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Abstract
Primary cilia are formed in nearly all growth-arrested cells and are essential for mammalian development and tissue
homeostasis. Defects in primary cilia result in a range of disorders in humans, named ciliopathies. The spatio-
temporal localization of RABIN8 on the pericentrosome is an early step in ciliogenesis. Here, we show that CEN-
TLEIN depletion causes the persistent accumulation of RABIN8 on the pericentrosome and primary cilium loss in
hTERT-immortalized retinal pigment epithelial cells and murine embryonic fibroblasts. CENTLEIN interacts with
RABIN8 directly. A stretch of a 31-amino acid sequence located in the 200‒230 region of the RABIN8 GEF domain is
responsible for its physical interaction with CENTLEIN, while expression of the full-length but not the internal
deletion lacking the RABIN8-binding site of CENTLEIN largely rescues the ciliogenesis defect provoked by CEN-
TLEIN depletion. Expression of activated RAB8A partially reverses cilium loss in CENTLEIN-null RPE1 cells, so the
functional importance of the CENTLEIN-RABIN8 interaction is defined.
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Introduction
The primary cilium (PC) present at the surface of most vertebrate
cells [1,2] is composed of a microtubule-based axoneme extending
from the mother centriole [3–5] and surrounded by the ciliary
membrane studded with ciliary receptors [6–9] and ion channels
[5]. Because of its sophisticated features and wide distribution, the
primary cilium thus acts as a signaling hub in diverse biological
processes of tissue development. Defects in the formation or
function of cilia lead to ciliopathies representing a range of complex
human syndromes [10–13]. PC formation takes place in quiescent
cells, wherein a fully mature centriole can dock with the cell
membrane to become a basal body that anchors a cilium [14–16].
RAB11-dependent RABIN8 trafficking toward the centrosome is

thought to be the earliest step in ciliogenesis [17–19]. RAB8 GTPase,
activated by the guanine nucleotide exchange factor (GEF) RABIN8, is
the first membrane trafficking regulator shown to localize to the
primary cilium and function in primary cilium formation [20–23] and
cholesterol trafficking to the plasma membrane [24]. During ciliogen-
esis, RAB11 traffics RABIN8 to the centrosome to activate RAB8 for its
required function in ciliary growth [21,22,25]. This regulation of
RABIN8 centrosomal trafficking is related to both Akt [26] and NDR2
kinases [27]. RABIN8 phosphorylated by Akt affects RAB8-dependent

cilia assembly, while NDR2-mediated phosphorylation of RABIN8 is
essential for ciliogenesis in PRE1 cells [27]. Although the list of ciliary
proteins is growing, the precise composition and regulation of
ciliogenesis still remain incompletely characterized [5].
In the present study, we report that CENTLEIN is required for

primary cilium formation. CENTLEIN was previously identified as a
microtubule-associated protein (MAP), and its overexpression
protects microtubules (MTs) from cold- or nocodazole-induced
depolymerisation [28]. More importantly, CENTLEIN acts as a
molecular linker. In somatic cells, CENTLEIN was characterized as
a centriolar protein mediating the interaction between C-Nap1 and
CEP68 to maintain centrosome cohesion [29]. In mouse male germ
cells, CENTLEIN mediates the interaction between SUN5 and
PMFBP1 to maintain the integrity of the sperm head-to-tail coupling
apparatus (HTCA). Inactivation of CENTLEIN in mice leads to
sperm decapitation and male sterility [30]. This study reveals a
novel role of CENTLEIN in ciliogenesis and presents its functional
importance attributed to its direct interaction with RABIN8.

Materials and Methods
Plasmid construction
Full-length CENTLEN obtained from HeLa cDNA was cloned into
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the vector pCMV-MYC. The truncated mutants of CENTLEN were
cloned into the vector pCMV-MYC. Full-length RABIN8 was a gift
from Johan Peranen (University of Helsinki, Helsinki, Finland) and
was cloned into the pEGFP-C1 vector. Full-length and truncated
mutants of RABIN8 were cloned into the vector pGEX-4T-3. pEGFP-
RAB8A and RAB11 were purchased from Addgene (Watertown,
USA). CCDC11 was a gift from Li Wei (Guangzhou Women and
Children’s Medical Center, Guangzhou, China). SEC15, MCM7,
CEP164, CP110, EB1, TFT20, DNM2, KIFC3 and OCRL were cloned
into the vector pEGFP-C1 and obtained from HeLa cDNA.

Antibodies
Mouse monoclonal antibody (clone 11A4) against the human N-
terminal regions of CENTLEIN [amino acid (aa) residues 89–437]
and rat monoclonal antibody (clone 9F8) against the human and
mouse CENTLEIN (aa 1–280) mixture were generated by Absea
Biotechnology Ltd. (Beijing, China). Mouse anti-MYC antibody
(M192-3; MBL International, Woburn, USA), rabbit anti-GFP
antibody (50430-2-AP; Proteintech, Chicago, USA), mouse anti-
GST antibody (M20007L; Abmart, Shanghai, China), mouse anti-
GAPDH antibody (AC033; ABclonal, Wuhan, China) were used at a
1:5000 dilution for western blot analysis. Mouse anti-γ-tubulin
(1:1000; TU-30; sc51715; Santa Cruz, Santa Cruz, USA) was used for
immunoprecipitation (IF). Rabbit anti-γ-tubulin mAb (1:1000;
R26790) was obtained from ZEN-Bio (Chengdu, China); mouse
anti-acetylated tubulin mAb (1:1000; Clone 6-11B-1) was obtained
from Sigma (St Louis, USA); CEP164 (1:1000; 22227-1-AP) was
obtained from Proteintech; mouse anti-PAX6 (1:500) and rabbit
anti-SOX2 (1:1000) antibodies were provided by Jianwei Jiao
(Institute of Zoology, Chinese Academy of Sciences, Beijing, China).
The secondary antibodies were goat anti-mouse IgG (1:5000; ZB-
2305; Zhong Shan Jin Qiao, Beijing, China), goat anti-rabbit IgG
(1:5000; ZB-2301; Zhong Shan Jin Qiao), Alexa Fluor 594 goat anti-
rat IgG (1:1500; A11007; Invitrogen, Carlsbad, USA), and Alexa
Fluor 488 goat anti-mouse IgG (1:1500; A11006; Invitrogen).

Cell culture and transfection
hTERT RPE-1 cells (CRL-4000; ATCC, Manassas, USA) were
cultured in DMEM/F12 (1:1; HyClone, Logan, USA) supplemented
with 10% fetal bovine serum (FBS; 10270106; Gibco, Carlsbad,
USA), 0.01 mg/mL hygromycin B and 1% antibiotics/antimycotics
at 37°C with 5% CO2. HEK293T cells (CRL-3216; ATCC) were
cultured in DMEM (HyClone) supplemented with 10% FBS and 1%
antibiotics/antimycotics with 5% CO2 at 37°C. To induce primary
cilium formation in RPE-1 and MEF cells, the growth medium was
replaced by serum-free medium for 48 h. Lipofectamine 2000
reagent (Invitrogen) was used for HEK293T cell transfection. Cells
were analysed at 24 h after transfection.

Animals
The Centlein‒/‒mice were generated as previously reported [30]. All
animal experiments were performed according to the approved
protocols from the Institutional Animal Care and Use Committee
(IACUC) of the Institute of Zoology, Chinese Academy of Sciences,
China (IOZ20170079).

Isolation and culture of mouse embryonic fibroblasts
(MEFs)
MEFs were isolated from mouse embryos at 12.5 days post coitum

and cultured in DMEM (HyClone) supplemented with 10% FBS,
20 mM glutamine, and 1% antibiotics/antimycotics at 37°C with
5% CO2.

siRNA and CRISPR/Cas9 experiments
For RNA-mediated interference, cells were transfected using
Lipofectamine RNAiMAX (Invitrogen) according to the manufac-
turer’s protocol and harvested at 72 h post transfection. The siRNA
sequences of CENTLEIN are 5′-GAGCTGAAGTACACGCAA-3′ and
5′-GTTGAAGTATCACAGAGTA-3′. The siRNA sequence of negative
control is 5′-TTCTCCGAACGTGTCACGT-3′. The CENTLEIN RPE1
cells were generated by applying the CRISPR-Cas9 system using the
pCAG-SpCas9-AeGFP plasmid. The U6 promoter and the guiding
sequence were added to the single-guide RNA (sgRNA) 5′-CCGGGA
GCTGATAAAGAATTTGTA-3′ and 5′-CCGGTGAGATCTGGGTTTGT
AACC-3′ on the pUC19-U6-sgRNA plasmid. Then, they were
cotransfected using Lipofectamine 3000 (Invitrogen). Transfected
RPE1 cells were sorted with the BD FACS Aria Fusion Cell Sorter
(BD Biosciences, Franklin Lakes, USA) with GFP tunnel at 48 h post
transfection, and single cells were seeded in a 96-well plate.

Immunoprecipitation
Transfected HEK293T cells were lysed in ice-cold ELB buffer
[50 mM HEPES (pH 7.4), containing 250 mM NaCl, 0.1% NP-40,
1 mM phenylmethanesulfonylfluoride (PMSF; P7626; Sigma), and
complete EDTA-free protease inhibitor cocktail (04693132001;
Roche, Basel, Switzerland)], and then centrifuged at 12,000 g for
10 min. The supernatant was precleared by incubation with 50 μL of
protein G-Sepharose (CW0012A; Cowin Biotech, Taizhou, China) at
4°C for 3 h. Then, 2 μg antibody was added to the supernatant and
incubated at 4°C for an additional 3 h. After that, 20 μL Dynabeads-
protein-G (10004D; Invitrogen) were added into the supernatant
and incubated at 4°C overnight. After six times wash with lysis
buffer, the immunoprecipitates were heated at 99°C for 10 min with
SDS loading buffer and subjected to western blot analysis.

Western blot analysis
Proteins obtained from lysates or immunoprecipitants were
separated by SDS-PAGE and transferred to polyvinylidene difluoride
(PVDF) membranes (IPVH00010; Millipore, Billerica, USA). The
membranes were blocked in 5% nonfat milk (diluted in TBS-T:
10 mM Tris-HCl pH 7.4, 150 mM NaCl, and 0.1% Tween-20) at
room temperature for 1 h and incubated with primary and
secondary antibodies. Finally, ECL prime western blotting detection
reagent (RPN 2232; GE Healthcare-Life Sciences, Marlborough,
USA) was used for membrane development. A Tanon 4100 imaging
system (Shanghai, China) was used for image exposure with GelCap
5.6 software (Tanon, Shanghai, China).

In vitro binding assays
GST and GST fusion proteins were expressed in E. coli strain BL21,
and purified by affinity chromatography with glutathione Sepharose
4B (17-0757-01; GE Healthcare) and then crosslinked to Sepharose
beads. Lysates of HEK293T cells that had been transiently
transfected with MYC-CENTLEIN in ELB were incubated with
GST or GST fusion proteins (1 mg) bound to the beads (20 mg)
overnight at 4°C. After four times wash with ELB buffer, proteins
were extracted from the Sepharose beads by boiling in SDS-PAGE
sample buffer and were then analyzed by western blot analysis.
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Immunofluorescence, immunofluorescence on tissue
sections and image analysis
For immunofluorescence, cold methanol or 4% paraformaldehyde
(PFA) was used for fixation of cells on cover slips for 8 min or
10 min at room temperature (RT), respectively. Then, cells were
treated with 0.2% Triton X-100 for 5 min, rinsed with PBS three
times, and blocked with 5% bovine serum albumin (BSA; AP0027;
Amresco, Washington, USA) for 40 min. The primary antibody was
added to the cover slips and incubated at 4°C overnight, followed
by incubation with secondary antibody. The nuclei were stained
with DAPI (D3571; Life Technologies, Carlsbad, USA). E10.5 mouse
embryos were dissected and washed with PBS. Tissue samples were
fixed with 4% paraformaldehyde for 20 min and then exchanged
with 15% sucrose for 3 h and 30% sucrose overnight at 4°C. Tissue-
Tek O.C.T. Compound (4583; Sakura, Oakland, USA) was used to
embed the tissue samples. The tissue samples were subsequently
stored at ‒80°C. Sections of 10 μm were made using a Leica 1950
cryostat (Leica, Wetzlar, Germany) and stored at ‒80°C. The
sections were recovered at RT, rinsed with PBS, permeabilized in
0.2% Triton X-100 for 6 min, and washed with PBS for 5 min. Then,
5% BSA was used to block the prepared sections for 40 min at RT,
and the sections were incubated with primary antibody overnight at
4°C. The sections were washed 3 times for 10 min with PBS and
subsequently incubated with secondary antibodies (1:1500) for 1 h
at RT. DNA was stained with DAPI (D3571; Life Technologies) for
10 min. The IF images were captured using an SP8 microscope
equipped with a 63× oil immersion objective. The imaging
software of SP8 microscopes is Leica Application Suite X (LASX)
3.0. IMARIS 9.8.2 was used for exporting images and further
analysis.

Statistical analysis
As previously reported [30], the statistical significance of the
differences between the mean values of the different groups was
measured by Student’s t test with paired, two-tailed distributions.
Statistical analysis was performed by using the GraphPad Prism 7
and Microsoft Excel 2010 software. The differences were considered
statistically significant when P<0.05.

Results
CENTLEIN depletion impairs primary cilium formation
In the course of characterization of CENTLEIN, we observed that
siRNA-mediated CENTLEIN depletion impaired ciliation in RPE1
cells (Figure 1A,B). To verify this finding, we used CRISPR/Cas9-
mediated gene editing in RPE1 cells to ablate CENTLEIN. We
isolated clones with frame-shift mutations in exon 2 of CENTLEIN
(Figure 1D), and the cell line was devoid of CENTLEIN protein
(Figure 1E,F). To rule out off-target effects, we showed that the
expression of GFP-tagged CENTLEIN in these cells largely rescued
the ciliogenesis defect (Figure 1I). CENTLEIN-sufficient RPE1 cells
displayed high levels of ciliogenesis upon serum withdrawal, with
67.46%±1.316% of cells carrying primary cilia, but ciliation was
reduced by 47% in CENTLEIN-deficient cells (Figure 1G,H), which
was consistent with our previous observation (Figure 1B,C).
To further evaluate the effect of CENTLEIN on primary cilia,

MEFs were isolated from wild-type and Centlein-null embryos at
E12.5 [30]. Stained with anti-acetylated α-tubulin, Centlein‒/‒ MEFs
displayed a significantly reduced number of ciliated cells compared
to Centlein+/+ MEFs (Figure 2). We thus conclude that CENTLEIN

is required for primary cilium formation.

CENTLEIN interacts with KIFC3 and RABIN8
To gain an insight into the molecular mechanism underlying the
ciliogenesis defect caused by CENTLEIN depletion, 13 centrosome-
and/or cilium-related proteins were selected as the first batch of
proteins screened for their interaction with CENTLEIN. To this end,
we cotransfected MYC-tagged CENTLEIN and a GFP-tagged plasmid
encoding a cilium or centrosome protein into HEK293T cells and
then used an anti-MYC antibody to blot anti-GFP immunoprecipi-
tate. As shown in Figure 3A, only KIFC3 and RABIN8 were present
in the MYC-CENTLEIN immunoprecipitate.
RABIN8 (also known as Rab3ip), the guanine nucleotide

exchange factor for RAB8, is delivered to the centrosome on
vesicles to activate RAB8 to promote ciliary membrane assembly
[3,18,20,31]. We therefore confirmed the CENTLEIN-RABIN8
interaction by reciprocal coimmunoprecipitation assays. MYC-
CENTLEIN was specifically coimmunoprecipitated with GFP-
RABIN8 (Figure 3B), and in a reverse direction, RABIN8 could
readily be detected in the MYC-CENTLEIN immunoprecipitate
(Figure 3C). The CENTLEIN-KIFC3 interaction was also verified
by reciprocal immunoprecipitation/blotting experiments (Figure
3D,E). Follow-up GST pull-down experiments were carried out.
GST-RABIN8 and GST proteins were incubated with lysates from
HEK293 cells expressing MYC-CENTLEIN and immobilized on
glutathione beads. CENTLEIN was pulled down by GST-RABIN8
(Figure 4A) but not by GST (Figure 4A, right), indicating that
CENTLEIN interacts with RABIN8 directly.
We next performed domain-mapping studies to identify the

region(s) of CENTLEIN responsible for its interaction with
RABIN8, and vice versa. We transfected HEK293T cells with
MYC-tagged deletion constructs of CENTLEIN, performed anti-
MYC immunoprecipitations (Figure 4B), and defined the RABIN8-
binding region between residues 916 and 952 (Figure 4C,D and
Supplementary Figure S1B). Deletion analysis of RABIN8 revealed
that aa 200–230 located in the RABIN8 GEF domain was crucial for
RABIN8 binding with CENTLEIN (Figure 4E,F and Supplementary
Figure S1A) because the fusion proteins deleted of this sequence
did not bind with CENTLEIN (Figure 4A), whereas all proteins
containing this sequence could bind with CENTLEIN (Figure 4E).
Altogether, these data indicate that the interaction between
CENTLEIN and RABIN8 is mediated by fewer than 3-dozen amino
acids of each protein.

CENTLEIN depletion causes the persistent accumulation
of RABIN8 on the pericentrosome
An early step in ciliogenesis is RABIN8 trafficking to the centrosome
in a RAB11-dependent manner [17]. Upon serum withdrawal, GFP-
RABIN8 rapidly traffics to the centrosome and transiently accumu-
lates on the pericentrosome within 0.5 h (Figure 5A; 0.5 h). Within
6 h of serum starvation, the cells with pericentrosomal localization
of GFP-RABIN8 accumulated [17,27] (Figure 5A; 2‒6 h). As the
number of ciliated cells stained with acetylated tubulin (a marker
for primary cilia) was gradually increased, the pericentrosomal
localization of GFP-RABIN8 dispersed diffusely throughout the
cytoplasm (Figure 5A).
To determine the significance of the CENTLEIN-RABIN8 interac-

tion in vivo, CENTLEIN-deficient and CENTLEIN-sufficient RPE1
cells stably expressing GFP-RABIN8 were examined 12 h after
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Figure 1. Knockdown and knockout of CENTLEIN in hTERT RPE1 cells (A) Western blot analysis of negative control and CENTLEIN knockdown.
RPE1 cells were transfected with negative control or CENTLEIN siRNAs (30 nM) and cultured for 72 h. Cell lysates were analysed by
immunoblotting with 11A4. (B) Effect of CENTLEIN depletion on ciliogenesis. RPE1 cells transfected with siRNAs (30 nM) were cultured for 48 h and
serum-starved for 48 h. Cells were stained for γ-tubulin (green), Ac-tubulin (red) and DAPI (blue). Scale bar: 10 μm. Insets show magnifications of
the boxed areas. Scale bar: 4 μm. (C) Quantification of siNC (59.460%±1.728%) and siCENTLEIN (32.390%±1.915%) ciliated cells. n=3;>200 cells
per experiment; **P<0.01. (D) Schematic represents the designed target site; the sequence peak map displays a 29 bp deletion in exon 2. (E)
Western blot analysis of CENTLEIN+/+ and CENTLEIN‒/‒ cell line lysates using 11A4. (F) Cells were costained with antibodies against CENTLEIN
(red), γ-tubulin (green) and DAPI (blue). The insets show enlarged views of centrosomes. Scale bar: 3 μm; 0.5 μm (insets). (G,H) Effect of CENTLEIN
knockout on ciliogenesis. (G) Quantification of ciliated cells in the CENTLEIN+/+ (67.460%±1.316%) and CENTLEIN‒/‒ (20.490%±0.914%) groups.
n=3;>200 cells per experiment; ***P<0.001. (H) CENTLEIN+/+ and CENTLEIN‒/‒ cell lines were serum-starved for 48 h. Cells were stained for Ac-
tubulin (red) and DAPI (blue). Scale bar: 15 μm. (I) Quantification of CENTELIN+/+ and CENTLEIN‒/‒ ciliated cells transfected with GFP-vector
(62.470%±1.529%), GFP-vector (24.000%±1.329%) and GFP-CENTLEIN (54.920%±1.850%), n=3; >200 cells per experiment; *P<0.05,
***P<0.001.
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serum deprivation. At that time point, GFP-RABIN8 in CENTLEIN-
sufficient cells was dispersed diffusely throughout the cytoplasm in
74% of cells, but GFP-RABIN8 in CENTLEIN-deficient cells was
largely retained on pericentrosomal vesicles (Figure 5A,B; 12 h).
This aberrant accumulation suggests that CENTLEIN is required for
the spatiotemporal localization of RABIN8 on the pericentrosome.

Reciprocal binding sites of CENTLEIN and RABIN8 define
their ciliary function
To establish the functional importance of the RABIN8-binding
region within CENTLEIN, we performed rescue experiments.
Expression of GFP-tagged CENTLEIN (WT), but not the internal
deletion CENTLEIN (Δ916‒952) in CENTLEIN-null cells, largely
rescued the ciliogenesis defect (GFP-CENTLEIN, 53.77%±1.178%;
GFP-Δ916‒952, 28.71%±1.417%) (Figure 5C).
Given the RABIN8 binding site for CENTLEIN located in the GEF

domain whose activity towards RAB8 is essential for ciliogenesis
[17,22,31,32], we transfected CENTLEIN-null cells with GFP-tagged
RAB8A (WT), its constitutively active RAB8A (Q67L) and domi-
nant-negative RAB8A (T22N) mutant. Both RAB8A (Q67L) and
RAB8A (T22N) are often used to perturb the GTP/GDP cycle of
small G proteins. The T22N mutation maintains the protein in the
GDP-bound state and binds guanine exchange factors to inhibit
their activity on native substrates, whereas the Q67L mutation
reduces GTP hydrolysis and keeps the protein in the GTP-bound

state. As shown in Figure 5D, 42% of RAB8Q67L-expressing
CENTLEIN-null cells developed cilia, comparable to ciliation levels
observed in CENTLEIN-null cells expressing either RAB8A (WT) or
Rab8T22N (wild type, 23.7%±0.89%; T22N, 21.5%±1.2%. Partial
reversion of cilium loss in CENTLEIN-null cells by Rab8Q67L
indicates that the activated RAB8A counteracts the CENTLEIN-null
effect on ciliogenesis. Taken together, the functional significance of
the CENTLEIN-RABIN8 interaction is attributed to their binding
sites.

Ciliary density in the ventral neural tube is unaltered
upon CENTLEIN depletion
Finally, the effect of CENTLEIN depletion on ciliogenesis in the
ventral neural tube of mouse embryos was assessed. Labelled with
the cilia-specific ARL13B antibody, the number of cilia within the
known volume of the ventral neural tube was determined by using
3D image stacks from confocal images [33]. Cilia density in the
ventral neural tubes of E10.5 Centlein‒/‒ embryos was indistin-
guishable from that in their Centlein+/+ littermates (Figure 6A,B).
In addition, the expression of Pax6 (Supplementary Figure S2A), a
dorsal marker and SOX2 (Supplementary Figure S2B) representing
the status of neural progenitors [34] was also unaffected in the
Centlein‒/‒ neural tube, suggesting that the sonic hedgehog (shh)
pathway is not impaired. CENTLEIN is indispensable for primary
cilia formation in the ventral neural tube.

Figure 2. The influence of CENTLEIN depletion on cilia in mice The MEFs of Centlein+/+ and Centlein‒/‒ were serum-starved for 48 h. (A) Cells
were stained for Ac-tubulin (red) and DAPI (blue). Scale bar: 10 μm. (B) Quantification of Centlein+/+ (42.880%±2.064%) and Centlein‒/‒ (30.25%±
1.72%) ciliated MEFs. n=3; >200 cells per experiment; **P<0.001.
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Discussion
In the present study we reveal a novel role of CENTLEIN in primary
cilium formation in both RPE-1 cells and MEFs but not in the ventral
neural tube of mouse embryos. Patterning of the embryonic neural

tube requires primary cilia, on which several signaling pathways,
especially Shh, depend. During the development of the nervous
system, Shh activity is crucial to control the proliferation and dorso-
ventral patterning of the neural tube [35]. The Shh signaling

Figure 3. CENTLEIN interacts with RABIN8 and KIFC3 (A) A candidate-based approach used for the identification of CENTLEIN binding proteins.
HEK293T cells were transfected with MYC-CENTLEIN and one of the GFP-tagged plasmids, including the empty vector, GFP-RABIN8, GFP-RAB11,
GFP-SEC15, GFP-RAB8A, GFP-MCM7, GFP-CCDC11, GFP-CEP164, GFP-CP110, GFP-EB1, GFP-IFT20, GFP-DNM2, GFP-KIFC3 and GFP-OCRL for 48 h,
immunoprecipitated (IP) with anti-GFP antibody and immunoblotted with MYC and GFP antibodies. (B,C) CENTLEIN could bind with RABIN8. MYC-
CENTLEIN was cotransfected with either GFP-vector or GFP-RABIN8 into HEK293T cells for 48 h. Anti-GFP (B) or anti-MYC (C) immunoprecipita-
tions were performed and analysed by western blot analysis using anti-GFP antibody and anti-MYC antibody. (D,E) CENTLEIN could bind with
KIFC3. MYC-CENTLEIN was cotransfected with either GFP-vector or GFP-KIFC3 into HEK293T cells for 48 h. Anti-GFP (D) or anti-MYC (E)
immunoprecipitations were performed and analysed by western blot analysis using anti-GFP antibody and anti-MYC antibody, respectively.
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Figure 4. CENTLEIN interacts with RABIN8 directly (A) Amino acids 1‒460 and depletion of 200‒230 (Δ200‒230) of RABIN8 with GST-tag were
extracted from bacteria BL21 and purified and then used to pull down MYC-CENTLEIN from HEK293T lysate. (B‒D) Amino acids 916‒952 of
CENTLEIN are essential for its binding with RABIN8. HEK293T cells were cotransfected with GFP-RABIN8 and the indicated fragments of MYC-
CENTLEIN, and anti-MYC immunoprecipitations were performed and analyzed by western blot analysis using anti-GFP antibody and anti-MYC
antibody, respectively (B). GFP-RABIN8 was cotransfected with either MYC-CENTLEIN 1‒1406 or MYC-CENTLEIN without 916‒952 (Δ916‒952) into
HEK293T cells for 48 h, and anti-MYC immunoprecipitations were performed and analysed by western blot analysis using anti-GFP antibody and
anti-MYC antibody, respectively (C). +, red, interaction; ‒, black, no interaction (D). (E) Amino acids 200‒260 of RABIN8 are necessary to for its
binding with CENTLEIN. Amino acids 1‒200, 1‒230, 1‒260, 261‒460, 1‒460 and 1‒245 of RABIN8 with a GST tag were extracted from bacteria BL21,
purified, and then used to pull down MYC-CENTLEIN from HEK293T lysates. (F) Amino acids 200‒230 of RABIN8 directly bind to CENTLEIN,+, red,
interaction; ‒, black, no interaction.
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Figure 5. RABIN8 and RAB8 affect cilia in CENTLEIN‒/‒ cells (A) Time course of RABIN8 localization after serum starvation. CENTLEIN+/+ and
CENTELIN–/– RPE1 cells stably expressing GFP-RABIN8 were serum-starved. At the indicated time points, cells were fixed and imaged by GFP
fluorescence (green), basal body marker of centrosome CEP164 (red) and Ac-tubulin (blue) immunostaining. Arrowheads indicate the position of
the centrosome. Scale bar: 15 μm. (B) Quantification of the number of cells with pericentrosomal localization of GFP-Rabin8 at 12 h after serum
starvation in CENTLEIN+/+ (26.420%±0.826%) and CENTLEIN‒/‒ (63.660%±2.702%) cells. n=3; >200 cells per experiment; **P<0.01. (C)
Quantification of CENTLEIN-/- ciliated cells transfected with GFP-vector (23.920%±1.247%), GFP-CENTLEIN (53.770%±1.178%) and GFP-Δ916‒952
(28.710%±1.417%). n=3; >200 cells per experiment; ***P<0.001. (D) Quantification of CENTLEIN‒/‒ ciliated cells transfected with GFP-RAB8A
(23.65%±0.84%), GFP-RABT22N (21.63%±1.19%) and GFP-RAB8Q67L (41.63%±2.22%). n=3; >200 cells per experiment; **P<0.01.
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pathway is tightly linked to the primary cilium [36]. In the
developing neural tube, a decreasing ventral-to-dorsal Shh gradient
regulates the expressions of various genes encoding transcription
factors [37]. The subsequent antagonistic interactions among these
transcription factors (FoxA2, NKX6.1, PAX6 and PAX7) sharpen
gene expression boundaries in the neural tube and promote
neuronal differentiation [38]. In vertebrates, most of the Hedgehog
(Hh) signaling pathway components are located at or in the
proximity of the primary cilium [35]. The Shh pathway is activated
when the receptor Ptch1 binds to Shh [39], which causes Ptch1 to
exit the cilium and Smoothened (Smo), the pathway transductor, to
enter [40]. Smo accumulation prevents GLI processing (mainly
GLI3R) and leads to the generation of GLI activator forms (mainly
GLI2A) [41], albeit through unknown mechanisms. In the centlein-
null developing neural tube, the Shh signaling pathway appears to
be normal.
We have previously reported that CENTLEIN, as a newly

identified microtubule-associated protein (MAP), directly binds to
purified microtubules (MTs) via its longest coiled-coil domain, and
its overexpression results in profound nocodazole- and cold-
resistant MT bundles, which also rely on its MT-binding domain
[28]. We have now found that CENTLEIN physically interacts with
RABIN8 and that its depletion causes the persistent accumulation of

RABIN8 on the pericentrosome. In 2019, Cuenca et al. [42] reported
that the microtubule-associated protein 11 (MAP11, also known as
C7orf43/TRAPPC14) directly bound to RABIN8 and that its knock-
down diminished RABIN8 preciliary centrosome accumulation and,
in turn, affected ciliogenesis in both human cells and zebrafish
embryos. Both CENTLEIN and C7orf43 are RABIN8-binding MAPs
and are required for ciliogenesis. Of note, the ablation of the former
causes the persistent accumulation of RABIN8 on the pericentro-
some, whereas the depletion of the latter reduces RABIN8 focal
accumulation in the centrosomal region [42].
The primary cilium is mainly composed of axonemal micro-

tubules elongating from the distal end of the basal body and a ciliary
membrane surrounding the axoneme, accessorized by motor
proteins and intraflagellar transport (IFT) particles [43–45]. Trans-
port in and out of the cilium, which is necessary for ciliogenesis,
maintenance and signaling, occurs bidirectionally along microtu-
bules via the process of intraflagellar transport [46]. It is well
established that the dynamics and organization of the MT
cytoskeleton are regulated largely by MAPs [47‒50]. Given the
critical roles of MAPs in maintaining and regulating MT stability
[51,52] and intracellular transport [50], the current work adds one
more piece to the puzzle of how the spatiotemporal localization of
RABIN8 on the pericentrosome is controlled, while important

Figure 6. Centlein-null effect of cilia on E10.5 ventral neural tube (A) Centlein+/+ and Centlein‒/‒ E10.5 ventral neural tubes stained for ARL13B
(green) and DAPI (blue). Scale bar: 10 μm. (B) Quantification of Centlein+/+ (1.97%±0.22%) and Centlein‒/‒ (1.92%±0.21%) ventral neural tube cilia
per 100 μm3. n=5; P=0.8755.
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questions remain to be answered.
In summary, besides its vital roles in the maintenance of sperm

head-tail integrity [30] and centrosome cohesion [29], CENTLEIN is
required for primary cilium formation. CENTLEIN physically
interacts with RABIN8, in which the 31 amino acid sequence
located at 200‒230 aa of the RABIN8 GEF domain [17,20,27] is
responsible for the interaction. Expression of epitope-tagged
CENTLEIN (WT), but not the internal deletion CENTLEIN (Δ916‒
952) lacking the RABIN8-binding site, largely rescued the ciliogen-
esis defect provoked by CENTLEIN depletion. Notably, the RABIN8-
binding site separates from the centrosome-targeting domain
(Supplementary Figure S3). CENTLEIN ablation causes the persis-
tent accumulation of RABIN8 on the pericentrosome, while
expression of activated RAB8A partially reverses cilium loss in
CENTLEIN-null RPE1 cells. Future studies will focus on elucidating
the underlying mechanism(s) of RABIN8 release from the pericen-
trosome as cilium formation proceeds.

Supplementary Data
Supplementary data is available at Acta Biochimica et Biophysica
Sinica online.
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