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sperm chromatin
Received for publication, July 27, 2023, and in revised form, August 14, 2023 Published, Papers in Press, September 2, 2023,
https://doi.org/10.1016/j.jbc.2023.105212

Alexander V. Emelyanov1,‡, Daniel Barcenilla-Merino2,‡, Benjamin Loppin2,* , and Dmitry V. Fyodorov1,*
From the 1Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA; 2Laboratoire de Biologie et
Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS UMR5239, Université Claude Bernard Lyon 1, Lyon, France

Reviewed by members of the JBC Editorial Board. Edited by Brian Strahl
DNA in sperm is packed with small, charged proteins termed
SNBPs (sperm nuclear basic proteins), including mammalian
and Drosophila protamines. During spermiogenesis, somatic-
type chromatin is taken apart and replaced with sperm chro-
matin in a multistep process leading to an extraordinary
condensation of the genome. During fertilization, the ova face a
similarly challenging task of SNBP eviction and reassembly of
nucleosome-based chromatin. Despite its importance for the
animal life cycle, sperm chromatin metabolism, including the
biochemical machinery mediating the mutual replacement of
histones and SNBPs, remains poorly studied. In Drosophila,
Mst77F is one of the first SNBPs loaded into the spermatid
nuclei. It persists in mature spermatozoa and is essential for
sperm compaction and male fertility. Here, by using in vitro
biochemical assays, we identify chaperones that can mediate
the eviction and loading of Mst77F on DNA, thus facilitating
the interconversions of chromatin forms in the male gamete.
Unlike NAP1 and TAP/p32 chaperones that disassemble
Mst77F–DNA complexes, ARTEMIS and APOLLO, orthologs
of mammalian importin-4 (IPO4), mediate the deposition of
Mst77F on DNA or oligonucleosome templates, accompanied
by the dissociation of histone–DNA complexes. In vivo, a
mutation of testis-specific Apollo brings about a defect of
Mst77F loading, abnormal sperm morphology, and male
infertility. We identify IPO4 ortholog APOLLO as a critical
component of sperm chromatin assembly apparatus in
Drosophila. We discover that in addition to recognized roles in
protein traffic, a nuclear transport receptor (IPO4) can func-
tion directly in chromatin remodeling as a dual, histone- and
SNBP-specific, chaperone.

In many animals, sperm DNA is tightly packaged with
sperm nuclear basic proteins (SNBPs) that replace nucleo-
somes during spermiogenesis, the differentiation of haploid
spermatids. While mammalian protamines are the best
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characterized SNBPs, Drosophila is a powerful alternative
model to study the histone-to-protamine transition.
Drosophila melanogaster sperm chromatin comprises several
highly basic, protamine-like SNBPs that all share an MST-
HMG-Box motif (1–3). Genetic interaction analyses have
revealed that major Drosophila SNBPs, such as protamines
(ProtA and ProtB), Prtl99C and male-specific transcript 77F
(Mst77F), generally cooperate to achieve proper sperm chro-
matin organization (4–6). In this context, Mst77F is essential
for male fertility, and post-transition spermatids eventually
degenerate in mst77F mutant males (6). How SNBP deposition
is controlled at the histone-to-protamine transition remains
poorly understood.

Karyopherins (importins) are a superfamily of conserved re-
ceptor proteins that mediate the post-synthetic transport of
large (>50 kDa) nuclear proteins from the cytoplasm across the
nuclear pore complex into the nucleus (7, 8). According to a
conventional model, importins α (adaptor proteins) recognize
and bind a nuclear localization signal within their cargo mole-
cule (9), recruit importins β (nuclear transport receptors,
NTRs), and the trimeric complex permeates the nuclear pore
complex by means of interactions between importin β and FG
repeats of nucleoporins (10, 11). After the importin–cargo
complex reaches the nucleus, binding and the enzymatic ac-
tivity of Ras-related nuclear protein–GTP complex (RanGTP)
control the release of cargo proteins (8) and determine the di-
rection of nucleocytoplasmic transport of dissociated importins
(12, 13). Recent evidence also suggests that most importins β/
NTRs bind cargo directly and do not depend on adaptors
(importins α) for nuclear transport (12, 14). The importin β
family includes more than a dozen members (12, 14), such as
importins 1 to 5, 7 to 9, 11, and 13, characterized by the presence
of conserved functional domains: RanGTP-binding N-terminal
domain (IBN_N) and karyopherin β domain (KAP95), inter-
spersing several flexible HEAT repeats (15). The HEAT repeats
are required for direct cargo binding by importins β, and their
RanGTP-dependent conformational changes are thought to
regulate the release of cargo proteins (13).

The D. melanogaster genome encompasses tandem dupli-
cate genes Apollo (Apl) and Artemis (Arts), encoding nearly
identical (�98% identity, >99% similarity) proteins APOLLO/
APL and ARTEMIS/ARTS, orthologs of a mammalian
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JBC COMMUNICATION: Importin-4 loads Mst77F into sperm chromatin
importin β, importin-4/IPO4 (16). Despite their structural
relationship, APL and ARTS exhibit drastically distinct, sex-
specific expression patterns, with Apl transcribed predomi-
nantly in the testis and Arts in the ovary. Their individual
mutations, although not detrimental to adult development,
lead to male or female sterility phenotypes (16), consistent
with their expression patterns.

Upon entering Drosophila eggs, sperm chromatin un-
dergoes remodeling to replace SNBPs and assemble nucleo-
somes (17). Biochemical evidence indicates that the removal of
ProtA and ProtB is facilitated by a combined action of chap-
erone proteins nucleosome assembly protein 1 (NAP1),
nucleoplasmin-like protein (NLP), nucleophosmin, and TAP/
p32 (18), which can also function as core histone chaperones
(19). In this study, we use a similar biochemical approach to
identify molecular chaperones that can mediate the meta-
bolism of Mst77F during interconversions of sperm and so-
matic-type chromatin when Mst77F is deposited in the
genome (spermatogenesis) or evicted and replaced by histones
(egg fertilization). We discover that in addition to NAP1, NLP,
and TAP/p32, the IPO4 orthologs APL and ARTS also phys-
ically interact with Mst77F. Furthermore, APL mediates the
replacement of core histones with Mst77F in vitro and is
required for Mst77F deposition in Drosophila spermatids
in vivo.
Results

Isolation of putative chaperones for Mst77F

To isolate chaperone molecules for Mst77F, we followed the
approach previously utilized to identify chaperones for
Drosophila ProtA and ProtB (18). We expressed and purified
recombinant full-length Mst77F with a C-terminal V5 tag
(Fig. 1A). The Mst77F–DNA complex was reconstituted by
dialysis with a supercoiled plasmid and used as a substrate for
remodeling by embryonic S-190 extract in vitro (Fig. 1B). The
association of Mst77F-V5 with the plasmid DNA was assayed
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by sucrose gradient sedimentation and V5 western analyses of
the gradient fractions (Fig. 1, B and C). Similar to protamine–
DNA complexes (18), the Mst77F-DNA substrate sedimented
to the bottom of the gradient, whereas upon treatment with S-
190, Mst77F was released from its binding to DNA (Fig. 1C, cf.
left and right panels). Since molecular chaperones that remove
Mst77F from DNA likely remain associated with it upon
eviction (18), we purified these putative protein complexes
from gradient fractions that contained the released Mst77F by
V5 immunoaffinity chromatography (Fig. 1, B and C) and
analyzed them by SDS-PAGE (Fig. 1D). As a control, pulldown
experiments were also performed with equivalent fractions
from Mst77F-free, S-190-only sucrose gradients (Fig. 1C,
middle panel, and Fig. 1D). The identities of purified poly-
peptides were established by mass-spec sequencing (Fig. S1A).

In addition to V5-tagged Mst77F, the immunoprecipitated
proteins included NAP1, TAP/p32, and NLP, the histone
chaperones that were previously implicated in the remodeling
of ProtA/B-DNA substrates (18). Moreover, we also identified
the protein ARTS, a Drosophila ortholog of IPO4. To confirm
their physical interactions with Mst77F, we expressed recom-
binant ARTS, NAP1, NLP, and TAP/p32 (Fig. S1B) and
examined them by co-immunoprecipitation (co-IP) with free
Mst77F-V5 (Fig. S1C). We discovered that each individual
polypeptide directly interacted with Mst77F in solution.

Remodeling of DNA-Mst77F substrate by recombinant
chaperones in vitro

To further characterize the molecular functions of the
identified Mst77F chaperones, we examined the activities of
recombinant proteins in the eviction of Mst77F from its
complex with DNA in vitro (Fig. 2A). In these experiments, we
used size-exclusion chromatography to separate released
Mst77F from the Mst77F–DNA complex (Fig. 2, A–C), instead
of sucrose gradients (Fig. 1C), which are more suitable for
large-scale bulk reactions. As expected, the Mst77F-DNA
substrate alone fractionated in early (heavy) fractions
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(Fig. 2B, top). However, when treated with super-
stoichiometric recombinant NAP1 or TAP/p32, the Mst77F–
DNA complex was dissociated, and Mst77F fractionated in
later (light) fractions (Fig. 2B). In contrast, ARTS and NLP
alone failed to efficiently remodel the substrate.

This finding poses an apparent contradiction with the effi-
cient binding of recombinant ARTS and NLP to Mst77F
(Fig. S1C) and the discovery of native ARTS and NLP in as-
sociation with Mst77F that was released from the Mst77F–
DNA complex upon remodeling by S-190 (Fig. 1D). However,
the contradiction may be resolved if, in the S-190 remodeling
reactions, Mst77F is exchanged between NAP1 or TAP/p32
(the true eviction factors) and ARTS or NLP. For instance,
when the eviction factors are limiting (substoichiometric to
Mst77F), this exchange would liberate NAP1 and TAP/p32 for
additional rounds of Mst77F eviction, thus stimulating the
reaction. Indeed, sub-stoichiometric NAP1 remodels the
Mst77F-DNA substrate inefficiently (cf. Fig. 2C, top, and
Fig. 2B, middle). However, an excess of NLP in addition to
NAP1 strongly stimulated the activity of NAP1 (cf. Fig. 2C, top
and bottom).

In contrast, an excess of ARTS failed to stimulate the NAP1-
mediated release of Mst77F, but, to the contrary, strongly
inhibited the reaction (Fig. 2C, middle). It also partially reversed
the near complete remodeling of theMst77F–DNA substrate by
super-stoichiometric NAP1 and TAP/p32 (cf. Figs. S2 and 2B).
This result is consistent with the ability of ARTS to loadMst77F
on the DNA, rather than release it from the Mst77F–DNA
complex. The proposed molecular roles of NAP1, TAP/p32,
ARTS, and NLP in the metabolism of the Mst77F–DNA com-
plex are schematized in Figure 2D.
Reconstitution of Mst77F loading on DNA in vitro

In vivo, ARTS is primarily expressed in the ovary (16).
Therefore, it is difficult to explain the physiological relevance of
its putative role in the deposition of Mst77F on DNA, which
occurs during spermatogenesis in the testis (6). As opposed to
J. Biol. Chem. (2023) 299(10) 105212 3
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ARTS, its paralog APL, which is almost identical, is expressed in
the male germline. To examine the possible activity of APL in
Mst77F deposition on DNA, we expressed recombinant APL
(Fig. S3A) and performed loading experiments in vitro. Briefly,
Mst77F–APL complexes were incubated with plasmid DNA,
and Mst77F association with the DNA was analyzed by size-
exclusion chromatography and western blot of fractions
(Fig. 3A). As anticipated, both APL and ARTS facilitated the
assembly of the Mst77F–DNA complex in vitro, unlike NAP1,
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TAP/p32, or NLP (Fig. 3B). For instance, in the absence of an
acceptor DNA template, APL cofractionated with Mst77F-V5
(Fig. S3B). However, upon addition of the plasmid DNA,
Mst77F-V5 was loaded on the template, whereas APL remained
in the low molecular mass column fractions (Fig. S3B).

This observation suggests that APL may mediate the
deposition of Mst77F on DNA in vivo. Importantly, the
physiological substrate of APL is a nucleoprotein complex,
rather than naked DNA. Therefore, we examined the loading
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of Mst77F on the in vitro reconstituted oligonucleosome
substrate and observed an efficient association of Mst77F with
DNA/chromatin in the presence of APL (Fig. 3C). Further-
more, Mst77F deposition in vivo must be accompanied by the
disassembly of chromatin and removal of core histones (and
other chromatin components). It is possible that APL can
mediate both the Mst77F deposition and core histone eviction.
Indeed, when gel filtration fractions were analyzed by SDS-
PAGE, we discovered that core histones were removed from
oligonucleosomes by APL and cofractionated with it (Fig. 3D).
The nucleosome disassembly did not depend on Mst77F and
could be mediated by APL alone (Fig. 3D, middle panel).

Thus, in vitro, APL mediates the exchange of core histones
for Mst77F (Fig. 3E). This mechanism indicates that APL also
functions as a core histone chaperone. It further suggests that
APL must exhibit a higher affinity toward core histones than
toward Mst77F. To further confirm this idea, we examined the
binding of APL to Mst77F and/or purified core histones by
glycerol gradient sedimentation. Whereas both free Mst77F
and core histones sedimented at the top of the gradient
(Fig. S3C), substoichiometric APL interacted with a fraction of
Mst77F and shifted its sedimentation toward the middle of the
gradient (Fig. S3D). As predicted, core histones, when mixed
with Mst77F, efficiently competed with it for binding to the
limiting APL (Fig. S3E). This result strongly supports the
proposed model for the function of APL in the concomitant
disassembly of nucleosomes and assembly of Mst77F–DNA
complexes (Fig. 3E).
The functional roles of APL during spermatogenesis in vivo

To analyze the roles that Drosophila IPO4 orthologs ARTS
and APL may play in sperm chromatin metabolism and
loading of Mst77F in sperm chromatin in vivo, we used
CRISPR/Cas9 to prepare fly mutant alleles that inactivated
both Apl and Arts. A guide RNA complementary to both genes
(Fig. 4A) was expressed in the female germline together with
the Cas9 enzyme (20). Three alleles that encompassed muta-
tions in both Apl and Arts were recovered (Fig. 4A). Df(3L)
IPO4[1] encompasses a deficiency completely deleting Apl
(and flanking sequences) as well as a small deletion (indel) in
Arts, resulting in a frameshift in its open reading frame. Df(3L)
IPO4[2] encompasses a deficiency uncovering the central
portion of the Apl–Arts locus; there is also an indel producing
a frameshift in the putative Apl–Arts “fusion gene”. Addi-
tionally, IPO4[3] contains frame-shifting indels in both genes
(Fig. 4A). Since the frameshifts eliminate the protein-binding
KAP95 domains of both proteins, we expected these muta-
tions to result in the loss of function for both genes.

We also raised a polyclonal antibody (IPO4-C, Fig. 4A) that
recognizes both recombinant APL and ARTS (Fig. S4A). When
lysates of whole adult males (strongly expressing APL in the
testis) and adult females (strongly expressing ARTS in ovaries)
were examined by western blot, the antibody specifically
stained an �120-kDa band in wildtype animals but failed to
detect APL or ARTS in Df(3L)IPO4[1] and Df(3L)IPO4[2]
(Fig. S4B). Consistent with the putative function of APL in
loading of Mst77F into sperm chromatin, IPO4-C antibody
strongly stained elongating spermatid nuclei of wildtype males
(Fig. 4B). In contrast, no nuclear staining was evident in
mutant spermatids (Fig. 4B). Also, as expected, robust cyto-
plasmic staining of ARTS was observed in wildtype but not
Df(3L)IPO4[1] or Df(3L)IPO4[2] ovaries (Fig. S4C).

Homozygous mutant males were completely sterile, pro-
ducing no progeny in crosses with control females (Fig. 4C). In
addition, no mature, needle-shaped sperm was observed in
their seminal vesicles (Fig. 4D). Early spermatogenesis
appeared normal in homozygous Df(3L)IPO4[2] males, but
shortly after the histone-to-SNBP transition, spermatid nuclei
all appeared abnormally shaped and condensed. The sper-
miogenic phenotype appeared much more severe in Df(3L)
IPO4[1] mutants, with testes containing rare, scattered sper-
matid nuclei. Interestingly, in both mutants, while ProtB was
nevertheless loaded in spermatid nuclei, Mst77F remained
undetected by immunofluorescence (Fig. 4D). It has been
previously reported that Apl null mutations do not affect the
loading of Mst77F in spermatid chromatin (16). In contrast, by
using an mRFP1-Mst77F transgene, we observed that Mst77F
incorporation in Apl[null2] spermatids was, in fact, severely
reduced (Fig. 4E). However, by intentionally increasing the
intensity of red florescence detection on confocal images (10-
fold over that used for control samples), mRFP1-Mst77F could
be detected in mutant spermatids (Fig. S4D), indicative of a
very low-level deposition of Mst77F. This result may explain
the apparent discrepancy between the two studies.

Unexpectedly, whereas all three mutant alleles are male
sterile, only Df(3L)IPO4[1] mutation impairs the female
fertility (Fig. S4E), despite neither allele expressing the full-
length ARTS (Fig. S4, B and C). The result seemingly con-
tradicts the previous report that Arts is required for female
fertility (16). However, the homozygous IPO4 mutants can
potentially express truncated versions of APL and/or ARTS
that encompass IBN_N but not KAP95 domains of the protein
(Fig. 4A). Thus, the truncated protein is likely sufficient to
mediate the function(s) of ARTS in the egg. We also noted that
the female sterile Df(3L)IPO4[1] fails to manifest the “round
egg” phenotype observed for the progeny of homozygous Arts
[null1] mothers (16) (data not shown). Combined, these ob-
servations indicate that the female sterility of Df(3L)IPO4[1]
does not arise from the mutation of Arts. Despite a high ho-
mology between spd-2 and CR18217 nucleotide sequences
flanking Apl near the distal breakpoint in Df(3L)IPO4[1],
CR18217 transcript cannot be translated into a functional
protein due to the presence of multiple stop codons. For
instance, there is a small 31-bp deletion in the CR18217
sequence, compared to that of spd-2 (Fig. S4F). This deletion is
retained in the Df(3L)IPO4[1] genome and predicted to bring
about a premature termination of any hypothetical fusion
protein and thus inactivation of spd-2 (Fig. S4F). Notably, spd-
2-null mutant has been shown to exhibit male and female
sterility (21). Therefore, the mutation of spd-2 may explain the
sterility of Df(3L)IPO4[1] females (Fig. S4E) as well as the
stronger spermiogenesis failure phenotype in the Df(3L)IPO4
[1] testis (Fig. 4D).
J. Biol. Chem. (2023) 299(10) 105212 5
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Figure 4. APL-mediated deposition of Mst77F into sperm chromatin during spermatogenesis in vivo. A, Apl–Arts locus in the Drosophila genome, Apl
and Arts mutant alleles and sequences for generating IPO4-C antibody. Apl gene and nucleotide/amino acid sequences are shown in blue; Arts gene and
nucleotide/amino acid sequences are shown in purple; lighter and darker color shades represent exonic sequences coding for their respective conserved
IBN_N and KAP95 domains; red vertical lines and sequences correspond to the guide RNA; 3L genomic coordinates (BDGP Release 6) are shown; red brackets
designate deficiency break points; small CRISPR/Cas9-generated deletions (indels) that disrupt both Apl and Arts are indicated by red asterisks. Small red
arrows (F1-F3 and R1-R3), diagnostic PCR primers. Nonconservative residues are shown in lower-case typeface in the sequences. B, confocal images of
Drosophila spermatid nuclei stained with IPO4-C antibody. APL localizes in spermatid nuclei in w[1118] (control) testis but is not detected in the nuclei of
homozygous mutant (Df(3L)IPO4[1] or Df(3L)IPO4[2]) spermatids. Blue, DAPI staining of DNA; green or white, IPO4-C IF staining; scale bar, 20 μm. C, embryo
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Discussion

Our work identifies the Drosophila testis-specific IPO4
ortholog APL as a chaperone that mediates the deposition of
protamine-like Mst77F on DNA or chromatin. It is also
required in vivo for loading of Mst77F into sperm chromatin in
differentiating sperm cells. It was reported previously that the
Drosophila testis-specific chaperone tNAP and chromatin
remodeler ISWI are required for Mst77F loading in the nuclei
of late-canoe stage spermatids (2). Unlike the mutation of Apl
though, the RNAi-dependent depletion of tNAP or ISWI also
dramatically reduced the incorporation of ProtA and ProtB (2).
Unfortunately, biochemical evidence for the function of these
factors in SNBP deposition was lacking, therefore not
excluding an indirect effect. In contrast, we demonstrate in a
defined system in vitro that APL can mediate both the as-
sembly of DNA–Mst77F complexes and the disassembly of
nucleosomes (Fig. 3).

Previously, human IPO4 was shown to co-IP from HeLa
nuclear extracts with H3-H4 histone dimers containing both
the canonical (H3.1) and replacement-type (H3.3) histones
(22). Thus, it was proposed to be involved in the nuclear
transport of histones or histone-containing complexes. Simi-
larly, the yeast IPO4 (Kap123p) and importin-5 (Kap121p)
have been implicated in the nuclear transport of H3-H4 his-
tone tetramers (23). Additional members of the importin β/
NTR family of proteins, such as Impβ, Kapβ2, importin-7, and
importin-9/Kap114p, can bind and transport other core and
linker histones (24). In HeLa cells, IPO4 can form a complex
with the histone chaperone ASF1B and newly synthesized
histones H3 and H4, suggesting its role in the delivery of
ASF1B-histone complex to the nucleus (25). Unexpectedly, a
knockdown of IPO4 does not cause an accumulation of
cytosolic histones or ASF1B (25). Thus, IPO4 may be involved
in other aspects of chromatin metabolism, in addition to its
predicted role in the nuclear transport. Our observations
indicate that Drosophila IPO4 APL expels histones from
chromatin in vitro and mediates this reaction independently of
known histone chaperones. Our work reveals that APL func-
tions as a dual chaperone for Mst77F and core histone,
exhibiting a higher affinity toward histones. Therefore, in
Drosophila spermatids, it could directly mediate the histone-
to-SNBP exchange, which takes place during sperm chro-
matin assembly and maturation.

We do not observe a gross defect in the removal of core
histones from spermatid or mature sperm nuclei of Apl or
IPO4 mutants (not shown). This finding is consistent with
Mst77F representing only a fraction of the SNBP composition
hatching ratio as a measure of male fertility. Eggs laid by w[1118] (control) fem
fail to hatch into larvae. The male sterility phenotype is also reproduced in a het
the Apl – Arts locus. D, a defective loading of Mst77F in spermatids associate
testes that do not express APL or ARTS. Confocal images of testes from Df(3L)
and Df(3L)IPO4[2] males stained with DAPI, Mst77F (31), and ProtB (6) antibod
unlike the ProtB staining. In contrast to control seminal vesicles that contain m
the only visible nuclei are the somatic nuclei of the flattened vesicles. hatched y
of DNA; cyan, Mst77F staining; green, ProtB staining; scale bars, 50 or 10 μm. E, d
The loading of mRFP1-Mst77F and ProtB-GFP transgenic proteins was detected
red or white, mRFP1-Mst77F; green or white, ProtB-GFP; scale bar, 10 μm. APL
immunofluorescence; IPO4, importin-4; Mst77F, male-specific transcript 77F; NA
associated protein/p32.
of sperm chromatin, so that only a percentage of total histones
need to be evicted to accommodate for the newly deposited
Mst77F. The deposition of Mst77F in the late canoe stage of
spermiogenesis largely coincides with that of the transition
protein Tpl94D (26), which is consequently removed and
replaced in mature sperm by ProtA and ProtB. Thus, the
majority of core histones may be expelled from the spermatid
chromatin by a histone-for-Tpl94D exchange, likely mediated
by factor(s) other than APL.

Interestingly, the loss-of-function mutation of Apl in flies
phenocopies amorphic mutations of Mst77F (6), without any
other notable phenotypic abnormalities, indicating that the
loading of Mst77F into sperm chromatin is the major, if not
the only, biological function of APL. It has been noted previ-
ously that mutations of certain NTR genes in model organisms
give rise to defects in a range of cell type–specific biological
processes (12), which was interpreted as evidence for a
restricted cargo specificity of particular importins β. For
instance, mammalian importins 5 and 13 are uniquely required
for spermatogenesis, owing to their interactions with and
timely transport of essential sperm-specific cargo proteins
(27). Also, in Drosophila, a null mutation of importin-9
ortholog Ipo9/Ranbp9 results in female and male sterility
due to chromosome segregation defects in meiosis and
disruption of the nuclear localization of several proteasome
components thought to be involved in histone removal during
spermiogenesis (28). Our data moreover suggest that in
addition to the cargo transport, NTRs can execute auxiliary,
specialized biochemical programs. For example, Drosophila
APL can directly mediate the loading of Mst77F on DNA and
the simultaneous release of core histones from chromatin.
Importantly, since our defined system does not contain the
Ran GTPase, this cargo exchange reaction can be carried out
in a RanGTP-independent fashion but driven by the
biochemical properties of the NTR alone.

ARTS, the ovary-specific paralog of APL, similarly facilitates
the deposition of Mst77F on DNA in vitro (Fig. 3B), predict-
ably so, considering the near structural identity of the two
proteins. However, it is highly unlikely that this biochemical
activity of ARTS has physiological consequences for chromatin
structure in the Drosophila egg, where it is abundantly present.
First, in steady-state Mst77F binding experiments with em-
bryonic extracts (Fig. 1D), Mst77F-dissociating chaperones
NAP1 and TAP/p32 appear to be in >5-fold molar excess
compared to the Mst77F-loading ARTS. The reaction equi-
librium (Figs. 2D and 3E) is further shifted toward the removal
of Mst77F by a much greater concentration of core histones
ales mated to homozygous Df(3L)IPO4[1] or Df(3L)IPO4[2] males completely
erozygous combination of IPO4[1] with Df(3L)ED223 deficiency that uncovers
d with abnormal nuclear morphology and spermiogenesis arrest in mutant
IPO4[2]/TM6B heterozygote (control) and homozygous mutant Df(3L)IPO4[1]
ies. Mst77F staining is severely reduced in spermatid nuclei of the mutants,
ature, needle-like sperm, mutant seminal vesicles do not contain sperm, and
ellow boxes, magnified view areas of spermatid staining; white, DAPI staining
efective loading of Mst77F in spermatids of the null mutant allele of Apl (16).
by autofluorescence and confocal microscopy. Blue, DAPI staining of DNA;

, APOLLO; ARTS, ARTEMIS; DAPI, 40 ,6-diamidino-2-phenylindole; IF, indirect
P1, nucleosome assembly protein 1; SV, seminal vesicle; TAP/p32, HIV-1 Tat-
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(maternally loaded) than that of Mst77F (contributed by a
single sperm cell in the fertilized egg). Thus, rather than the
disassembly of nucleosomes and deposition of Mst77F, ARTS
may be required in the embryo to play other roles, such as the
regulation or nuclear transport of essential components of
actin networks, as proposed (16).

Experimental procedures

Recombinant proteins and antibodies

A bacterial expression construct for purification of V5-
tagged Mst77F was prepared as described for ProtA/B (18).
Baculovirus constructs for purification of FLAG-ARTS and
FLAG-APL were prepared by PCR and molecular cloning.
Rabbit polyclonal antibody that recognizes the C terminus of
both ARTS and APL (IPO4-C) was raised by immunization
with a conserved C-terminal polypeptide fragment of ARTS.
See Supplementary Experimental Procedures for details of
cloning, expression in E. coli or Sf9 cells and purification.

Purification of Mst77F chaperones

DNA-Mst77F substrate (see Supplementary Experimental
Procedures) equivalent to 10 μg of plasmid DNA (5 μg Mst77F-
V5) was treated with 4 ml S-190 extract (29) (�40 mg total pro-
tein) in a buffer containing 3 mMATP, 30 mM phosphocreatine,
and 2μg creatinephosphokinase as described previously (29). The
reaction products were fractionated by sucrose gradient sedi-
mentation. 40-ml linear gradients of 5 to 45% sucrose in 25 mM
Hepes-K+, pH 7.6, 0.1 mM EDTA, 150 mM NaCl, 1 mM DTT,
0.01%NP-40 0.2mMphenylmethylsulfonyl fluoride, and 0.5mM
benzamidine were prepared and centrifuged for 20 h at
28,000 rpm (141,000g) in SW-28 rotor (Beckman) at 4 �C. As
controls, S-190 extract alone or DNA-Mst77F mixed with 20 mg
nuclease-free BSA (NewEnglandBiolabs) were similarly analyzed
by sucrose gradient sedimentation. The gradients were cut in 3-
ml fractions, and the fractions (2-μl aliquots) were analyzed by
anti-V5 western blotting. Mouse monoclonal V5 antibody
(Sigma) and infrared dye-labeled secondary antibody (LI-COR
Bioscience) were used at 1:5000 and 1:10,000, respectively.

For purification of putative Mst77F chaperones, gradient
fractions from the top of the gradients that contained V5-
immunoreactive material were pooled and immunoprecipi-
tated with 20 μl anti-V5 agarose (Sigma) as described (18).
Similar fractions of control, S-190-only, sucrose gradients were
also pulled down. The immunoprecipitated material was
eluted with 40 μl of 0.2 M glycine, pH 2.0, neutralized with 5 μl
1 M Tris-base and analyzed by SDS-PAGE (4–20% gradient
polyacrylamide gel, 20 μl eluate per lane) and Coomassie
staining. Protein identities in prominent bands were deter-
mined by mass spectrometry.

Protein–protein interactions, remodeling of DNA-Mst77F
substrate, and Mst77F loading on DNA in vitro

Physical interactions between Mst77F and chaperones were
analyzed by co-IP and glycerol gradient cosedimentation of re-
combinant proteins. The association of Mst77F with and its
release from DNA was examined by size-exclusion
8 J. Biol. Chem. (2023) 299(10) 105212
chromatography and western with anti-V5 antibody as described
(18). See Supplementary Experimental Procedures for details.

IF staining of Drosophila testes and ovaries

Drosophila testes and ovaries were stained with IPO4-C,
anti-Mst77F, anti-Mst35B, or anti-histone antibodies exactly
as described (6, 30). See Supplementary Experimental Pro-
cedures for details.

Data availability

All data are included in the manuscript.

Supporting information—This article contains supporting informa-
tion (32–34).
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