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Abstract
Ferroptosis, an iron-dependent form of regulated cell death, results in lipid peroxidation of polyunsaturated fatty
acids in the cell membrane, which is catalyzed by iron ions and accumulated to lethal levels. It is mechanistically
distinct from other forms of cell death, such as apoptosis, pyroptosis, and necroptosis, so it may address the
problem of cancer resistance to apoptosis and provide new therapeutic strategies for cancer treatment, which has
been intensively studied over the past few years. Notably, considerable advances have been made in the antitumor
research of natural products due to their multitargets and few side effects. According to research, natural products
can also induce ferroptosis in cancer therapies. In this review we summarize the molecular mechanisms of fer-
roptosis, introduce the key regulatory genes of ferroptosis, and discuss the progress of natural product research in
the field of ferroptosis to provide theoretical guidance for research on natural product-induced ferroptosis in
tumors.
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Introduction
Ferroptosis is a novel form of cell death proposed by Professor
Stockwell in 2012. When ferrous ions promote lipid peroxidation in
a manner similar to the Fenton reaction and accumulate to lethal
levels, they rupture the membrane and cause cell death [1]. It is a
dynamic process in that cells seek a balance between oxidative
systems and ferroptosis defense systems during metabolism. Once
the cellular oxidative activity intensifies or the antioxidant capacity
is suppressed, ferroptosis occurs [2–6] (Figure 1). Tumor cells need
hypermetabolism and high reactive oxygen level to work, but these
are more likely to induce ferroptosis than normal cells. Ferroptosis
activates tumor suppressors, stops cancer progression, and estab-
lishes a natural barrier for the body [7,8]. However, oncogenic
signal-mediated ferroptosis resistance contributes to tumor prolif-
eration, metastasis, and treatment resistance [4,7,9]. Although
tumor cells modulate ferroptosis-associated proteins to compensate
for defense systems and survive temporarily, ferroptosis is a

targetable vulnerability in cancer therapy. Thus, tumor cells face
a dilemma: suppress metabolism and oxidative stress or promote
ferroptosis defense mechanisms.

Targeting ferroptosis may present new therapeutic opportunities
for those who are drug resistant or insensitive to conventional
therapies. Additionally, many studies have suggested that ferrop-
tosis plays an important role in tumor suppression and immunity
[9,10]. The proinflammatory factors produced by ferroptosis induce
the tumor immune response and inhibit tumor growth, which
solves the problem that apoptosis cannot induce a sufficient
immune response because proinflammatory factors are removed
rapidly [11]. Nevertheless, the regulatory mechanism of ferroptosis
is still unknown in many aspects, as it involves amino acid, lipid
metabolism, energy metabolism, redox, and iron homeostasis [10].

This review summarizes the latest views on the mechanisms of
ferroptosis regulation, presents the key factors regulating ferroptosis,
and discusses the progress in natural product research on ferroptosis.
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Features of Ferroptosis
The morphological features of apoptosis are nuclear fragmentation,
cell shrinkage, and apoptotic body formation [12]; necrosis is
morphologically characterized by swelling of the cytoplasm and
organelles [13]; and autophagy results in the formation of classical
autophagic vesicles [13]. In contrast, ferroptosis is mainly
characterized by alterations in mitochondria, including reduced
volume, increased membrane density, reduced or absence of
cristae, and ruptured outer membranes [1]. Biochemically, ferrop-
tosis is characterized by glutathione (GSH) depletion, glutathione
peroxidase 4 (GXP4) inactivation, aggregation of iron ions and lipid
peroxide aggregation [1].

Regulatory Mechanisms of Ferroptosis
Iron metabolism
Ferrous ions play an important role in the ferroptosis regulatory
network, mainly through the Fenton reaction and activation of iron-
containing enzymes, which produce large amounts of lipid
peroxides while supplying energy to cells [14,15]. Thus, iron
chelators can significantly inhibit ferroptosis [16]. Iron metabolism
includes the uptake, export, storage, and utilization of iron. Cells
maintain intracellular iron levels at an appropriate level by

regulating iron metabolism. Dietary uptake and recycling of iron
from senescent erythrocytes by macrophages are the main sources
of iron. Fe3+ binds to serum transferrin (TF) or lactotransferrin
(LTF), which is then recognized by the transferrin receptor (TFRC)
in the cell membrane [16]. Upon TFRC entering endosomes, Fe3+ is
reduced to Fe2+ by six-transmembrane epithelial antigen of prostate
3 (STEAP3); it further passes through solute carrier family 11
member 2 (SLC11A2/DMT1) and is released into the cytoplasmic
labile iron pool (LIP) [17]. Poly(C)-binding protein family proteins
(PCBP) are ferrous ion chaperone proteins that bind with free Fe2+

in the cytoplasm and deliver it to the corresponding proteins
involved in iron utilization, storage, and export. First, Fe2+ is
transferred into mitochondria by mitochondrial transport proteins
(SLC25A28 and SLC25A37) and then participates in various aspects
of metabolic and biochemical processes, including energy metabo-
lism, the synthesis of hemoglobin and iron-sulfur proteins, and
storage in mitochondrial ferritin [18]. Normally, cancer cells utilize
iron through the cysteine desulfurase (NFS1)-iron-sulfur cluster
assembly enzyme (ISCU)-CDGSH iron-sulfur domain-containing
protein 1 and 2 (CISD1/2) axis to inhibit mitochondrial lipid
peroxidation and ferroptosis; when Fe2+ in mitochondria is over-
loaded, it induces enzyme inactivation, impaired iron metabolism

Figure 1. Molecular mechanisms of ferroptosis (A) Canonical ferroptosis antioxidant systems. System xc
– delivers cystine into the cell and then

catalyzes the synthesis of GSH, thereby maintaining the activity of GPX4 to scavenge lipid peroxidation. (B) Other antioxidant systems. The GCH1-
BH4 systems, ESCRT-III membrane repair and FSP1-CoQH2 can also suppress ferroptosis. (C) Iron metabolism. Many proteins regulate iron import,
utilization, storage and export to balance iron level in cells. (D) Lipid peroxidation. PUFAs are synthesized in lipid peroxidation by the catalysis of
ACSL4, LPCAT3, and ALOX.
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and ferroptosis [19–21]. Second, PCBP transfers Fe2+ to ferritin
(FTH1/FTL) stores or exports excess Fe2+ out of cells via the
transporter SLC40A1 (FPN). In addition, prominin 2 (PROM2), a
pentaspan transmembrane glycoprotein, exports ferritin and its
storage iron through exosomes [22]. Theoretically, each step of iron
metabolism provides the possibility for drugs to induce ferroptosis
and combat tumors, and extensive evidence suggests that ferrop-
tosis induced by iron overload inhibits tumor cell growth and
proliferation [23,24]. For instance, β-elemene and cetuximab
upregulate heme oxygenase 1 (HO-1) and transferrin to induce
ferroptosis in KRAS mutant colorectal cancer [25]. Temozolomide
induces ferroptosis in glioblastoma cells via DMT1 [26]. Silencing of
PCBP1 mediates ferroptosis in head and neck cancer [27].

Abnormalities in genes related to iron metabolism usually induce
ferroptosis in tumor cells. Iron responsive element binding protein 2
(IREB2) is one of the major regulators of iron metabolism and
regulates ferroptosis by affecting the expressions of TFRC, ISCU,
FTH1, and FTL [1,28]. Erastin induces ferroptosis in fibrosarcoma
and breast cancer by regulating ferrous ion levels via IREB2 [1,29].
Nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy
recruits FTH to lysosomes for degradation, generating large
amounts of ferrous ions in the labile iron pool [30]. Therefore,
activation of NCOA4 and lysosomal activity elevates the level of
ferrous ions and promotes ferroptosis [31,32]. Additionally,
inhibition of cytosolic glutamate oxaloacetate transaminase 1
(GOT1) enhances ferritinophagy and promotes ferroptosis [33]. In
addition, a study showed that mitochondrial ferritin (FTMT)
inhibits erastin-induced ferroptosis in neuroblastoma cells, suggest-
ing that iron storage proteins play an important role in inhibiting
ferroptosis [34]. Similarly, Nrf2 regulates iron metabolism through
HO-1, and excessive activation of HO-1 catalyzes heme degradation
to Fe2+, which causes noncanonical ferroptosis. However, moder-
ate upregulation of HO-1 may promote its cytoprotective effects by
enhancing antioxidant activity [35,36]. Therefore, targeting iron
metabolism-related proteins is a potential strategy to induce
ferroptosis in tumor cells.

Lipid peroxidation
Nonenzymatic lipid peroxidation
Nonenzymatic lipid peroxidation is a series of chain reactions
driven by intracellular radicals, in which Fe2+ and hydrogen
peroxide (H2O2) produce hydroxyl radicals via the Fenton reaction.
Hydroxyl radicals extract hydrogen from the PUFA at the
phospholipid (PL) sn2 site to form a carbon-centered lipid radical
(L–) and subsequently react with molecular oxygen (O2) to generate
a lipid peroxy radical (LOO–). LOO– can directly or indirectly form
lipid peroxide (LOOH) and a new lipid radical by reacting with the
adjacent PUFA or Fe2+ to trigger another chain reaction. If PLOOH
cannot be neutralized, the iron-catalyzed amplification reaction
leads to an increase in membrane permeability and loss of
membrane integrity, and then ferroptosis occurs in the cell.
Artemisinin increases cellular free iron and lipid peroxidation and
sensitizes cancer cells to ferroptosis [37]. Thus, iron chelators and
lipophilic radical scavengers (RTAs) can be effective in preventing
ferroptosis [10,38].
Enzymatic lipid peroxidation
In enzymatic lipid peroxidation, acyl-CoA synthetase long-chain
family member 4 (ACSL4) and lysophosphatidylcholine acyltrans-
ferase 3 (LPCAT3) are important driving factors. Long-chain PUFAs,

mainly free arachidonic acid (AA) or adrenaline (AdA), are bound
to CoA by ACSL4 to form the derivatives AA-CoA and AdA-CoA,
which are then further processed by LPCAT3 to membrane
phosphatidylethanolamine (AA-PE or AdA-PE). Previous studies
have shown that the deletion of ACSL4 inhibits ferroptosis in many
tumor cells [39]. The peroxidation of PLs, but not FAs, is more
significant for ferroptosis; therefore, ACSL4 is thought to be central
to ferroptosis [40,41]. Arsenic trioxide induces antitumor ferropto-
sis by targeting ACSL4 [42]. In contrast, commonly used ALOX
inhibitors have been reported to have RTA activity, which
challenges the critical role of ALOX in ferroptosis [43]. Shah
et al. [43] suggested that the importance of the enzymatic lipid
peroxidation response for ferroptosis lies in bringing cells to the
critical PLOOH threshold, rather than nonenzymatic lipid peroxida-
tion being the actual driver of ferroptosis [44].

Antioxidant systems
Scavenging of reactive oxygen species (ROS) and lipid peroxidation
via the system xc

−-glutathione (GSH)-glutathione peroxidase 4
(GPX4) axis has long been considered a central component of the
ferroptosis defense mechanism, in which many classical ferroptosis
inducers and inhibitors have been identified (Figure 1A and
Table 1). An increasing number of pathways (mTOR, Nrf2, p53,
etc.) with proteins (Hsp90 and Hsp70) have been reported for the
regulation of system xc

− and GPX4, enriching the regulatory
network of this pathway in ferroptosis [7,45–47].

Several mechanisms independent of GPX4, such as FSP1, CoQ10,
BH4, and the ESCRT-III membrane repair system, have also been
reported to prevent ferroptosis and lipid peroxidation (Figure 1).
Ferroptosis suppressor protein 1 (FSP1) uses NAD(P)H to reduce
CoQ10 to CoQH2, thereby scavenging lipid peroxidation radicals
[48,49]. Unlike FSP1, although dihydrogen phosphate dehydrogen-
ase (DHODH) also neutralizes lipid peroxidation by increasing
CoQH2 synthesis, this process occurs mainly in mitochondria, so
GPX4 and DHODH can collaborate to enhance the inhibition of
mitochondrial lipid peroxidation, but cytoplasmic GPX4 and FSP1
cannot [50,51]. Similarly, GTP cyclohydrolase 1 (GCH1) acts as a
radical-trapping antioxidant by generating BH4 to inhibit ferroptosis
[52–54].

Regulators of Ferroptosis
GPX4
There is no doubt that GPX4 has been the focus of research on
intracellular antioxidant mechanisms since the discovery of
ferroptosis. Unlike most enzyme families, GPX4 is the only enzyme
that can scavenge lipid peroxides in the GPX enzyme family [9].
Similarly, GPX4 is the main enzyme that catalyzes the reduction of
PLOOH in cells [67]. It catalyzes phospholipid hydroperoxides (AA/
AdA-PE-OOH) into the corresponding phosphatidyl alcohols
(PLOH). In addition, GPX4 is a selenoprotein, and selenium
increases GPX4 activity via a selenocysteine residue at U46
[15,62,68,69]. Deficiency of GPX4 or inhibition of GPX4 activity
by binding to the active site leads to the accumulation of lipid
peroxidation, which induces ferroptosis in cells or tissues, and
lipophilic radical scavengers inhibit these processes [63,70–72].
Thus, GPX4 is considered an important inhibitor of ferroptosis, and
ample compounds such as gallic acid, withaferin A, and oridonin
were reported to induce ferroptosis in tumor cells through down-
regulation of GPX4 expression.
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System xc
–

Glutathione is a cofactor for many antioxidant enzymes and is also
responsible for maintaining the activity of GPX4 [73]. System xc

– is
formed by the polymerization of two core proteins, SLC7A11 (xCT)
and SLC3A2 (4F2hc), the former being responsible for the import of
extracellular cystine, while the latter displaces intracellular gluta-
mate [70]. Erastin induces ferroptosis by inactivating GPX4
indirectly through the depletion of GSH [1]. A number of
compounds have been used to target the system xc

–-GSH axis to
promote ferroptosis or enhance sensitivity to ferroptosis and have
received FDA approval, such as sulfasalazine and sorafenib [74].
Furthermore, erianin induces ferroptosis in a variety of tumor cells,
including lung cancer, renal cell carcinoma, and bladder cancer
cells, by inhibiting system xc– and depleting GSH [75–77]. In
conclusion, the system xc

–-GSH pathway is one of the critical
upstream mechanisms for the induction of ferroptosis.

FSP1
The ability of some tumor cells to proliferate without GPX4 has
triggered the exploration of pathways other than GPX4 to prevent
ferroptosis. Overexpression of FSP1 inhibits ferroptosis and is
independent of ACSL4 and PUFA levels [48]. It has been shown that
iFSP1, an inhibitor of FSP1, promotes ferroptosis in GPX4-deficient
tumor cells [49]. In addition, FSP1 inhibits ferroptosis by activating

ESCRT-III-dependent membrane repair [16].

ALOX
Free and esterified polyunsaturated fatty acids, mainly linoleic acid
(LA) and arachidonic acid (AA), are catalyzed by lipoxygenase
(ALOX) to produce various lipid hydroperoxides [78]. Studies have
shown that inhibition or knockdown of lipoxygenase can inhibit
ferroptosis in some cell types [79,60]. Similarly, phosphatidyletha-
nolamine binding protein 1 (PEBP1) promotes ferroptosis by
directing ALOX15 to recognize polyunsaturated fatty acids on the
cell membrane [80]. Although ALOX can sensitize cells to
ferroptosis, it is not essential because of other enzymatic or
nonenzymatic mechanisms of PL peroxidation. Previous studies
suggested that ALOX plays a limited role in ferroptosis because the
expression of ALOX is low in cell lines that are commonly studied
for ferroptosis, and ALOX inhibitors usually have RTA activity
[43,81]. Furthermore, inhibition of ALOX does not prevent
ferroptosis in cells lacking GPX4 [82]. Therefore, the regulation of
ferroptosis by ALOX still needs further in-depth study.

ACSL4
ACSL4 is an enzyme involved in fatty acid metabolism that
promotes ferroptosis by increasing the PUFA content in phospho-
lipids and is therefore considered a specific biomarker and driver of

Table 1. Regulators of ferroptosis

Regulator Impact on ferroptosis Reagent Ref.

Iron metabolism

IREB Regulate the target genes that affect iron homeostasis to balance iron levels shRNA [1]

HO-1 Catalyze degradation of heme to iron Withaferin A
BAY 11–7085

[35,55]

HSPB1 Decrease iron level to inhibit erastin-induced ferroptosis shRNA [56]

NCOA4 Cargo receptor for ferritinophagy, promote degradation of ferritin to iron shRNA [32]

FTH1 Store labile iron shRNA [57]

STEAP3 Regulated by FANCD2, convert iron from Fe3+ to Fe2+ [58]

NFS1 Synthesize iron-sulfur clusters using labile iron shRNA [59]

Lipid metabolism

ACSL4 Catalyze PUFA to phospholipids to promote lipid peroxidation Thiazolidinedione [39,41]

LPCAT3 Insert acyl groups into lysophospholipids shRNA [41]

ALOX Catalyze the conversion of PUFA into lipid peroxidation AA861
PD146176

[60]

SQS Synthesize farnesyl pyrophosphate into squalene, resulting in reduced CoQ10
and failure to scavenge lipid peroxidation

FIN56 [61]

HMGCR Synthesize mevalonate, the source of CoQ10 Statins [61]

Antioxidant system

GPX4 Scavenge lipid peroxidation RSL-3 FIN56
ML162 FINO2

[61–64]

HO-1 Knockdown enhances erastin-induced ferroptosis shRNA [57,65]

Nrf2 Regulate the expression of the antioxidant gene including system xc
– and FTH1 Trigonelline [66]

SLC7A11 Import cystine to synthesize GSH Erastin glutamate
Sulfasalazine

[1]

GCLC Synthesize GSH BSO [62]

FSP1 Reduce CoQ10 to CoQH2 to scavenge lipid peroxidation iFSP1 [49]

GCH1 Synthesize BH4 to scavenge lipid peroxidation Plasmids [54]

DHODH Synthesize CoQH2 to scavenge lipid peroxidation Brequinar [50]
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ferroptosis [74]. It was found that protein kinase C betaII (PKCβII) is
first activated and then phosphorylates ACSL4, promoting ACSL4-
mediated PUFA-PL synthesis and ultimately leading to positive
feedback amplification of ferroptosis [83]. Overexpression of ACSL4
may promote ferroptosis; conversely, deletion of ACSL4 moderates
ferroptosis, suggesting that ACSL4 may be one of the main
mechanisms of ferroptosis [2,84–86].

Nrf2
Nrf2 is a major transcription factor of oxidative stress signaling that
activates a large number of cytoprotective genes involved in
multiple aspects of ferroptosis regulation, such as iron metabolism,
oxidative defense, and redox systems. Nrf2 can reverse sorafenib-
induced ferroptosis and has therefore been identified as an
important defense mechanism for ferroptosis [57]. In recent years,
a large number of Nrf2 target genes have been identified, covering
iron metabolism (SLC40A1, FTH1, HO-1, etc.), GSH metabolism
(SLC7A11, GPX4, GCLM, etc.), and ROS detoxification enzymes
(TXNRD1, AKR1C family, NQO1, etc.) [74], further suggesting that
Nrf2 is a valuable protein in the regulation of ferroptosis. Xiang et al.
[76] found that inactivation of Nrf2 promoted erianin-induced
ferroptosis in bladder cancer. Notably, Nrf2 may play a dual role in
tumor progression, with both deficient and high expression of Nrf2
promoting tumor proliferation. Both nobiletin and tagitinin C
elevates cellular ferrous ion levels via the Nrf2-HO-1 axis, which
promotes ferroptosis in tumor cells [87,88].

Natural Products and Their Application for Ferroptosis
The role of natural products in cancer treatment can be summarized
as follows: (1) natural products can be used for tumors that are
sensitive to ferroptosis [9]; (2) natural products can induce
ferroptosis to reverse drug resistance and enhance immunotherapy
[11,89]; (3) due to their multitarget characteristics and few side
effects, they may induce ferroptosis in tumor cells while exerting
protective effects or less toxicity in normal cells [90,91].

Ferroptosis and natural products in drug resistance
Drug resistance has been a major challenge in the clinical treatment
of cancers, and numerous studies have attempted to overcome it.
Recent findings suggest that ferroptosis is associated with drug
resistance. Using natural compounds to trigger ferroptosis offers
great potential for drug-resistant cancers to enhance chemother-
apeutic efficacy [89]. Mechanistically, mounting evidence suggests
that SLC7A11 is overexpressed in many cancers; in particular,
multiple factors reverse tumor suppression by stabilizing or
upregulating SLC7A11 in sorafenib- and cisplatin-resistant cells
[24,89,92,93]. Similarly, Nrf2 has been found to be heavily
upregulated in drug-resistant cells, since Nrf2 encodes a large
number of antioxidant system proteins [24,36]. In addition,
suppression of GPX4 is an important strategy to overcome the
resistance of cancer to chemotherapy [94]. Therefore, targeting
ferroptosis has emerged as a potential therapy for drug resistance. In
fact, many studies have reported that natural products induce
ferroptosis to overcome drug resistance. Curcumin analog reverses
temozolomide resistance in glioblastoma by downregulating GPX4
[95]. Compound 23 isolated from Jungermannia tetragona over-
comes cisplatin resistance by targeting Prdx I/II and depleting GSH
[96]. Furthermore, dihydroartemisinin increases cellular LIP and
addresses cisplatin resistance in pancreatic ductal adenocarcinoma

[97]. Additionally, artesunate induces ferroptosis in renal cell
carcinoma by inhibiting GPX4, which reverses sunitinib resistance
[98]. Additionally, natural products such as soyauxinium chloride,
epunctanone, and ungeremine were reported to display cytotoxicity
toward drug-resistant tumor cells via ferroptosis [99–101].

Ferroptosis and natural products in immunotherapy
Tumor immunotherapy regulates the immune response and inhibits
tumor growth by activating the body’s immune defense system and
is considered an important therapy for tumors [102,103]. However,
poor immunogenicity, immune checkpoints, and immunosuppres-
sive factors enable tumors to establish their unique immunosup-
pressive microenvironment, which limits the activity of effective
T cells (Teffs) and resists the immune system from recognizing and
attacking tumors [104–107]. Therefore, the indications for tumor
immunotherapy are limited. First, the lack of tumor-specific
antigens in cold (poorly immunogenic) tumors results in the
inability of T cells to recognize tumor cells [108,109]. Second,
although Teffs bind to tumor cells, tumor cells can avoid attack via
immune checkpoints (ICTs), such as PD-L1 and CTLA4 [110–112].
In addition, tumor cells secrete specific factors to induce mast cells,
which induce immunosuppression and promote tumor growth
[113–115]. Therefore, effective strategies to expand their indica-
tions and improve their efficiency have become the key element for
cancer immunotherapy research [11,112].

Natural products reshape the immunosuppressive tumor micro-
environment and show great potential in enhancing the therapeutic
efficacy of cancer immunotherapy. For example, capsaicin, ginseno-
side Rg3, and resveratrol induce DAMP exposure to enhance the
immunogenic cell death (ICD) effect [116–118]. As adjuvants for
vaccines, numerous reports have shown that saponins, polysac-
charides and flavonoids from natural products can effectively
enhance immunostimulatory effects and reverse immunosuppres-
sion [119–123]. In addition, berberine, baicalin, and cordycepin
downregulate PD-L1 expression in tumor cells [124–126], and
andrographolide, diosgenin, and geranium promote the efficiency
of anti-PD-1/PD-L1 antibodies [127,128].

As a novel mode of cell death mentioned in recent years, the
relationship between ferroptosis and tumor immunity has attracted
the attention of researchers. It was found that cancer cells undergoing
ferroptosis could activate the tumor microenvironment through the
release of DAMPs and create positive feedback of the immune
response [129–131]. Similarly, tumor-bearing mice treated with an
anti-PD-L1 antibody show ferroptosis characteristics, such as an
increase in lipid peroxidation [132]. The lipid peroxidation produced
by ferroptosis could serve as a signal that promotes dendritic cell
recognition of tumor antigens and improves tumor immunotherapy.
After the combination of immunotherapy and ferroptosis inducers,
infiltration of cytotoxic T lymphocytes was significantly increased
[133]. In addition, immunotherapy may increase sensitivity to
ferroptosis; thus, coadministration of ferroptosis inducers may
generate a strong immune response and promote ferroptosis against
tumors [131]. Lou et al. [134] showed that fascaplysin induced
ferroptosis while upregulating PD-L1 expression, and increased
sensitivity to anti-PD-L1 immunotherapy in non-small cell lung
cancer. Although there are fewer reports that natural products
activate tumor immune responses via ferroptosis, it is foreseeable
that this will be a potential strategy for tumor suppression. Similarly,
the cytotoxicity of ferroptosis on immunecells should be noted.
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Advances in natural products in the field of ferroptosis
Artemisinin and its derivatives
In addition to their antimalarial effects, the antitumor effects of
artemisinin and its derivatives have been extensively studied.
Artemisinin, dihydroartemisinin, and artesunate, on the one hand,
increase ferrous ion level through lysosomal degradation of ferritin
or upregulation of NCOA4 and DMT1 levels; on the other hand, they
induce ferroptosis through downregulation of GSH and GPX4 levels
[37,135,136] (Figure 2). According to previous research, artemisi-
nin and its derivatives regulate 20 genes related to iron metabolism,
including SLC40A1, IREB, FTMT, and ISCU, to induce ROS
production [137]. In addition, inhibition of the Nrf2-ARE pathway
allows artesunate to reverse cisplatin resistance through ferroptosis,
and coadministration of artesunate enhances the sensitivity of
hepatocellular carcinoma cells to sorafenib [66].
Salvia officinalis extract
Tanshinone extracts include tanshinone IIA, dihydrotanshinone I,
and cryptotanshinone. In normal cells, tanshinone IIA inhibits
hepatocyte ferroptosis in an atherosclerosis model by upregulating
the expressions of GPX4, SLC7A11, and FTH1 [138] (Figure 2); in
hippocampal cells, it inhibits ferroptosis by upregulating HO-1
expression to lower LPO and Fe2+ levels [139]. In contrast, in gastric
cancer cells, tanshinone IIA mediates the decrease in GSH and
increase in ROS triggered by the downregulation of SLC7A11 level
[91]. In addition, cryptotanshinone induces ferroptosis in lung
cancer cells through HSPB1 and GPX4 upregulation and IREB2
downregulation [140]. Dihydroisotanshinone I reduces GPX activity
or inhibits GPX4 protein expression, increasing malondialdehyde
(MDA) and lipid ROS levels [141,142].
Piperlongumine
Ferroptosis induced by piperlongumine mainly depends on the
inactivation of antioxidant mechanisms and the accumulation of
ROS in cells (Figure 2). In a variety of cancer cell lines, including
gastric, pancreatic, and colorectal cancers, piperlongumine inhibits

GPX4 activity mainly by reducing GSH, leading to ROS accumula-
tion [143]. It also significantly enhances the anticancer effect of
ferroptosis by combining sulfasalazine, oxaliplatin, and APR-246
[144]. In contrast to cancer cells, activation of HO-1 by piperlongu-
mine inhibits ferroptosis in normal cells; in vivo studies also
showed that piperlongumine attenuates weight loss induced by
oxaliplatin treatment [145,146].
Others
In addition to the natural products mentioned above, a large
number of compounds have been reported in antitumor studies via
ferroptosis mechanisms, encompassing the modulation of iron
metabolism, lipid peroxidation, and antioxidant systems. Hence,
the main mechanism by which other natural products induce
ferroptosis is summarized in Figure 2 and Table 2.

Conclusions and Perspectives
Targeting ferroptosis to antitumor effects will be a hot topic of
scientific research, although the mechanism is not fully elucidated
and needs further study. However, it is certainly the result of an
imbalance between the intracellular redox protective system and
iron metabolism. The sensitivity to ferroptosis varies among
tumors, and therefore, an in-depth investigation of its different
regulatory mechanisms would be instructive for the clinical
application of targeting ferroptosis in tumors. Currently, the key
regulator GPX4 has become an important therapeutic target for the
development of anticancer drugs; as more research is conducted,
more factors involved in ferroptosis will be identified, which will
provide more targets and treatment options for clinical application.

At the same time, ferroptosis is a double-edged sword; on one
hand, we use it to eliminate tumor cells, but on the other hand, we
should also be concerned about the damage that ferroptosis may
cause to normal cells. For example, GPX4 inhibits TMEM16A-
mediated hepatic ischemia/reperfusion injury [159]. Additionally,
DHODH inhibits ferroptosis in spinal cord injury [51]; similarly,

Figure 2. Functions of natural products in inducing ferroptosis
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ferroptosis exacerbates most cardiovascular diseases [160]. Nota-
bly, trastuzumab induces severe cardiotoxicity while treating breast
cancer via ferroptotic cell death; however, SGLT2 inhibitors
eliminate cardiotoxicity and show potent antitumor activity [161].
Targets such as SGLT2 deserve our attention because they can
protect normal cells and kill tumor cells simultaneously.

Common clinical drugs have disadvantages such as poor
selectivity and toxic side effects, which severely limit their efficacy.
Natural products have multipathway and multitarget anticancer
properties. How natural products regulate and interfere with
ferroptosis for cancer treatment still needs further in-depth
research. For example, as mentioned above, tanshinone IIA and
piperlongumine can induce ferroptosis in tumor cells while also
promoting antioxidation and inhibiting ferroptosis in normal cells
[90,145,146]. Is there a threshold of intracellular Fe2+ and lipid
peroxidation levels that would allow tumor cells to undergo
ferroptosis while leaving normal cells unaffected? Or whether there
is a new target that induces ferroptosis in tumor cells only, once the
mechanism is clarified, this will provide great diagnostic and
therapeutic value to the clinic. In addition, the link between
ferroptosis and other cell death modalities remains to be explored,
and if the intrinsic link is clarified, this could provide a theoretical
basis for the clinical combination of drugs. As the mechanism of
natural products against tumors through ferroptosis will be further
investigated, it may lead to new strategies for ferroptosis-based
cancer therapy.
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