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Exact significance levels for Hewitt's test
for seasonality
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SUMMARY Hewitt proposed an easily computed test for seasonality in ranked monthly data. This
paper provides a tabulation of the exact distribution of the test statistic, which previously could be
estimated only from simulated data. The use of this test when ties may occur in the data is also
discussed.

Several recent papers have compared the power of
various methods to detect seasonal variation in
epidemiological data. St. Leger' contrasted a
likelihood ratio test with Edwards's2 well-known
geometric test, for sinusoidal cyclic fluctuations, using
a computer simulation. Walter3 obtained an
asymptotic expression for the power of Edwards's
test, giving tables of typical values. Freedman,4 using
simulated data, compared the power of Edwards's
test, a new Kolmogorov-Smirnov type test, Hewitt's5
test, and the usual X2 test for any variation, not
necessarily seasonal, among the 12 months. Of these,
Hewitt's test is the easiest to compute.

For all these methods, except Hewitt's, the
distribution of the appropriate test statistic is known,
at least approximately, under the null hypothesis of
constant incidence. In order to determine the
significance of the seasonal effect using Hewitt's test,
however, one must consult an empirical distribution
established from simulated data5; the significance
levels thus obtained are therefore only approximate
and subject to sampling variation. This implies some
uncertainty in the precise conclusions from Hewitt's
test; a fair comparison of its power with that of
alternative tests also relies on knowing the true
significance levels. For these reasons it was decided to
establish the exact probabilities of Hewitt's statistic
in the tail of its distribution associated with the
usually adopted significance levels.

Method

Data to be analysed by Hewitt's method are
expressed in terms of 12 monthly ranks for the
variable of interest (for example, the frequency or
rate of a disease), with rank 12 assigned to the month
with highest incidence, .1 ito the next highest, and so

on down to rank 1 for the month with the lowest
incidence. The test statistic T is the maximum rank-
sum for any 6 consecutive months; this corresponds
to testing for a seasonal fluctuation at any time during
the year. (Hewitt et al also discuss the use of this
statistic when a 6-month period for the rank sum is
specified a priori; this approach would be used much
less often in practice). To determine the significance
of a particular value of T for a given data set, we thus
require the probabilities P(T = t) for various values
of t.

Let dt be a decomposition of t into 6 distinct integral
parts corresponding to any 6 monthly ranks; for
example, T could assume the value 54 by some
arrangement of the 6 consecutive monthly ranks 12,
11, 10, 9, 7, and 5, which is therefore one possible
decomposition of 54. Now by basic probability we
have

P(T= t) = X P(T;dti) - 1. P(T;dti,dtj)
i P(T;d~ids
=XP(T;dtilI dti) P(dti)

- i5 P(T;dti, dtjl dti,dt1) P(dti,dtj)i#4j (1)

where P(T;dti) denotes the probability that T has the
(unique) decomposition dti, and P(dt1) is the
probability that dti occurs in the data. The second
terms in (1) correspond to cases where T has two
possible decompositions, dti and dtj, that is, there are
two 6-month periods of the year with equal rank
sums. (It is not possible to have three such
decompositions for the values ofT to be considered).
The summations of (1) are over all possible
decompositions of t. The conditional probabilities
reflect that although a particular decomposition of t
may occur in a certain 6-month period of the data, this
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is not necessarily the period for which the rank sum is
maximised. Noting that, under the null hypothesis of
no seasonality, all sets of 6 ranks are equally likely to
occur in a particular 6-month period, we have
P(dti) = 12/12C6 = 1/77 for all values of t and i;
12aC = 924 is the number of ways of selecting any 6
ranks from 12.
Although somewhat tedious, an enumeration of

the distribution of T using (1) is considerably easier
than considering all the 12! possible rank
arrangements. A few typical calculations are
described below, and the complete set is available on
request.
The largest possible value of T is 57, for which

there is only one decomposition (12,11,10,9,8,7). If
this decomposition occurs in the data, it must
constitute the maximum, and thus P(T = 57) = 1/77.
For T = 56 there is also only one decomposition,
namely (12,11,10,9,8,6), but this is not the maximum
in all cases. Firstly, if rank 6 occurs at either end of the
6-month period containing the decomposition (for
example, in an arrangement such as 8,11,10,9,12,6),
then this period will not contain the maximum T if
rank 7 occurs in the month adjacent to the other end
of the period. (The maximum in this case occurs in the
period starting one month earlier or later). Hence the
probability is 5/6 that such a permutation of this
decomposition, if it occurs, is the maximum.
Secondly, if the rank 6 is not at either end of the
period, this decomposition must be the maximum.
There are 2 x 5! permutations of the first type, and
4 x 5! of the second. Thus from (1)
P(T=56)= [(5/6)x 2 x 5! + 1x4x 5!]/(6! x 77)= 17/1386

Similar, although more complex, working applies
for the other values of T. There are respectively 2, 3
and 5 distinct decompositions of T = 55, 54, and 53,
which is as far as it is necessary to enumerate the
distribution if the conventional significance levels are
used. For each permutation of each decomposition,
one must consider the possible adjacent ranks (if
any), and their associated probabilities, which would
cause the decomposition not to be the maximum. For
example, the permutation (9,4,12,11,10,7) of a
decomposition of 53 is not the maximum if either
rank 8 is adjacent to rank 9 or if ranks 6 and 8 (in
either order) are adjacent to 7 (because
6 + 8 > 9 + 4). There is thus a 4/5 probability that
such an arrangement is the maximum. An example of
T having two decompositions is provided by the
sequence (7,6,12,11,10,9,5,8), which contains two
maximal rank sums equal to 55.
The Table shows the exact distribution of T thus

obtained, and the simulated distribution obtained by
Hewitt. The discrepancies between the two are
modest, and within the expected range of sampling
variation. One convenient finding is that T = 55 is
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Table Exact and simulated distributions for Hewitt's test
statistic T

Exact Simulated
Simulated cumulative cumulative

T Exact probability probability* probability probability'

57 1/77 = 0-0130 0-0134 0-0130 0-0134
56 17/1 386 = 0-0123 0-0114 0 0253 0-0248
55 19/825 = 0-0230 0-0216 0-0483 0-0464
54 223/6 930 = 0-0322 0-0302 0-0805 0-0766
53 571/11 550= 0 0494 0-0494 0-1299 0-1260

* Estimated from 5000 Monte Carlo samples.

significant with a probability closer to the usual 5%
level than is indicated by Hewitt's data.

In Freedman's4 comparison of power for Hewitt's
and various other tests, data were simulated to
contain a sinusoidal seasonal effect, and nominal
10%, 5%, and 1% significance levels were used; f
Hewitt's test the critical values ofT were taken as 5,
55, and 57 respectively, these having type I error rates
closest to the nominal levels. The exact probabilities
indicate that T = 53 and T = 57 have type I error
rates somewhat higher than their nominal values,
implying that Edwards's test compares less
favourably with the other tests. On the other hand,
T = 55 is only slightly conservative compared to its
nominal 5% significance level. In total, these results
suggest that the power of Kuiper's6 Kolmogorov-
Smirnov type test is approximately the same as that of
Edwards's test, at least f. r the sinusoidal variation
used by Freedman.

EFFECT OF TIES
Hewitt's test as proposed, and as discussed here,
makes no provision for the possibility of two or more
months having equal (or tied) incidence. Although
ties are relatively unlikely if the variable of interest is
a rate, this is not so if raw monthly frequencies are
being analysed. It has been pointed out to me by a
student, Dr. 0. Marrero, that in fact quite large
samples are needed in this case to avoid ties
completely. In particular, there must be a tie if the
total sample size is less than 0 + 1 + 2 +. .+ 11 = 66,
this being the smallest set of 12 distinct monthly
frequencies. In those practical problems requiring
statistical analysis, the seasonal fluctuation is usually
quite small (typically less than 20%), and then the
chance of a tie is not negligible, even with samples of
several hundred. This problem does not appear to
have been recognised previously in the literature,
which is surprising when we recall that Hewitt's test
was proposed originally as an alternative to
Edwards's test for small samples.
One solution to this problem is to adjust the raw

frequencies according to the number of days in each
month (that is, rank 'cases per day' by month). This is
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good general practice anyway, because it precludes
the possibility of a spurious seasonal 'calendar effect'.
If this is done, then to prevent ties one must have
distinct frequencies in the 4 months with 30 days and
also in the 7 months with 31 days; this implies a

minimum total sample of 27, for all practical
purposes, to avoid ties, but once again ties will occur

frequently in practice with all but quite large samples.
If ties do occur, one might modify the test statistic by
assigning average ranks to tied months (for example,
rank 11.5 to two months tied with the highest
incidence), and interpolate the probability level of T
if necessary. Although this manoeuvre is used with
other non-parametric methods, the precise
distributional implications of doing so in Hewitt's test
are not known.

1' thank Betty Kirkwood of the London School of
Hygiene for her careful verification of my

calculations.
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