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Introduction
Positron emission tomography (PET) is a non-invasive imaging technique that col-
lects information on the annihilation of positrons and electrons via high-energy pho-
ton detection. When used in conjunction with 2-deoxy-2-[18F]fluoro-D-glucose (FDG), 
PET is widely recognized as a valuable tool for detecting pathological changes in various 
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Purpose:  Dynamic PET is an essential tool in oncology due to its ability to visualize 
and quantify radiotracer uptake, which has the potential to improve imaging quality. 
However, image noise caused by a low photon count in dynamic PET is more signifi-
cant than in static PET. This study aims to develop a novel denoising method, namely 
the Guided Block Matching and 4-D Transform Domain Filter (GBM4D) projection, 
to enhance dynamic PET image reconstruction.

Methods:  The sinogram was first transformed using the Anscombe method, then 
denoised using a combination of hard thresholding and Wiener filtering. Each denois-
ing step involved guided block matching and grouping, collaborative filtering, 
and weighted averaging. The guided block matching was performed on accumulated 
PET sinograms to prevent mismatching due to low photon counts. The performance 
of the proposed denoising method (GBM4D) was compared to other methods such 
as wavelet, total variation, non-local means, and BM3D using computer simulations 
on the Shepp–Logan and digital brain phantoms. The denoising methods were 
also applied to real patient data for evaluation.

Results:  In all phantom studies, GBM4D outperformed other denoising methods in all 
time frames based on the structural similarity and peak signal-to-noise ratio. Moreover, 
GBM4D yielded the lowest root mean square error in the time-activity curve of all tis-
sues and produced the highest image quality when applied to real patient data.

Conclusion:  GBM4D demonstrates excellent denoising and edge-preserving capabili-
ties, as validated through qualitative and quantitative assessments of both temporal 
and spatial denoising performance.
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applications, including neurology, cardiology, and oncology [1]. Dynamic PET is par-
ticularly valuable in oncology due to its ability to visualize and quantify radiotracer 
uptake [2]. Additionally, dynamic PET enables analysis by the time activity curve (TAC) 
based on the compartment model [3]. However, compared to static PET, dynamic PET 
images suffer from higher noise levels in single voxels, which poses a significant chal-
lenge to denoising techniques [2]. Noise can be reduced by reconstruction methods, 
such as the iterative-based ordered subset expectation maximization (OSEM) recon-
struction method, but excessive blurring may occur with an increase in the number 
of subsets and iteration times [4]. Furthermore, the PET denoising algorithm helps to 
obtain images at the same noise level with reduced injection activity and scanning time. 
Thus, the development of denoising algorithms suitable for PET imaging is an active 
area of research. Common denoising techniques such as Gaussian, median, and Wiener 
filters are not very effective in reducing noise in PET images due to spillover activity 
or low efficiency [5]. To address this, various edge-preserving or non-local algorithms 
have been proposed to denoise the PET images, mostly post-reconstruction, including 
bilateral filtering, wavelet-based techniques, guided image filtering, temporal and spati-
otemporal smoothing techniques, and non-local filters like non-local mean (NLM) and 
block-matching 3D (BM3D) along with its higher dimensional form BM4D and BM5D 
[6–17].  Combined with anatomical information, the performance of various filters can 
be further improved [18–21].

BM3D is conducted by block matching followed by 3-D transform domain filtering. 
The block-matching process generates grouped fragments by collecting similar patches 
and stacking them into a 3-D group. BM3D exploits the similarity between the blocks 
to enhance the sparsity so that the transformed coefficients of grouped fragments can 
be better shrunk. The similarity between small blocks at the different spatial and tem-
poral positions in PET images is common, which motivates the use of grouping and col-
laborative filtering for PET images, especially dynamic PET images [9, 10]. Ote et al. [8] 
proposed a post-reconstruction kinetics-induced BM5D filtering to denoise dynamic 
PET images. Radioactive decay is well-modeled as a Poisson process. Block matching 
and transform-domain collaborative filtering based on Anscombe transformation has 
been proven successful in denoising images with Poisson noise [22]. However, the recon-
structed is decidedly non-Poisson [23].

Given the unique characteristics of dynamic PET images, simplifying the block-match-
ing process using an accumulative activity map, as outlined in this work, can be highly 
beneficial. This involves performing block matching in 2D on an accumulative sinogram 
(referred to as guide image in this work), allowing corresponding 3D dynamic sinogram 
blocks to be easily grouped and stacked into 4D stacks, which reduces the likelihood of 
mismatching and minimizes computational costs associated with grouping. By stacking 
similar patches and filtering in the 4-D transform domain of the dynamic PET sinogram, 
the sparsity of transformed coefficients of the patches can be further reduced based on 
kinetic information in sinograms, enabling TAC denoising and spatial denoising to be 
conducted simultaneously.

Here, we developed guided block matching and 4-D transform domain filter (GBM4D) 
projection denoising method for dynamic PET image reconstruction. To evaluate the 
performance of the GBM4D algorithm, a simulation sinogram of two digital phantoms 
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and a clinical head PET sinogram was included in this work for quantitative and qualita-
tive evaluation.

Methods
Algorithm

Overview of GBM4D

The noise of dynamic PET sinogram can be well-modeled as Poisson distribution. BM3D 
and BM4D methods are designed for Gaussian noise. Thus, the generalization Ans-
combe transform was first applied to the sinogram. The general procedure of GBM4D is 
demonstrated in Fig. 1.

The final estimation is obtained by inversed Anscombe transformation of GBM4D fil-
tered sinogram. The algorithm consists of two steps: hard thresholding step and Wiener 
filtering step. Each of the processes consists of block-matching and collaborative filtering 
by shrinkage in a 4-D transform domain as follows:

•	 Find blocks that are similar to the reference block in the cumulative PET sinogram. 
2-D blocks at the corresponding spatial position in each scanning frame are stacked 
together to generate 3-D sinogram blocks. All similar blocks were stacked together 
to form a 4-D array (group).

•	 Perform collaborative filtering of the group, then aggregate the sinograms by return-
ing the filtered 3-D blocks to the original position.

Detailed of the Anscombe transformation and denoising Step 1 and Step 2 in Fig. 1 
will be described in the following sections.

Guided block matching and grouping in Step 1

Considering Poisson noise in noisy sinogram z : X ,T → R as the form

where P is independent random Poisson distribution, and y is the true sinogram. The 
Anscombe transformation was first conducted on the sinogram before Step 1. In this 

(1)z(x, t) = P y(x, t) , xεX , tεT

Fig. 1  Flowchart of guided block matching and 4-D transform domain filter projection denoising method for 
dynamic PET image reconstruction. Steps 1 and 2 are repeatedly conducted for each block
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case, only pure Poisson noise is considered. After denoising process (both Step 1 and 
Step 2 in Fig. 1), inverse Anscombe exact unbiased transformation were conducted using 
validated database to avoid biased inverse result in low-count Poisson image [22].

After general Anscombe transformation, it is reasonable to assume that the noisy sino-
gram z : X ,T → R as the form

where x is the 2-D spatial position of the sinogram X ⊂ Z
2 , t is the temporal position 

of dynamic sinograms T ⊂ R
+ and η(·) ∼ N

(

0, σ 2
)

 . In the block-matching process, 
the similarity of two blocks were measured by the inverse of the ℓ2-distance. If the true 
image y were available, the block distance would be measured as:

where �·�2 denotes the ℓ2-norm, and the blocks Zt
xR

and Zt
x are in z and are located 

at xR and x ∈ X at time t ∈ T  and xR are located at the reference position, and blocks 
Y t
xR

and Y t
x are located at xR and x ∈ X at time t ∈ T  in y , N denotes the block size. In 

realistic situations, only noisy blocks Zt
xR

and Zt
x are available. Therefore, the distance is 

estimated as:

The distance is a non-central chi-square random variable with expectation

and variance

The variance grows asymptotically with O
(

σ 4
)

 . For dynamic PET sinograms, the noise in 
each frame is relatively large compared with accumulative sinograms due to fewer photon 
counts in each frame. For larger σ , the probability densities of different d̂

(

Zt
xR
,Zt

x

)

 might 
overlap heavily. Such mismatches can worsen the sparsity in the 4-D groups, which may 
lead to inefficiency in the collaborative filtering process. Previous work used coarse prefil-
tering to avoid such mismatch [8, 9], which is realized by linear transform on blocks and 
hard-thresholding. In this work, coarse prefiltering was applied to avoid mismatch along 
with the introduction of guide image (accumulated transformed PET sinograms). The dis-
tance after coarse prefiltering can be written as:

where ϒ ′ is the hard-thresholding operator and T  is the linear transformation and
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As stated previously, the transformed accumulated PET sinogram has smaller noise 
compared with each dynamic PET sinogram frame. Therefore, we used accumulated 
transformed PET sinograms as guide images. For Step 1, the blocking set at xR , SxR , gen-
erated by block matching contains the blocks in each frame at xR and x where ZxR and Zx 
of guide image is similar:

where τmatch is the maximum d̂
(

ZxR ,Zx

)

 for which the block is considered similar to ref-
erence block. The block group is formed base on SxR by stacking Zt

xSxR
 into a 4-D array. 

The array is of size N × N × |T | ×
∣

∣SxR
∣

∣.

Collaborative filtering using hard‑thresholding in Step 1

The collaborative filtering of Zt
xεSxR

 is conducted in 4-D domain using hard-thresholding 

in Step 1 in Fig. 1. This filtering can maintain good sparsity while obtaining the informa-
tion of the correlation 1) between the pixels of a single block 2) between the pixels at the 
corresponding spatial position in grouped blocks 3) between the pixels at the corre-
sponding temporal position in grouped blocks.

Similar 3-D patches were stacked to form 4-D patches to conduct collaborative filter-
ing. For BM3D, denoising takes advantage of the sparsity in the spectrum of 3-D simi-
lar block groups. As demonstrated in Fig. 2, the sparsity of the 3-D block spectrum is 
enhanced by introducing kinetic information since the temporal correlation in the sig-
nals is also considered in GBM4D. The hard-thresholding filtering in the 4-D domain is 
expressed as:

(8)Z
guide
xR =

∑

t
Zt
xR

and Z
guide
x =

∑

t
Zt
x

(9)SxR =

{

xεX : d̂
(

Z
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xR ,Z
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x

)
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}

(10)Ŷ
t
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= T
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4D

(

ϒ

(
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(

Z
t
xεSxR

)))

Fig. 2  Example of a 3-D spectrum of a group in BM3D method performed on a single sinogram frame of 
dynamic PET transformed by 3-D linear transform b 4-D spectrum of the group in GBM4D method performed 
on a dynamic PET sinogram transformed by 4-D linear transform. The 4-D spectrum is sparser than the 3-D 
spectrum
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T4D and T −1
4D  are the normalized 4-D linear transform and inverse transform. In 

this work, 3-D DCT in spatial and temporal domain followed by 1D DCT transform 
in group direction and its inverse transform are applied. ϒ denotes the hard-thresh-
olding process in Step 1 in Fig. 1:

Here, �4D is set to 2.8 based on a previous study [24]. After aggregation by weighted 
average (detailed stated in 2.1.5), the filtered blocks were returned to the original 
position to form the basic estimation of sinogram ŷbasic(x, t) in Step 1 in Fig. 1.

Grouping and collaborative wiener filtering in Step 2

Step 1 gives a basic estimation of true dynamic PET sinogram ŷbasic(x, t) . By accumu-
lated sinogram based on ŷbasic(x, t) , the guide image in Step 2 is calculated as:

The denoising is further improved by performing the grouping in Step 2 in Fig. 1 
using the basic estimation and applying Wiener filtering.

As stated previously, the accumulated basic estimation, referring to guide image, is 
significantly attenuated, which helps to find more accurate block groups. The match 
blocks in Step 2 were generated as:

Ŷ
basict
SWie
xR

 as the stacked block of grouped basic estimation blocks and Zbasict
SWie
xR

 as the 

stacked block of grouped noisy sinogram blocks. The Wiener shrinkage coefficient is 
calculated as:

where

By using the Wiener filtering, power spectrum of the basic estimate can be used 
to filter the groups by minimizing the least-square of the difference between mod-
eled and filtered signals. After aggregation by weighted average, the Weiner fil-
tered blocks were returned to the original position to form the final estimation of 
sinogram.
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Ŷ
basict

SWie
xR

)∣

∣

∣

∣

∣

2

∣

∣

∣

∣

∣

T4D

(

Ŷ
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Aggregation by weighted average in Step 1 and Step 2

By returning the filtered block to the original position, the estimation of ŷbasic and ŷwiener 
can be calculated for both Step 1 and Step 2 in Fig.  1, which is called aggregation. 
Weighted average aggregation was adopted in this work as:

where χxm : X → {0, 1} is the characteristic function of the block and ωxR is the weight 
function based on [7]. Kaiser window is also part of the weights to reduce border effects 
[7, 25].

Experimental setup

Computer simulation

We performed computer simulation on the Shepp–Logan phantom (SLP) [26] and a dig-
ital brain phantom developed by Martin A. Belzunce et al. [27] For SLP, only physical 
decay was considered when generating the sinogram. The reconstruction image size was 
8 × 128 × 128 × 128. For the digital brain phantom, TACs of gray matter, white matter 
and tumor tissue were calculated by compartment model. The pharmacokinetic param-
eters of gray matter, white matter and tumor were K1 = 0.1104, 0.0622, 0.0640 mL/min/
mL, k2 = 0.1910, 0.1248, 0.0890  mL/min/mL, k3 = 0.1024, 0.0070, 0.0738  mL/min/mL. 
Fv were set to 0. The input function was extracted from previous work [28]. Accord-
ing to a previous study [2], a dynamic PET of 8 × 6 min was performed. The tumor size 
is 4 × 4 × 4 pixels. The size of sinograms is 8 × 128 × 128 × 128. The sinogram is gener-
ated by forward radon transformation using Python scikit-image toolkit. After generat-
ing the noise-free sinogram, Poisson noise was added to the sinogram assuming the total 
photon count of 5 × 108 according to previous simulation work [8]. The dynamic PET 
was then reconstructed using 2D-OSEM with twenty iterations and eight subsets with 
matrix size of 128 × 128 and no post-filter. The update equation for the OSEM can be 
briefly described as:

where f  is the image under reconstruction, j and k are voxel indices, n is iteration num-
ber b is the subset number, i is the sinogram indices and Sb is subset b . p is the sino-
gram voxel measurement, and H is the system matrix generated by inversed radon 
transform using Python scikit-image toolkit. The size of the reconstruction image was 
8 × 128 × 128 × 128, and the voxel size is 1.5 × 1.5 × 1.5 mm3. All simulation and recon-
struction were performed based on PYTHON.

To validate the performance of GBM4D compared with other algorithms, total vari-
ation, wavelet, non-local means (NLM), and BM3D method were applied to denoise 
the sinogram using skimage toolkit in PYTHON except for BM3D. Total variation 
denoising aims at obtaining an image that has a minimal total variation norm. The 
weight of the total variation is set to 0.1 [29]. The non-local means algorithm replaces 

(16)ŷ(x, t) =

∑
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the value of a pixel by an average of a selection of other similar non-local pixels val-
ues. The patch size and the search area of NLM are set to 5 × 5 and 13 × 13 pixels [30]. 
Wavelet denoising uses the wavelet representation of the image to removed noise 
by shrinking all coefficients toward zero by a given amount. Soft thresholding and 
Bayes shrinking methods were adopted for wavelet denoising [31]. During the denois-
ing process, the robust wavelet-based estimator of the noise standard deviation was 
applied based on a previous study [32]. Before the denoising, generalized Anscombe 
transformation was performed on all sinograms since all the methods were designed 
based on Gaussian noise instead of Poisson noise. The exact unbiased inverse of the 
Anscombe transformation was then performed on the denoised sinogram before the 
reconstruction. To exclude the effect of the reconstruction algorithm, the ground 
truth images were the reconstruction of the noiseless sinogram.

For the quantitative evaluation of different denoising methods, the structural simi-
larity (SSIM) and peak signal-to-noise ratio (PSNR) were calculated. SSIM measures 
the similarity of ground truth and denoised image based on the degradation of struc-
tural information [33]:

where µg , µd are the mean of the ground truth image and the denoised image, σ 2
g  , σ 2

d  are 
the deviation of the ground truth image and the denoised image, σgd is the covariance of 
the ground truth image and the denoised image, c1 = c2 = 0.012. PSNR was calculated in 
this work to measure the image quality at the pixel level:

where RMSE is the root mean square error between the ground truth image and the 
denoised image and peak is the peak value of the ground truth image. SSIM and PSNR 
in each time frame were measured. The TACs of different tissues were measured in the 
volume of interest of 4 × 4 × 4 pixels. The region of interest (ROI) positions can be seen 
in Fig. 7. To quantitatively measure the temporal smoothing performance of GBM4D, 
RMSE of TACs in different tissues measured from denoised images compared with the 
ground truth were calculated.

Real patient data

The real patient data in this retrospective study are based on an open accessed 
dynamic PET list-mode sinogram data source, which is acquired on a Siemens Bio-
graph mMR, using amyloid tracer 18F-florbetapir, provided by Avid Radiopharma-
ceuticals, Inc., a wholly-owned subsidiary of Lilly [34, 35]. The data extraction and 
reconstruction of the dynamic PET data were performed offline using NiftyPET. The 
reconstruction was performed using histogram mode with image matrix sizes of 
344 × 344 and no post-filter. [36]. The frame setting is also 8 × 6  min. The dynamic 
PET images were then reconstructed using OSEM with four iterations and eight sub-
sets. The reconstruction PET image size was 8 × 127 × 344 × 344. The direct sinogram 

(17)SSIM =
(2µgµd+c1)

(

2σgd+c2
)

(

µ2
g+µ2

d+c1

)(

σ 2
g +σ 2

d+c2

)

(18)PSNR = 20 log10
peak
RMSE dB



Page 9 of 16Xin et al. EJNMMI Physics           (2023) 10:59 	

and oblique sinograms were denoised separately. The denoising methods and param-
eters are the same as stated in the previous section.

Result
Computer simulation

To qualitatively validate the algorithm when only considering physical attenuation, Fig. 3 
shows the 8th frame of the reconstructed dynamic PET image of SLP before and after 
applying different denoising approaches with 1.4M counts per slice. The wavelet method 
can preserve the structural details, but the noise was not properly removed. The total 
variation method tends to over-smooth the image, causing the loss of image details. An 
obvious image distortion can be seen in NLM denoised image. GBM4D shows better 
performance in edge-preserving compared with BM3D. As shown in Fig. 4, the denois-
ing performance of GBM4D can be further demonstrated with the horizontal profile 
of the reconstruction image before denoising and after different denoising approaches. 
GBM4D denoised image shows great consistency with the ground truth. To quantita-
tively measure the performance of different denoising approaches, SSIM and PSNR 
were measured as shown in Table 1. For both indexes, GBM4D shows the best denoising 

Fig. 3  A slice of the SLP for the 8th frame and its reconstructed image before and after applying different the 
various denoising approaches

Fig. 4  A horizontal profile of the SLP for the 8th frame and its reconstructed image before and after applying 
different denoising approaches



Page 10 of 16Xin et al. EJNMMI Physics           (2023) 10:59 

performance compared with other approaches. SLP is a phantom with rather uniform 
tissue distribution locally, causing less chance of mismatching in BM3D and better accu-
racy of denoised image patch in NLM. Therefore, the performances between different 
algorithms are similar except for total variation denoising. The respectively small noise 
and artifact in noisy images also contribute to the overall better denoising performance 
of different algorithms. The differences of indexes in different frames caused by the pho-
ton counts were also small for all algorithms.

Figure 5 shows the digital brain phantom sinogram before and after applying differ-
ent denoising approaches. When considering biokinetic in the phantom, GBM4D still 
showed better denoising performance in sinogram perspective. Figure 6 shows the digi-
tal brain phantom images reconstructed from the sinogram before and after applying 
different denoising approaches. When considering the simulated digital brain phan-
tom, GBM4D showed better denoising performance, especially for the 1st frame which 
is of fewer photon counts. It is shown in Fig. 6 that tumor tissue can be only detected 
when using the GBM4D denoising technique. Because wavelet is not able to represent 
discontinuities along edges or curves in images or objects efficiently, wavelet denoised 
reconstructed image showed ring artifacts caused by the streaking artifacts in wavelet 

Table 1  SSIM and PSNR between the ground truth and reconstructed SLP image after applying 
different denoising approaches for different frames

Frame 1 2 3 4 5 6 7 8

SSIM Total variation 0.64 0.64 0.64 0.64 0.64 0.64 0.65 0.65

Wavelet 0.96 0.96 0.96 0.96 0.96 0.95 0.95 0.95

NLM 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

BM3D 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96

GBM4D 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

PSNR (dB) Total variation 17.65 17.66 17.68 17.69 17.70 17.72 17.74 17.76

Wavelet 25.56 25.46 25.40 25.29 25.24 25.15 25.05 24.97

NLM 27.28 27.24 27.24 27.20 27.17 27.17 27.10 27.10

BM3D 26.24 26.22 26.20 26.16 26.14 26.13 26.08 26.04

GBM4D 28.68 28.75 28.80 28.84 28.87 28.90 28.90 28.89

Fig. 5  A slice of digital brain phantom sinogram (projection) for the 1st frame before and after applying 
different denoising approaches
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denoised sinogram. Similar to the previous result, the total variation method tends to 
over-smooth the image. Compared with NLM and BM3D, GBM4D showed greater 
denoising and edge-preserving performance, especially for the frame of lower photon 
counts. Such a result can be also demonstrated in Fig. 7. Figure 7 shows the great consist-
ency of the ground truth and the GBM4D denoised image horizontal profile. To quanti-
tatively evaluate the performance of GBM4D and other denoising approaches, SSIM and 

Fig. 6  A slice digital brain phantom for the 1st and 8th frame and its reconstructed image before and after 
applying different denoising approaches (the arrow points out the tumor)

Fig. 7  A horizontal profile of the digital brain phantom for the 1st and the 8th frame before and after 
applying different denoising approaches
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PSNR were calculated. Table 2 shows GBM4D significantly improved SSIM and PSNR 
for each frame (p < 0.001). The differences of indexes in different frames caused by the 
photon counts were also reduced while using GBM4D compared with other denoising 
methods. For wavelet, NLM and BM3D methods, the denoising performance for frames 
with fewer photon counts was significantly inferior to frames with higher counts.

Figure 8 shows that GBM4D also has the best temporal denoising performance com-
pared with other denoising approaches considered in this work. The GBM4D denoised 
image shows great consistency with ground truth in TACs of different tissue. The RMSE 
of different tissue TACs when using GBM4D is the lowest among all (0.51, 0.49, 0.31 for 
gray matter, tumor and white matter).

Real patient data

Figure 9 shows the denoising result of real patient brain PET data. Only NLM, BM3D 
and GBM4D results were shown for the superior performance shown in the previ-
ous section. The boundary of the ventricle can be more clearly shown in the GBM4D 
denoised image, especially for frames of lower counts. Figure  10 shows the TACs of 

Table 2  SSIM and PSNR between the ground truth and digital brain phantom image after applying 
different denoising approaches for different frames

Frame 1 2 3 4 5 6 7 8

SSIM Total variation 0.89 0.88 0.88 0.88 0.88 0.87 0.87 0.87

Wavelet 0.88 0.92 0.92 0.93 0.93 0.94 0.94 0.94

NLM 0.76 0.93 0.95 0.95 0.96 0.96 0.96 0.96

BM3D 0.87 0.95 0.96 0.96 0.96 0.96 0.96 0.96

GBM4D 0.94 0.97 0.98 0.98 0.98 0.98 0.98 0.98

PSNR (dB) Total variation 17.93 17.61 17.49 17.44 17.40 17.34 17.32 17.30

Wavelet 16.88 18.42 18.64 19.07 19.39 19.62 19.80 19.77

NLM 12.95 19.44 20.77 21.14 21.57 21.83 21.86 22.06

BM3D 16.23 20.74 21.36 21.65 21.89 21.91 22.05 22.08

GBM4D 19.24 23.13 24.21 24.60 24.85 24.92 24.95 25.02

Fig. 8  The TACs of different tissues of the digital brain phantom before and after applying different the 
various denoising approaches along with the RMSE of TACs when applied different denoising approaches
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white matter and gray matter in real patient data. The superior temporal denoising per-
formance of GBM4D can be also observed in real patient data.

Discussion
This work proposed a new approach of block matching and collaborative filtering 
method using guide image and 4D filtering designed for dynamic PET images. The guide 
image combined with coarse prefiltering prevents mismatching in the grouping process, 
which leads to superior performance in edge-preserving in both computer-simulating 
images and real patient images. The mismatching during the grouping process can be 
significantly reduced, which can be observed from the reduction of artifacts in recon-
structed images using BM3D and GBM4D denoised sinograms. 4D filtering provided 
a sparser spectrum of image blocks, leading to the significantly improved temporal and 
spatial denoising performance of GBM4D compared with the traditional BM3D method. 
Therefore, TACs of different tissues can be more accurately estimated and the denoising 
performance of GBM4D when applied to images of lower counts are superior.

For quantitative evaluation, considering the phantom of only physical decay and the 
phantom of both biomedical decay and physical decay, SSIM and PSNR are both signifi-
cantly improved using the GBM4D approach. The indexes showed that GBM4D can suc-
cessively remove the Poisson noise in the dynamic PET sinogram. The RMSE of TACs 
in ROI in digital brain phantoms was significantly reduced when applying GBM4D. The 
kinetic analysis of different denoised reconstructed dynamic PET images will be studied 
in future work.

Fig. 9  A slice of patient brain PET image before and after applying different denoising approaches

Fig. 10  The TACs of different tissues of the real patient dynamic PET before and after applying different 
denoising approaches
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Previous research also developed various types of block matching and collaborative 
approaches [7–10]. When considering dynamic PET sinogram image, BM5D can also 
be applied to remove the Poisson image. However, the computational burden would be 
dramatically increased. Using a guided image in GBM4D can reduce the computational 
burden during the grouping process and prevent mismatching. Most works aimed at 
denoising images after OSEM reconstruction using block matching and collaborative 
approaches. In this way, the computational burden can be reduced. The noise of recon-
struction images is not exact Poisson noise but has the form of Poisson noise [10]. The 
Anscombe transformation and its inverse transformation would lead to bias in activity 
and inferior performance of denoising approaches, as shown in Fig. 11.

GBM4D, when applied to dynamic PET with more frames, has greater potential for 
image quality improvement compared with BM3D, for more information is contained in 
the temporal aspect during the collaborative process and relatively fewer chances of mis-
matching using guide image. Only eight frames were considered in this work to evaluate 
the performance of such a denoising approach to avoid the dramatic differences between 
the sparsity of 3D blocks and 4D blocks spectrum, which helps to reduce the possibility 
of mismatching in BM3D.

A great amount of image-denoising methods based on deep convolution net neural 
(CNN) have been developed [37–40]. Further work would be done to compare GBM4D 
with CNN-based approaches. GBM4D, as a new non-local denoising method, suffered 
from the same disadvantage shared with other non-local methods, which is the compu-
tational burden. GBM4D can be transplanted to GPU devices, which can significantly 
reduce the computation time. Further comparison between BM5D and GBM4D will be 
conducted in the future when acceptable computational burden for both methods were 
achievable.

Fig. 11  A slice of reconstructed dynamic PET images in the frame of lowest counts for SLP and real patient 
data after applying post-reconstruction GBM4D and pre-reconstruction GBM4D
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Conclusion
In this study, we developed a guided block matching and 4-D transform domain fil-
ter projection denoising method for dynamic PET image reconstruction and thor-
oughly investigate the performance of the approach. GBM4D shows great denoising 
and edge-preserving function. The temporal and spatial denoising performances were 
both validated qualitatively and quantitatively. Additionally, the use of a guide image in 
the block-matching process and 4-D filtering allowed for the reduction of artifacts and 
improved accuracy in TACs estimation. The GBM4D outperformed BM3D in terms of 
sparsity and denoising performance. Quantitative evaluation using SSIM, PSNR, and 
RMSE of TACs showed that GBM4D can effectively remove Poisson noise in dynamic 
PET sinograms. GBM4D, as a new form of block matching and collaborative denoising 
method, can significantly improve the denoising performance for dynamic PET image 
reconstruction both spatially and temporally compared with traditional BM3D.
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