2022) (details in Supporting Information S1). In the Oregon‐
ADHD‐1000, ADHD diagnosis was performed using a multi‐
method, multi‐informant, multi‐reviewer best‐estimate protocol

(details in Supporting Information S1). The full diagnostic assessment

procedure has been described previously (Nigg et al., 2018).

Polygenic risk scores

Genome‐wide genotype data were available for both cohorts, and

details about data collection and processing have been published

previously (Cordova et al., 2022; Nigg et al., 2018). Using imputed

genotypes based on the 1000 Genomes reference panel (phase 3),

PRS for ADHD, major depressive disorder (MDD), autism spectrum

disorder (ASD), bipolar disorder (BP), schizophrenia (SCZ), anxiety

(ANX), cannabis use disorder (CUD), alcohol use disorder (AUDIT),

and alcohol dependency (ALCDEP) were calculated for each cohort.

Details about the discovery data sets used for each PRS are included

in Table S1. The LDpred method (Vilhjálmsson et al., 2015) was used

to calculate each PRS. All unrelated, European‐ancestry ABCD par-

ticipants were used to estimate linkage disequilibrium, given that the

discovery genome‐wide association studies were done in primarily

European‐ancestry samples. Given the known highly polygenic na-

ture of the traits studied here (Demontis et al., 2023), the proportion

of causal‐variants was set to 0.3.

Identification of ancestry groups

To examine whether effects generalize across different ancestry

groups, we performed stratified analyses for the three ancestry

groups reasonably well‐represented in ABCD: White/European,

Hispanic/Latino, and Black/African‐American. The ancestry groups

were defined using a combination of genetic data and self‐reported
race/ethnicity data (details in Figure S1). For the Oregon‐ADHD‐
1000, only a European‐ancestry subgroup was defined, given the

small number of participants with Hispanic/Latino or Black/African‐
American ancestry.

Environmental exposure measures

Extrinsic geocoded indices

The following risk factors were evaluated by geo‐spatial coding of the

participants' residential addresses: Area deprivation index (ADI), lead

exposure risk, and levels of NO2 and fine particulate matter (PM2.5).

Geospatial location data were linked to external reference databases

using methods described previously (Fan et al., 2021). ADI was

calculated as a weighted sum of 17 factors from the American

Community Survey data (Singh, 2003). Lead exposure risk was based
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on the Washington State Department of Health Childhood Lead Risk

map. Each participant was assigned to a decile of risk relative to risk

levels across the country (Frostenson, 2016). Air pollution concen-

trations (PM2.5 and NO2) were estimated using hybrid spatiotem-

poral models, which utilize satellite‐based aerosol optical depth

models, land‐use regression, and chemical transport models (Di

et al., 2019, 2020). In ABCD, the average was calculated over the

calendar year 2016, which corresponded with the initial enrollment

period for the baseline study visit. In the Oregon‐ADHD‐1000
cohort, the average was calculated over the calendar year of, or

preceding (for those visits before May 1), the baseline study visit date

(between 2009 and 2012).

Intrinsic family risk factors

Family income and family sentiment/conflict were evaluated to index

the proximal family environment. Family income scales for both co-

horts are described in Supporting Information S1.

In ABCD, family conflict was measured with the family conflict

subscale of the widely‐used Family Environment Scale (Moos &

Moos, 1994). In the Oregon‐ADHD‐1000 cohort, parental expressed

emotion and implicit sentiment were assessed via the Five Minute

Speech Sample (FMSS) (Magaña et al., 1986). To obtain a single

measure of sentiment/emotional tone for each FMSS transcript, pre‐
trained computerized text classification models were applied to each

sentence in the transcript, producing a probability that the sentence

contains negative sentiment (details in Supporting Information S1).

The probability of negative sentiment in each sentence was averaged

across all sentences in the transcript to obtain a mean negative

sentiment score (Selah et al., 2022).

Statistical analyses

Missing data in each cohort was handled using multiple imputation as

implemented in the mice R package (van Buuren and Groothuis‐
Oudshoorn, 2011) (additional details provided in Tables S2 and S3).

Effect estimates were determined by pooling estimates across 50

imputed data sets using the pool function in the mice package. For all

models, outcomes (dependent variables) and predictors of interest

were standardized (mean = 0, standard deviation = 1) and the

standardized regression coefficients reported. Sensitivity analyses

were performed to determine if variable transformation affected the

observed associations, with no appreciable effect on results (see

Supporting Information S1).

Main effects of each PRS and each environmental exposure on

total ADHD symptoms were examined in all three cohorts (ABCD,

ABCD matched case‐control subsample, and Oregon‐ADHD‐1000),
while effects on the categorical outcome (ADHD/non‐ADHD status)

was examined only in the two case‐control cohorts. Models were fit

using the geepack R package (Højsgaard et al., 2006), specifying an

exchangeable correlation structure, and clustering on family ID to

handle sibling relatedness (see Table S4). Covariates were included

for age, sex, site (for ABCD only) and 10 genomic principal com-

ponents. Linear models were fit for the dimensional symptom

measures, while logistic models were fit for ADHD/non‐ADHD

status. Additive effects were examined by fitting a “full additive‐
effects” model that included all genomic and exposure variables.

Backwards selection was performed to identify a reduced additive‐
effects model containing only corrected significant (p‐values
<.00333; see below) genomic and/or exposure variables. GxE ef-

fects were examined with models that included interaction terms

for each pair of genomic and exposure variables—all pairs tested

individually in separate models. For each model, a pooled R‐squared
value was calculated as the mean of the R2 values across all 50

imputations (van Ginkel, 2019). A pooled F‐test, using Rubin's rules

to combine test statistics across imputations, was used to test the

significance of the difference in R2 values between two nested

models following recommendations (van Ginkel, 2019). For the lo-

gistic models, the mean area under the receiver operating curve

across the 50 imputations is reported.

A discovery/replication framework was utilized, with the larger

ABCD cohort acting as the discovery data set, and the Oregon‐
ADHD‐1000 as the replication data set. Primary analyses of dimen-

sional measures were done separately in each ancestry subgroup

(defined above) within each cohort. In ABCD, results from each of the

three ancestry subgroups were compared and meta‐analyzed, using a

random‐effects meta‐analysis implemented with the meta R package

(Balduzzi et al., 2019). A sensitivity analyses examining the impact of

covarying genomic PCs calculated across the full ABCD cohort versus

PCs calculated within each ancestry subgroup separately found

no meaningful differences in effect estimates (see Supporting

Information S1).

The categorical outcome (ADHD/non‐ADHD status) was

analyzed only within the European‐ancestry subgroups, given the

small number of cases in the other ancestry groups. Additionally,

analyses for all outcomes were also conducted in each full cohort (all

participants regardless of ancestry).

Due to the large number of PRS and exposures examined, a

Bonferroni multiple testing correction was applied separately to the

set of models examining individual main effects (N = 15 predictors

tested) and the set of models examining interaction effects (N = 54

G‐E pairs tested). Individual main effects with p < .00333 and in-

teractions with p < 9.26e‐4 were considered statistically significant in

discovery analyses in ABCD. To assess replication in the Oregon‐
ADHD‐1000, a significance threshold of p < .05 was used. The Sup-

porting Information S1 provides effect sizes for non‐significant GxE

findings at p < .10.

RESULTS

Overview of cohorts

The distribution of ADHDsymptoms, ADHDdiagnoses, environmental

exposures, and demographics for all three cohorts are reported in

Table 1. PRS and exposure distributions are reported in Figures S2 and

S3. Given the different study ascertainment methods, there are

significantly different proportions of ADHD diagnoses in the ABCD

and Oregon‐ADHD‐1000 cohorts. As a result of the case‐control
design, mean symptoms are higher and the proportion of females is

lower in the Oregon‐ADHD‐1000 cohort (p‐values <4e‐10). In terms

of family environment and exposures, the Oregon‐ADHD‐1000 had
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significantly lower median family income, ADI, lead risk, and NO2

exposure, but significantly higher PM2.5 exposure (all p‐values <.002).

The same patterns hold when comparing the Oregon‐ADHD‐1000 to

the ABCD matched case‐control sub‐sample (all p‐values <.003).

Likewise, results were the same when comparing the European‐
ancestry subgroups of the two cohorts, except there was no signifi-

cant difference in lead exposure risk.

Extent of gene‐environment correlation

Small but statistically reliable correlations were observed among the

various PRS, as expected given the known genetic correlation among

psychiatric disorders. In the European‐ancestry subgroups of both

cohorts, the ADHD PRS was most strongly correlated with PRS for

ASD (r = .29 and .28 for ABCD and Oregon‐ADHD‐1000, respec-
tively), MDD (r = .23 and .17) and CUD (r = .17 and .21) (all p‐values
<4e‐5).

Significant correlations between PRS and environmental mea-

sures were also seen in both cohorts. In ABCD the ADHD PRS was

weakly, but significantly, correlated with ADI (r = .088, p = 1.9e‐10),
family income (r = −.12, p < 2e‐16), family conflict (r = .058,

p = 1.40e‐5), and NO2 levels (r = −.056, p = 3.81e‐5). In the Oregon‐
ADHD‐1000 cohort, ADHD PRS was correlated with negative

sentiment (r = .12, p = 5.46e‐3) and lead risk (r = −.083, p = .0421).

Correlations among environmental exposures were small to

moderate (max r = −.37, for ADI and family income), indicating the

measures represent distinct risks. Correlations among all PRS and

environmental measures in the European‐ancestry subgroups are

reported in Figure 1 and Figure S4.

Main effects of exposures and PRS

Main effects for all PRS and environmental exposures on total ADHD

symptoms are presented for the European‐ancestry subgroups of

each cohort in Figure 2, with family conflict/negative emotional tone

and, unsurprisingly, the ADHD PRS showing the strongest and most

consistent effects.

For dimensional analysis of total ADHD symptoms, in the ABCD

European‐ancestry subgroup, ADI (bβ = .113, p = 1.45e‐8), family

income (bβ = −.131, p = 4.75e‐14), and family conflict (bβ = .211,

p < 2e‐16) were all significantly associated with total ADHD symp-

toms in the expected direction. PRS for ADHD (bβ = .124, p < 2e‐16),
MDD (bβ = .051, p = 1.1e‐4), ASD (bβ = .050, p = 3.1e‐4), and CUD

(bβ = .060, p = 2.37e‐5) were also significantly associated with total

symptoms.

Replication in the Oregon‐ADHD‐1000 European‐ancestry sub-

group was observed for effects of familial negative sentiment

(bβ = .353, p < 2e‐16), family income (bβ = −.095, p = .0208), ADHD

PRS (bβ = .232, p = 1.0e‐9), MDD PRS (bβ = .096, p = .0206), and ASD

PRS (bβ = .122, p = .0017) on total ADHD symptoms.

Results for all ancestry groups in ABCD are shown in Figure S5,

suggesting important differences in risk factors. For example, ADI

and family income were significantly associated with total symptoms

in only the European‐ancestry subgroup, while family conflict was

strongly associated in all subgroups. Furthermore, none of the PRS

were associated with outcomes in the Black/African‐American sub-

group. It should be noted that effect sizes were smaller in the Black/

African‐American subgroup for all exposures and PRS that were

significant in other subgroups, indicating the lack of association is not

simply due to the smaller sample size (i.e., larger confidence

T A B L E 1 Overview of cohorts.

ABCD ABCD matched case‐control Oregon‐ADHD‐1000

Total N 11,867 1620 1449

Age (years) 9.9 (0.6) 9.9 (0.6) 9.4 (1.6)

% Female 47.8%* 31.3%* 39.1%

N with genotypes 10,497 1427 770

% White, European 46.9% (N = 5562) 45% (N = 732) 42.0% (N = 609)

% Hispanic/Latino 9.4% (N = 1110) NA NA

% Black/African‐American 12.0% (N = 1423) NA NA

% ADHD cases 4.5% (N = 540)* 33.3% (N = 540)* 49.8% (N = 721; missing = 31)

Total ADHD symptoms T‐score 53.2 (5.6)* 56.4 (8.8)* 61.5 (16.4)

Family income Median = $75,000–$99,999* Median = $75,000–$99,999* Median = $50,000–$74,999

Family conflict 2.54 (2.0) 2.71 (2.0) NA

Negative sentiment NA NA 0 (0.95)

Lead risk 5.1 (3.1)* 5.00 (3.1) 4.36 (2.9)

NO2 exposure 18.6 (5.8)* 18.5 (5.7)* 17.4 (2.4)

PM2.5 exposure 7.7 (1.6)* 7.6 (1.4)* 7.8 (1.4)

ADI 94.7 (21.1)* 94.8 (21.8)* 90.5 (12.8)

Note: The mean and standard deviation (in parentheses) are reported unless otherwise specified. An asterisk (*) indicates a significant difference in

distribution compared to the Oregon‐ADHD‐1000.
Abbreviations: ABCD, Adolescent Brain Cognitive Development Study; ADHD, attention‐deficit/hyperactivity disorder; ADI, area deprivation index.
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intervals). Meta‐analysis of effects across the three ancestry groups

in ABCD confirmed significant associations between total ADHD

symptoms and family income (bβ = −.091, p = .001), family conflict

(bβ = .204, p < 2e‐16), and ADHD‐PRS (bβ = .107, p = 1.32e‐5).
However, tests of heterogeneity suggest real differences in the ef-

fects of risk factors across the three ancestry groups in ABCD for

ADI (Q = 13.34, p = .00127) and income (Q = 6.83, p = .0329), as well

as PRS for ADHD (Q = 5.68, p = .0583), MDD (Q = 9.01, p = .0110),

and ASD (Q = 13.3, p = .00130).

For the categorical analysis of ADHD diagnosis, income (log

(OR)= −.322, p=7.93e‐5), family conflict (log(OR)= .517, p=2.02e‐9),
and ADHD‐PRS (log(OR) = .479, p = 8.51e‐8) were significantly asso-

ciated with ADHD status in the European‐ancestry matched case‐
control subsample of ABCD. In the European‐ancestry subgroup of

the Oregon‐ADHD‐1000 cohort, effects of negative sentiment (log

(OR) = .863, p = 6.57e‐14) and ADHD‐PRS (log(OR) = .533, p = 3.56e‐

8) replicated, but family income was not statistically significant (log

(OR) = −.117, p = .186) (see Figure S6).

Additive and interactive effects among exposures and
PRS

The additive effects of all PRS and environmental exposures were

examined by including all risk factors in the same regression model

and applying backwards selection using a stringent cutoff (see

Methods) until only those risk factors significantly and independently

associated with the outcome after multiple testing remained. The

effect estimates from these reduced additive‐effects models, along

with R2 values, are reported in Table 2.

In the ABCD European‐ancestry subgroup, the ADHD‐PRS,
ADI, family income, and family conflict were independently and

F I G U R E 1 Correlation matrix of PRS and exposures for the European‐ancestry subgroup of the ABCD cohort. Correlation coefficients are
shown in the lower triangle and significance codes in the upper triangle, with *, **, and *** representing p < .05, p < .01, and p < .001,

respectively. ABCD, Adolescent Brain Cognitive Development Study; PRS, polygenic risk score.
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F I G U R E 2 Univariate main effects (standardized regression coefficient) of all exposures and PRS on total ADHD symptoms for the
European‐ancestry subsamples in each cohort. Point estimates indicated with an asterisk (*) are either (a) statistically significant after
multiple‐testing correction in ABCD, or (b) significantly replicated in the Oregon‐ADHD‐1000 (p < .05). Total ADHD symptoms were

measured with the CBCL ADHD DSM‐oriented scale in ABCD, and the ADHD Rating Scale in the Oregon‐ADHD‐1000 cohort. ABCD,
Adolescent Brain Cognitive Development Study; ADHD, attention‐deficit/hyperactivity disorder; CBCL, Child Behavior Checklist; PRS,
polygenic risk score.

T A B L E 2 Results of the reduced additive‐effects models for total ADHD symptoms in the European‐ancestry subgroups of the ABCD and

Oregon‐ADHD‐1000 cohorts.

Cohort/risk factor Effect estimate p‐value R2

ABCD—White/European

ADI 0.063 (0.024, 0.102) .001 .028

Family income −0.096 (−0.129, −0.062) 2.76e‐8 .038

Family conflict 0.201 (0.172, 0.231) <2e‐16 .066

ADHD‐PRS 0.098 (0.071, 0.125) 2.15e‐12 .037

Total R2 .091

ABCD matched—White/European

Family income −0.125 (−0.204, −0.047) .002 .046

Family conflict 0.263 (0.190, 0.337) 5.34e‐12 .091

ADHD‐PRS 0.195 (0.121, 0.268) 2.68e‐7 .060

Total R2 .145

Oregon‐ADHD‐1000—White/European

Negative sentiment 0.331 (0.259, 0.403) <2e‐16 .137

ADHD‐PRS 0.192 (0.120, 0.263) 2.09e‐7 .071

Total R2 .173

Note: The effect estimates (standardized regression coefficients) and p‐values are those from the additive model containing all risk factors listed for each

cohort. R2 values are reported for each individual risk factor (from the main effects models; italicized) as well as for the reduced additive model shown

(Total R2).

Abbreviations: ABCD, Adolescent Brain Cognitive Development Study; ADHD‐PRS, attention‐deficit/hyperactivity disorder‐polygenic risk score.
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additively associated with total ADHD symptoms. The additive ef-

fects of these three risk factors explained significantly more

symptom variation (R2 = .091) than any single genetic or environ-

mental factor (max R2 = .0663 for family conflict; all delta‐R2 p‐
values <2e‐16). In the Oregon‐ADHD‐1000 European‐ancestry
subgroup, only the effects of ADHD‐PRS and negative sentiment

replicated (p < .05) in the additive‐effects model (effects for ADI

and income were smaller than seen in ABCD, and were not signif-

icant after adjusting for ADHD‐PRS and negative sentiment). Again,

the additive model explained significantly more symptom variance

(R2 = .173) than either factor alone (max R2 = .137 for negative

sentiment; delta‐R2 p‐values <2e‐7).
Comparisons of additive effects on total ADHD symptoms across

the three ancestry groups in ABCD are shown in Figure S7. Differ-

ences among the ancestry groups are consistent with those seen for

the univariate main effects. Meta‐analysis across the three ancestry

groups showed significant additive effects for family conflict

(bβ = .196, p < 2e‐16) and ADHD‐PRS (bβ = .084, p = 1.03e‐11), but
effects of income (p = .005) and ADI (p = .523) were not significant

(after multiple‐testing correction) due to non‐significant effects in

the Hispanic/Latino and Black/African‐American groups.

Additive polygenic and environmental effects are consistent

across a variety of dimensional measures of ADHD symptoms (see

Tables S5–S7 and Figure S8).

For the categorical analyses (ADHD/non‐ADHD status), the

additive‐effects models in the ABCD and Oregon‐ADHD‐1000 co-

horts had mean AUC‐ROCs of 0.699 and 0.764, respectively (see

Table S8).

No interaction effects, on either dimensional or categorical

outcomes, survived multiple‐testing correction in the European‐
ancestry subgroup of ABCD. Nor are any interaction effects signifi-

cant when meta‐analyzed across the three ancestry groups. How-

ever, in the full ABCD cohort (all participants analyzed together,

regardless of ancestry) interactions between family income and PRS

for SCZ, BP, CUD, and ALCDEP were significantly associated with

both total ADHD and inattention symptoms. For total ADHD symp-

toms, the strongest interaction effect, between income and SCZ‐PRS
(Figure 3), indicates that ADHD symptoms are more strongly influ-

enced by income level when genetic risk is low. For the categorical

outcome, interactions between income and both the SCZ‐PRS and

CUD‐PRS, as well as an interaction between BP‐PRS and ADI, were

significant. All interactions indicated that environmental effects are

stronger when genetic risk is low.

However, it should be noted that interactions observed in the full

ABCD cohort should be interpreted with caution, given that PRS and

income/ADI are confounded with ancestry (see Figures S9 and S10).

Furthermore, none of these interactions replicated in the full

Oregon‐ADHD‐1000 cohort (all p‐values >.05).

The results of all models examining GxE interaction effects in

both cohorts are reported in Tables S9–S11.

DISCUSSION

The present study identified reproducible additive effects of genetic

and environmental factors on ADHD symptoms across two large,

independent cohorts. Robust effects were seen for family environ-

ment, particularly family conflict and negative sentiment, but some-

what surprisingly, not for geospatial estimated pollution exposures.

These results support the conclusion from other studies that

while family processes are unlikely to be directly causal of ADHD,

they do participate in maintaining and moderating symptoms over

time (Harold et al., 2013; Musser et al., 2016; Peris & Hinshaw, 2003;

Richards et al., 2014). Here the effect replicated well despite

different methods of evaluating family process across the cohorts.

While the different assessment methods (family conflict reported via

the FES vs. expressed emotion derived from the FMSS) could

certainly be measuring somewhat different aspects of family

F I G U R E 3 The interaction between SCZ PRS and family income is associated with total ADHD symptoms in the full ABCD cohort. Results

indicate that symptoms vary depending on income to a much greater degree when genetic risk is low. (A) The marginal effects of the GxE
interaction model at three values of family income: mean income and income one standard deviation above and below the mean. (B) The
relationship between the residualized symptom scores (accounting for all covariates) and the SCZ‐PRS, stratified on family income (above and

below the mean). ABCD, Adolescent Brain Cognitive Development Study; ADHD, attention‐deficit/hyperactivity disorder; GxE, genotype‐by‐
environment interaction; SCZ‐PRS, schizophrenia‐polygenic risk score.
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environment, the consistency across methods and data sets suggests

a robust effect and is consistent with other research showing

convergence among the FMSS expressed emotion coding and parent‐
reported family conflict in regard to latent variable construct (Kim

Park et al., 2008). Failure to detect main effects for pollution mea-

sures may be due to wide individual variation in actual exposure as

well as metabolism and other protective factors, in these risks as they

relate to ADHD. Lead exposure when measured by blood sample is

well established as a risk for ADHD (Moore et al., 2022; Nigg

et al., 2016) and when estimated by geolocation data was associated

with neural development and cognition in ABCD (Marshall

et al., 2020, 2021).

Though we identified significant PRS‐environment correlations

(e.g., between ADHD‐PRS and family conflict/negative sentiment),

these correlations were small (abs(r) <.1) and there was little atten-

uation of effects in additive models, indicating the PRS and envi-

ronmental effects on ADHD symptoms were largely independent.

However, because the ADHD‐PRS explains only a fraction of the

total genetic risk for ADHD, it is likely that our findings are an un-

derestimate of true G‐E correlation (Agnew‐Blais et al., 2022).

As expected, polygenic risk for ADHD was significantly associ-

ated with ADHD symptoms in the European‐ancestry subgroups of

both cohorts (R2 = .0365 and .0713 for ABCD and Oregon‐ADHD‐
1000, respectively). New here is more evidence that additive ef-

fects of PRS and exposure measures explained markedly and signif-

icantly more symptom variance than either domain alone. This is

promising and important for future efforts to develop clinical pre-

diction algorithms. Yet, these models explained only a small fraction

of the variance, confirming that additional measures will be needed

beyond PRS and global exposure indices to develop such prediction

algorithms for research or clinical use. Our finding that the fraction of

variance explained by PRS can be increased suggests that incorpo-

rating additional measures (such as those available in the electronic

medical record or population registries) may yield further increases

in the accuracy of predictions.

Although we found several GxE interactions of note in the full

ABCD cohort, these were not convincing due to (a) failure to repli-

cate in the Oregon‐ADHD‐1000 cohort and (b) apparent confounding

due to ancestry effects. It should be noted however that failure to see

interaction effects of pollution measures with PRS scores hardly rules

out the likelihood that GxE effects occur at a more granular level. For

example, the effect of even low‐level lead exposure on ADHD varies

depending upon genotypes in genes regulating lead metabolism (Nigg

et al., 2016), suggesting that specific genes would need to be evalu-

ated to make clinical use of GxE for some exposures. The same may

prove true for air pollution measures given evidence that other

pollutant exposures exert effects on neurodevelopment dependent

on specific metabolizing genes (Eskenazi et al., 2014). It may also be

that interaction effects for PRS do occur, but are simply too small to

see at the sample sizes used here.

The observed differences among ancestry groups highlight the

need for study of risk factors, both environmental and genetic, in

diverse samples. The lack of PRS associations in the Black/African‐
American subgroup is consistent with previous evidence that poly-

genic scores derived from European populations generally perform

poorly among populations with African ancestry (Duncan et al., 2019),

and reiterates the need for large‐scale GWAS in non‐European

ancestry populations to improve the generalizability of PRS and

avoid health care disparities should PRS eventually become useful in

clinical prediction algorithms.

Our use of multiple PRS, geocoded environmental exposures, and

two large cohorts to assess reproducibility of effects are important

contributions to the literature on gene‐environment interplay related

to ADHD. However, several limitations of the current study should

be considered. First, we focused on exposures during childhood

(concurrent with symptom measures). It is likely that toxicants play a

role much earlier in development (Block et al., 2012; Han et al., 2021;

Thygesen et al., 2020), which could explain the lack of main effect

associations and GxE effects seen here. Second, given the cross‐
sectional design of our study, we are unable to comment on the

causal direction of effects. For example, bidirectional effects between

ADHD symptoms and family conflict are likely.

Future studies on the interplay between genetic and environ-

mental risk factors for ADHD should consider longitudinal measures

of exposures from the perinatal period through childhood, as effects

likely vary across development, and should pay special attention to

differences in risk factors dependent on race/ethnicity. Future work

should also determine if the use of machine learning models,

including more advanced model selection techniques, could improve

the accuracy of the predictions reported here.

In conclusion, the present study adds to the literature finding

that interactions between PRS and particular exposures are elusive

and likely small for mental disorders in children. However, other

types of interactions that are theoretically driven remain in need of

examination. At the same time, results confirm association between

ADHD‐PRS and ADHD (R2e.04–.07), and association between family

conflict/negative sentiment and ADHD independent of polygenic risk

for psychopathology. Finally, it supports the utility of combining

environmental exposure measures and PRS in future prediction

algorithms.
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