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Abstract
Complications after surgery have a major impact on short- and long-term outcomes, and decades of technological advance-
ment have not yet led to the eradication of their risk. The accurate prediction of complications, recently enhanced by the 
development of machine learning algorithms, has the potential to completely reshape surgical patient management. In this 
paper, we reflect on multiple issues facing the implementation of machine learning, from the development to the actual 
implementation of machine learning models in daily clinical practice, providing suggestions on the use of machine learning 
models for predicting postoperative complications after major abdominal surgery.
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Introduction

Surgical patients are inevitably at risk of suffering postoper-
ative complications, despite decades of scientific and techno-
logical advancement. The accurate prediction of individual 
outcomes has the potential to completely reshape the future 
of postoperative management. Such prediction would enable 
shared clinical decision-making and individual perioperative 
care and postoperative management.

In the last few years, a number of prediction models 
have been developed using machine learning (ML) models. 
These models offer the opportunity to develop a more indi-
vidualized approach, allowing for data-driven individual-
ized medicine [1–3]. However, clinical implementation and 

acceptance are cumbersome, as it is often hampered by non-
compliance with necessary guidelines.

To achieve the transparent, safe, and applicable imple-
mentation of ML models in the prediction of postopera-
tive outcomes, we propose uniform selection, training, and 
guideline compliance.

Barriers and solutions

There is a large gap between promising and comprehensive 
research on the potential utility of artificial intelligence (AI) 
in the field of medicine and its actual implementation in 
daily clinical practice [4]. Several authors have tried to use 
ML models to optimize postoperative management by pre-
dicting postoperative complications. Unfortunately, many 
conclude that the implementation of these models is far 
from being clinically viable, even though most ML mod-
els achieve reasonable performance [5–15]. Cao et al. [5], 
Weller et al. [12], and Van den Bosch et al. [15] concluded 
that no practical implementation could be achieved for ML 
models due to the predictive value being too low to clinically 
implement. Grass et al. predicted surgical site infection in 
patients after colorectal surgery and initially found that ML 
outperformed conventional logistic regression. However, 
after external validation the practical applicability dropped 
due to low predictive performance [7].

 *	 Freek Daams 
	 f.daams@amsterdamumc.nl

1	 Department of Surgery, Amsterdam UMC Location 
Vrije Universiteit Amsterdam, De Boelelaan 1117, 
1081 HV Amsterdam, The Netherlands

2	 Cancer Center Amsterdam, Cancer Treatment and Quality 
of Life, Amsterdam, The Netherlands

3	 AGEM Amsterdam Gastroenterology, Endocrinology 
and Metabolism, Amsterdam, The Netherlands

4	 Independent Consultant in Computational Intelligence, 
Amsterdam, The Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s00595-023-02662-4&domain=pdf
http://orcid.org/0000-0002-2282-3783


1210	 Surgery Today (2023) 53:1209–1215

1 3

Table 1 summarizes the outcomes of the largest, most 
recent articles on postoperative complication prediction with 
ML in major abdominal surgery. The shift to clinical imple-
mentation will depend on five main improvement categories: 
technology, policy, medical and economic impact, transpar-
ency, and reporting [4, 16, 17].

Selection of a model

Model selection in conventional statistics is well defined due 
to strict requirements, as opposed to ML models, in which it 
typically depends on several factors. Even experienced data 
scientists have difficulty selecting an optimal model [18].

Model selection in ML, which involves determining the 
highest overoptimism-corrected performance in the metric 
and output of choice, is performed post hoc by exploring 
different models. Factors of consideration are the quality 
and size of the data, questions that must be answered, time 
available for running the model, and type of desired output. 
Depending on the hypothesis, different metrics can be used 
to measure this performance. For example, in the prediction 
of events with a relatively low incidence (e.g. anastomotic 
leakages after hemicolectomy), imbalanced data may occur. 
In such cases, using a single metric to score outcome such 
as accuracy is less effective, therefore, precision, recall, and 
the f1-score are more explanatory. Although it is advisable to 
use multiple metrics to measure performance more broadly, 
most studies published thus far on the use of AI for pre-
dicting complications did not adhere to this principle. The 
majority of such studies focused only on sensitivity, specific-
ity, and the area under the receiver operating characteristic 
curve (AUROC) [19, 20].

The complexity of ML models may lead to challenges in 
understanding the involved mechanisms [21]. Many argue 
that it is highly inadvisable to rely on outcomes of ‘black-
box’ systems in the decision-making process, as this can 
ignore the moral responsibilities of medical professionals. 
However, at the same time, we regularly prescribe medica-
tions, such as acetaminophen, without fully understanding 
the mechanism [22]. It is argued that, without pursuing the 
‘explainability’ of AI tools, better outcomes for patients can-
not be provided [23–25].

In addition, many claim that carrying out the decision-
making process by a ‘black box’ system carries inherent 
dangers [26–28]. However, the importance of these dan-
gers varies based on the ethical burden of the decisions that 
depend on it, thus suggesting that not knowing what a model 
is based on does not necessarily mean it should be seen as 
a danger [29]. For example, in the prediction of postopera-
tive mortality, model explainability might be of more value 
than the prediction of postoperative delayed gastric empty-
ing after distal gastrectomy. As Aristotle stated over two 
millennia ago, “the ability to verify results by empirical 

means are more important than to explain the etiology of 
these results.” This is particularly important in a field in 
which knowledge of causality is often incomplete, as with 
postoperative sequalae [21].

Proving that a complication can be predicted while having 
the ability to reproduce these results might be more impor-
tant than how this prediction is made. Therefore, a more 
complex and less explanatory model than a transparent, but 
simple model might be acceptable for predicting complica-
tions [30]. However, to maximize the model interpretabil-
ity, one could use either individual conditional expectations 
(ICEs), local interpretable model-agnostic explanations 
(LIMEs), or Shapley additive explanations (SHAPs) [31]. 
These techniques aim to increase the comprehensibility of 
the rationale behind the model’s prediction by visualizing 
the contributing impact of different variables. This offers 
the possibility to approach the mechanisms within black-box 
systems in a way that empowers the clinician to trust the 
results produced by these models.

Training, validating, and testing

The generalizability of an ML model depends on the extent 
and quality of its training, validating, and testing. A very 
complex model for predicting postoperative mortality after 
pancreatic surgery might perform nearly perfectly during 
training but might not be able to properly predict the risk 
prospectively. This phenomenon is called overfitting, and it 
occurs when a model is incapable of capturing the relation-
ship between the input variables and the target output values.

One way to estimate the extent of overfitting is through 
repeated cross-validation or preferentially via bootstrap 
resampling. This is where the entire modelling process is 
repeated in each bootstrap replicate. Quantifying the degree 
of overoptimism in the model’s performance also enables the 
observation of bias-corrected model performance estimates 
[20, 32]. Bootstrap resampling with preferentially 200 to 
1000 bootstrap replications can provide stable and accurate 
overoptimism-corrected performance estimates, which has 
made it the gold standard for internal validation [33, 34]. In 
contrast, when there is a high error rate in both the training 
and testing data due to high bias and low variance, the model 
may be underfit. The balance between underfitting and over-
fitting is called the bias-variance trade-off [35]. This trade-
off shows that when the complexity of a model increases, 
variance also increases, and bias falls.

Infrastructure and transparency

Adapting facility infrastructure to enable safe, real-time 
interaction between the patient file and ML models is both 
time-consuming and expensive [36]. The implementation 
of working models in other facilities can be equally difficult 
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since models are often facility-specific [10, 12, 36, 37]. It 
is therefore of paramount importance that ML models be 
trained and validated within multiple healthcare facilities 
with adequate sample sizes to ensure generalizability as well 
as to prevent substantial harm to the patient [38–40]. In addi-
tion to such efforts, the use of a uniform classification sys-
tem, or international consensus, is a prerequisite for ensuring 
clinical applicability and generalizability [37].

While abundant literature exists on the methodology and 
reporting quality of models using conventional statistics (i.e. 
logistic regression), there is increasing concern about the 
transparency of studies using ML models [17, 41]. Subopti-
mal transparency in model development makes ML models 
hard to interpret, which thus impedes their implementation. 
This is regarded as the main reason for the limited applica-
tion of ML models in daily clinical practice [42, 43]. In 
addition to the Transparent Reporting of a multivariable pre-
diction model for Individual Prognosis or Diagnosis state-
ment (TRIPOD), a protocol for ML-specific prediction was 
recently published to optimize the transparency of prediction 
models [17, 44]. Adherence to this statement will improve 
the interpretability, reproducibility, risk of bias assessment, 
and ultimately its applicability in clinical practice [45]. The 
completeness of this checklist is generally poor, as only 
38.7% of the 152 articles published using ML models for 
prediction adhered to the TRIPOD items [16]. Model speci-
fication alongside model performance, which are both essen-
tial in transparency reports, were also rarely reported [16].

Data and interpretability

The large effect of the data quality on the final results is an 
often-mentioned pitfall in AI implementation and is called 
the Garbage-In-Garbage-Out principle [46]. Inaccurate data 
directly lead to unreliable results. The World Health Organi-
zation stated that proper data quality is multidimensional and 
should be accurate, available, complete, and valid [46–48]. 
This quality should always be accurate for ML purposes. The 
type of data used to feed the model depends on the moment a 
prediction must be made. Xue et al. [49] evaluated the utility 
of pre- and intraoperative data for predicting postoperative 
complications. They concluded that having a combination 
of pre- and intraoperative data resulted in slightly better per-
formance than an analysis with only one of the two types.

Furthermore, a combination of structured and unstruc-
tured data is advisable. With unstructured data in particular, 
such as data from electronic health records and computed 
tomography or magnetic resonance imaging, ML models 
show their superiority [50]. It is therefore advisable to use 
a combination of both data types when possible to help for-
mulate a risk score based on as many contributing static 
and modifiable risk factors as possible, allowing for early 
intervention. When risk scores are created, it is essential N
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that several experts in the field of surgery, nursery, or data 
science discuss the favorable cut-off values together. The 
previously discussed ICEs, LIMEs, and SHAPs can also 
contribute to the interpretability of the model’s output.

Acceptance and ethical considerations

AI has great potential utility for healthcare professionals in 
supporting or augmenting clinical decision-making. Mul-
tiple studies suggest that these models will play a critical 
role in future surgical decision-making [51]. However, even 
when a model has been tested and validated correctly, its 
degree of acceptance by clinicians and patients can greatly 
affect its implementation.

Patients correlate AI with science fiction, drawing a fear 
of machines and computers taking over the making of deci-
sions affecting human beings. The majority of patients thus 
prefer to receive a healthcare provider’s supervision over 
AI [52]. The fear of clinicians being replaced by AI leads 
to mistrust of these models by patients. Similarly, in a study 
on the acceptance of AI amongst clinicians, only 25% of 
radiologists had confidence in the results of diagnoses made 
by AI algorithms [53].

Therefore, medical tools using AI should be used in an 
assistive manner as opposed to being ultimately responsible 
for the main decision-making [54]. The ‘doctor in the loop’ 
is responsible and this responsibility is classified into the 
following: accountability, liability, and culpability [54, 55]. 
To tackle this problem it is important to have proper patient 
education to reassure that the AI systems are not replacing 
the decision-making of the professional and are merely act-
ing in a complementary manner to them.

Before the predictions of ML models can be used in daily 
clinical practice successfully, healthcare providers need 
to achieve trust in these techniques. Surgeons deciding to 
restore colonic continuity after resection of colon cancer 
based on an intraoperative ML model predicting a high risk 
of anastomotic leakage will want to rely on algorithms that 
have been validated at their own institute. A prospective 
simulation study in which the predictive performance of a 
model is tested in addition to the regular local care without 
affecting its course would enable the correct calibration of 
the ML model. A calibration curve shows whether or not 
the predicted chance matches the actual population-based 
chance of developing a postoperative complication. This 
approach would allow surgeons to attain trust in the effec-
tiveness and predictive performance of ML models and use 
them in their clinical practice [56, 57].

The introduction of ML models has led to an unprec-
edented amount of ethical issues, and guidelines regarding 
these ethical considerations are still sparse [58]. Currently 
available frameworks for governance were discussed in a 
recently published review of the literature [59]. This study 

included 21 guidelines for gold-standard societal values, 
such as sustainability, freedom, and fairness. Although 
these guidelines appeared to be insufficient when analyzed 
separately, it was stated that the ideal rules for ethical con-
siderations should harmonize interests, offering benefit to 
clinicians, patients, and hospitals [59]. A governance model 
for the application of ML models in healthcare based on 
the abovementioned concept was developed recently [60]. 
In our opinion, it is of utmost importance to adhere to such 
governance models to ensure acceptance as well as ethical 
and legal appropriateness.

Correct prediction of postoperative complications using 
ML has the potential to dramatically improve the outcome 
of everyday clinical surgical care. However, their implica-
tions for patients should be considered before implementing 
prediction models in clinical practice. For example, predict-
ing anastomotic leakage after colorectal surgery may lead 
to more stomas or earlier discharge when leakage is not 
expected to occur. This could also lead to collateral over- 
and under-treatment. This change in the paradigm of clini-
cal practice must be accepted by all healthcare providers to 
ensure full benefit from these techniques. Therefore, it is 
advisable to obtain solid prospective validation from exter-
nal sources at different centers with adequate sample sizes, 
all while adhering to the transparency and ethical guidelines 
to overcome potential distrust concerning ML among clini-
cians and patients.
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