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Butyrate enhances Clostridioides difficile sporulation in vitro

Michelle A. Baldassare,1 Disha Bhattacharjee,1 Julian D. Coles,1 Sydney Nelson,1 C. Alexis McCollum,1 Anna M. Seekatz1

AUTHOR AFFILIATION See affiliation list on p. 14.

ABSTRACT Short-chain fatty acids (SCFAs) are products of bacterial fermentation that 
help maintain important gut functions such as maintenance of the intestinal barrier, cell 
signaling, and immune homeostasis. The main SCFAs acetate, propionate, and butyrate 
have demonstrated beneficial effects for the host, including its importance in alleviating 
infections caused by pathogens such as Clostridioides difficile. Despite the potential role 
of SCFAs in mitigating C. difficile infection, their direct effect on C. difficile remains unclear. 
Through a set of in vitro experiments, we investigated how SCFAs influence C. difficile 
growth, sporulation, and toxin production. Similar to previous studies, we observed 
that butyrate decreased growth of C. difficile strain 630 in a dose-dependent manner. 
The presence of butyrate also increased C. difficile sporulation, with minimal increases 
in toxin production. RNA-Seq analysis validated our experimental results, demonstrat
ing increased expression of sporulation-related genes in conjunction with changes in 
metabolic and regulatory genes, such as a putative carbon starvation protein, CstA. 
Collectively, these data suggest that butyrate may induce alternative C. difficile survival 
pathways, modifying its growth ability and virulence to persist in the gut environment.

IMPORTANCE Several studies suggest that butyrate may modulate gut infections, such 
as reducing inflammation caused by the healthcare-associated Clostridioides difficile. 
While studies in both animal models and human studies correlate high levels of butyrate 
with reduced C. difficile burden, the direct impact of butyrate on C. difficile remains 
unclear. Our study demonstrates that butyrate directly influences C. difficile by increasing 
its sporulation and modifying its metabolism, potentially using butyrate as a biomarker 
to shift survival strategies in a changing gut environment. These data point to additional 
therapeutic approaches to combat C. difficile in a butyrate-directed manner.
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C lostridioides (Clostridium) difficile is an anaerobic, gram-positive bacterium of serious 
concern, causing nearly half a million infections and 30,000 deaths each year in the 

United States (1). C. difficile infection (CDI) causes inflammation and colitis in the gut, 
with symptoms ranging from diarrhea to pseudomembranous colitis and megacolon in 
extreme cases (2). Recurrence occurs in up to 30% of individuals, resulting in higher 
patient mortality and increased healthcare costs, thus making CDI an important public 
health threat (3). Risk factors for CDI include advanced age, pre-existing gastrointesti
nal issues, immunocompromised status, and antibiotic exposure, making CDI highly 
prevalent in healthcare-associated environments (4).

The gut microbiota, the microbial community residing in the gastrointestinal tract, 
provides colonization resistance against C. difficile within the colon (5). In most healthy 
individuals, contact with metabolically inert C. difficile spores from the environment does 
not result in disease. However, antibiotics and other environmental perturbations have 
been demonstrated to disrupt the microbiota (6, 7), allowing for C. difficile spores to 
colonize the gut environment and produce toxins after germination and outgrowth 
(8). During initial colonization, removal of microbes that transform cholic acid and 
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conjugated derivatives (primary bile acids), known to induce C. difficile germination (9), 
into deoxycholic acid (secondary bile acids), known to reduce C. difficile growth (10, 11), 
has been correlated with the development of CDI (6). Once colonized, C. difficile can use a 
variety of metabolic approaches to persist in the gut. For instance, the ability of C. difficile 
to use a multitude of carbohydrate sources for growth (12), as well as amino acids via 
Stickland fermentation (13, 14), likely supports its ability to colonize multiple nutritional 
niches following microbial perturbation in the gut.

Metabolic flexibility of C. difficile is also connected to virulence mechanisms. The 
nutritional regulators CodY (15, 16) and CcpA (12) are known to decrease toxin 
production and sporulation by sensing nutrient deprivation or carbohydrate availability, 
respectively. Other regulators include PrdR, a proline regulator important for C. difficile 
growth in vivo (17), and Rex, a global redox-sensing regulator, both of which influence 
toxin and spore production (14, 18). The main toxins produced by C. difficile include 
TcdA and TcdB, expressed by the tcdA and tcdB genes located on the PaLoc, or pathoge
nicity locus (19). Production of TcdA/B is regulated by the additional PaLoc genes tcdR 
and tcdC, which are further regulated by global transcriptional networks that respond 
to environmental cues (20). Part of successful colonization also includes sporulation, 
which is controlled by the master transcriptional regulator, Spo0A, leading to further 
persistence in the gut and potential transmission of C. difficile to new hosts (21).

The high recurrence rate observed for CDI following standard antibiotic treatment 
has led to interest in developing microbial-mediated treatments that aim to recover 
colonization resistance against C. difficile . In addition to bile acid transformation, other 
microbiota-mediated mechanisms hypothesized to control C. difficile infection include 
short-chain fatty acids (SCFAs), which are fermentation end products produced by select 
microbes that are generally regarded as beneficial to the host (22, 23). The SCFA, 
butyrate, has been correlated with recovery from CDI following treatment with fecal 
microbiota transplantation (FMT) (24, 25), which aims to restore microbial functions that 
provide colonization resistance against C. difficile. Butyrate has also been demonstrated 
to decrease C. difficile growth in vitro (26), as well as alleviate toxin-based inflammation 
in an animal model of CDI without directly reducing C. difficile burden (27, 28). Yet, 
the mechanism by which butyrate might control C. difficile pathogenesis is relatively 
undefined.

This study sought to identify how SCFAs might directly influence C. difficile pathogen
esis. Using an in vitro platform, we observed that in addition to attenuating growth, 
butyrate and propionate increased sporulation of C. difficile strain 630. Butyrate’s 
effects were dependent on the nutritional environment, suggesting its effects might 
be metabolically regulated. RNA-Seq validated the observed experimental effects of 
butyrate and further identified involvement of the major regulators CcpA and Spo0A, 
as well as a putative carbon starvation gene, CstA, in butyrate-dependent control of C. 
difficile. Collectively, these results point to additional considerations in targeting butyrate 
as a therapeutic strategy to prevent or treat C. difficile.

MATERIALS AND METHODS

In vitro growth of C. difficile

In an anaerobic chamber (Coy), a 10-2 dilution of the noted spore stock [C. difficile 
strain 630 (ATCC BAA-1382), VPI10463 (ATCC 43255-FZ), and R20291 (29)], prepared as 
described previously (30), was plated on pre-reduced taurocholate-cefoxitin-cycloserine-
fructose agar (TCCFA) plate (31) and incubated overnight at 37°C. A single colony was 
inoculated into 5 mL of 1× of brain heart infusion broth supplemented with 5 g/L yeast 
extract and 0.1% l-cysteine (BHI) (32), in biological triplicates per treatment group, and 
incubated at 37°C. After 18 h of growth, tubes were centrifuged at 1500 × g for 10 min. 
After discarding the supernatant, each pellet was resuspended in 1 mL of 2× BHI. For 
each technical triplicate (three per biological replicate), 250 µL of the resuspended pellet 
was added into 5 mL of 2× BHI. In a 96-well plate, 100 µL of the prepared inoculum was 
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added into each of the wells, making the final volume 200 µL. For negative control wells 
(no C. difficile), 2× BHI was added instead.

To test the effect of acetate, propionate, and butyrate on the growth of the prepared 
inoculum above, previously prepared 500 mM SCFA stocks of each (frozen until use) were 
diluted to a final working concentration of 50 mM in the anaerobic chamber a day prior. 
A 96-well plate was set up to test 5 mM and 25 mM acetate, propionate, and butyrate 
from 50 mM concentration. The plate was then placed into a Sunrise plate reader (Tecan) 
for 24 h at 37°C, where optical density (OD600) was measured every 15 min. After 24 h, 
colony-forming units (CFUs) were assessed, as described below. The plate was covered in 
parafilm and placed in the −80°C freezer for storage for toxin assays.

For assessment of C. difficile growth at multiple timepoints, two replicate 96-well 
plates were prepared simultaneously, one placed in the plate reader and one in the 
incubator at 37°C to acquire matched OD600 and CFU measurements. At 6, 12, 18, and 
24 h, three wells per treatment were sampled and diluted for calculating CFUs. CFUs 
were quantified for each corresponding treatment or timepoint. For three biological 
triplicates per treatment, bacterial growth was serially diluted from 10−1 to 10−5. CFUs 
per milliliter was determined by the log10 of colonization, determined by number of 
colonies × dilution of plate counted × dilution factor. For assessment of spores, 20 µL of 
the sample was added to PCR tubes and the tubes were heated for 20 min at 65°C to 
kill off vegetative cells. After heating, the samples were plated on TCCFA plates using the 
same dilutions as above.

For assessing butyrate dose response on C. difficile growth, a working stock of 
butyrate from a previously frozen 500 mM stock was prepared initially. A 96-well plate 
was set up as described above, comprising of C. difficile inoculum in BHI supplemented 
with final concentrations of 5 mM, 10 mM, 25 mM, and 50 mM butyrate in the wells.

To investigate the effect of pH, BHI was prepared with a final pH of 6.2, 7.2, and 
8.0. Using a pH probe (Mettler Toledo FiveEasy Plus), pH values were confirmed before 
autoclaving, after autoclaving, and after preparing growth conditions (including SCFA 
addition).

For assessing the effect of butyrate on C. difficile growth under single carbohydrate 
sources, 96-well plates were prepared as described above except using 2× C. difficile 
minimal media (CDMM) (33, 34) supplemented with 1% of the indicated sugar. A stock 
concentration of 2% weight by volume of the carbohydrates [glucose (35), fructose (36), 
lactose (37), maltose (38), trehalose (39), cellobiose (40), sucrose (20), mannitol (41), 
mannose (35), and raffinose (6)] was prepared and 100 µL of each sugar stock was added 
to 2× CDMM. Growth of C. difficile was assessed using OD600 as described above.

C. difficile toxin assay

This protocol was adapted from Theriot et al. (42). Briefly, filtered media consisting of 
Dulbecco’s Modified Eagle Medium (DMEM) (Gibco DMEM #11965-092), with 5% fetal 
bovine serum (Fisher, Gibco Fetal Bovine Serum, qualified, heat inactivated, US Origin 
#16-140-071), and PenStrep (Life Technologies, Gibco Penicillin Streptomycin 5,000 U/mL 
(penicillin 5,000 U/mL; streptomycin 5,000 µg/mL; #15070063) was used to propagate 
Green African monkey kidney epithelial (Vero) cells to confluence within a 96-well plate, 
at a density of 103 cells per well based on the number of viable cells observed in a 1:1 
mixture of cell suspension in trypan blue. The seeded plate was incubated for an hour 
at room temperature before being placed at 37°C overnight. Prior to addition of samples 
for toxin assessment, old media was replaced with fresh media. For the toxin assay, cell 
growth samples (i.e., spent media from C. difficile growth assays in BHI supplemented 
with the indicated SCFAs) were filtered with a 20 µm filter. A dilution plate was prepared 
serial with dilutions of cell culture filtrate and diluted down to 10−6. For a positive control, 
0.01 µg/µL Toxin A (Invitrogen #10977-015) was added to PBS. The seeded plate was 
incubated for 40 min at room temperature to allow for anti-toxin activity, then placed 
at 37°C overnight. Toxin activity was determined by the presence of confluence (>75% 
confluent) under a microscope for the last dilution of each sample. The amount of toxin 
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was quantified as log10(anti-toxin dilution factor × Vero cell dilution factor × last dilution 
with cell rounding × initial PBS dilution). For visualization, log10 of the calculated toxin 
above was divided by log10 of average of colonization per condition to normalize the 
toxin activity per CFU.

Assessment of spore production using phase contrast

Spore stock was streaked anaerobically onto TCCFA and incubated at 37°C for 24 h. 
An isolated colony was inoculated into BHI for 18 h at 37°C (in triplicate). Tubes were 
centrifuged at 1500 × g for 10 min. After discarding the supernatant, the pellet was 
resuspended with 1 mL of 2 × 70:30 sporulation media (43). For each replicate, resuspen
ded pellet was added into 2 × 70:30 media at 1:200. For conditions supplemented with 
25 mM butyrate, a working stock of 50 mM was prepared as described above. A 96-well 
plate was set up to test sporulation efficiency of 70:30 media with or without butyrate, 
with each well for a final volume of 200 µL. The 96-well plate was then placed into the 
Tecan plate reader for 24 h at 37°C to assess growth as described above.

After 24 h, the C. difficile grown in 70:30 and butyrate were added together in separate 
tubes and centrifuged for 30 s at 13,000 rpm at room temperature. The cells were then 
resuspended in 25 µL of BHI. A microscope slide was then prepared for both conditions 
by adding 5 µL of the resuspended culture to a microscope slide and adding a coverslip. 
Phase contrast images were captured at 100× on Ph3 on a phase contrast microscope 
(Leica DM750 fitted with Leica ICC50W camera). Sporulation efficiency was calculated 
through the following equation: (spores)/(vegetative cells + spores) × 100 (43). At least 
1,000 cells (from >5 frames per condition) were counted to get an accurate efficiency per 
experiment (n = 3). Original cell density was also calculated using a spectrophotometer.

RNA extraction

C. difficile strain 630 was grown with or without butyrate (25 mM) as described above. 
C. difficile culture was collected and immediately frozen for RNA extraction at points 
representing early log (~0.2 OD600) and late log (~0.5 OD600). For growth in BHI without 
butyrate, culture was collected at 7 h (early log) and 10 h (late log); for growth in BHI 
supplemented with butyrate, culture media was collected at 10 h (early log) and 13 h 
(late log). Before RNA extractions, samples were thawed and centrifuged at 10,000 rpm 
for 10 min at 4°C. The supernatant was then discarded, and the pellet was resuspended 
in 1 mL of 1:100 β-mercaptoethanol/water dilution. The samples were then centrifuged 
at 14,000 rpm for 1 min at 4°C. The supernatant was discarded, and the cell pellet 
was resuspended in 1 mL of Trizol. The samples were incubated at room temperature 
for 15 min. The samples were then centrifuged at 5,000 rpm for 15 min at 4°C. All 
further extraction steps required the aqueous phase (44). The Zymo Direct-zol RNA 
Miniprep Plus extraction kit (Zymo Research #R2071) was used to extract the RNA. Qubit 
(ThermoFisher Scientific #Q33230) was then performed to confirm the concentration of 
RNA before sequencing.

RNA-Seq and data analysis

RNA collected from growth experiments above was sent to the Microbial Genome 
Sequencing Center [MiGS, Pittsburgh (www.migscenter.com)] for Illumina sequencing 
(NextSeq 2000). Raw reads were quality checked and adapter-trimmed using Trim-galore 
(45). Metaphlan was used to identify relative species abundance of sequence reads (46). 
Sequences were aligned using RNA-Seq by Expectation Maximization (RSEM) (47) to the 
C. difficile strain 630 reference GCA_000009205.2 under the accession number AM180355 
(PRJNA78) (48, 49). FeatureCounts from subread was utilized to quantify reads (50). The 
DESeq2 package (51) was used then to analyze the differential expression, identifying 
genes that were significant. The RNA-Seq data in R using ggplot2 (52) was used to 
visualize results. Gene set enrichment and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment of the top ranked genes were analyzed using clusterprofiler with 
Wald’s statistic (53).
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RT-qPCR

Real-time quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR) was 
used to assess the expression of select genes. Following RNA extractions, cDNA of 
the samples was made following the NEB M-MuLV Reverse Transcriptase protocol 
(NEB #M0253). Qubit was used to assess the concentration of cDNA in the samples. 
Primers used included rpoC (housekeeping gene) (FP: CCAGTCTCTCCTGGATCAACTA, 
RP: CTAGCTGCTCCTATGTCTCACATC) (54), tcdR (FP: TTATTAAATCTGTTTCTCCCTCTTCA, RP: 
AGCAAGAAATAACTCAGTAGATGATT) (55), tcdC (FP: GAGCACAAAGGGTATTGCTCTA, RP: 
AAATGACCTCCTCATGGTCTTC) (56), codY (FP: CTCATCTTCTATAACTGAACTGTCTTGAAC, 
RP: TTTGATTTACTGGCCGGAGCATTG) (16), ccpA (FP: TCTTGTTCAACTATCCATGAAATC
ATAAC, RP: AAATGGGATAGAAGAGGTTGCTAAA) (57), and rex (FP: TGGTGGATTTGGACA
ACAAGGA, RP: TGCTCCTACAAGAACTGCGT) (generated for this study). Reactions were 
made using iQ SYBR Green Supermix (BioRad #1708880) using manufacturer’s directions 
with a final cDNA concentration of 5 ng. Samples were run in triplicate with biological 
replicates using manufacturer’s directions. Expression levels were quantified/normalized 
using the housekeeping gene rpoC (44). The 2-ΔΔCT method was used to calculate relative 
expression fold change between the control (C. difficile + BHI) and treatment groups (C. 
difficile + BHI + butyrate 25 mM) in the genes of interest (tcdR, tcdC, codY, ccpA, and rex) 
compared to the housekeeping gene (rpoC) (58).

Statistical analysis

Significance was determined using one-way analysis of variance (ANOVA) for area under 
the curve (AUC; calculated using growthcurver in R) followed by post-hoc Dunnett’s test 
(using DescTools in R) for the growth curves. The significance on plate counts and toxin 
activity at different time points was tested using one-way ANOVA followed by Dunnett’s 
test. Significance on the spore efficiency was tested using Bonferroni pairwise t-test. 
Significance on the transcriptomics was calculated by DESeq2 using Wald’s test.

RESULTS

Butyrate decreases C. difficile growth

To assess the effect of the predominant SCFAs on C. difficile growth in vitro, we grew 
different strains of C. difficile (630, VPI10463, R20291) in the presence of low (5 mM) 
and high (25 mM) concentrations of acetate, propionate, and butyrate supplemented 
in the rich medium, BHI (Fig. 1; Fig. S1). We observed significantly decreased growth of 
C. difficile strain 630 in the presence of both butyrate and propionate (5 and 25 mM) 
concentrations (Dunnett’s test on AUC, P < 0.001 and P < 0.05) using OD600 measure
ments (Fig. 1A). At 24 h, we observed significantly decreased growth (Dunnett’s test, P < 
0.01) of C. difficile strain 630 using CFU enumeration in 25 mM butyrate-supplemented 
BHI (Fig. 1B). We also observed decreased growth of C. difficile strain 630 using CFU 
enumeration at 6 h and 24 h in butyrate- and propionate-supplemented BHI (Dunnett’s 
test, P < 0.001) (Fig. 1C). While a previous study has demonstrated butyrate-induced 
growth defects across multiple C. difficile strains (26), we did not observe significant 
differences in growth with any SCFA for two additional strains, C. difficile VPI 10463 and 
R20291 (Fig. S1).

Given these strain-specific results, we mainly focused on the effect of butyrate on C. 
difficile strain 630 for the remaining experiments. Decreased growth was also dose-
dependent, as increased concentrations of butyrate up to 50 mM concentrations 
increasingly impaired C. difficile strain 630 growth (Fig. 1D). To preclude the possibility 
that butyrate’s impact on C. difficile growth was pH-dependent, media with and without 
butyrate was adjusted to 7.2, as well as tested at pH 6.2 and 8. Significant growth 
decrease in the presence of 25 mM butyrate was still observed at pH 6.2 and 7.2 levels, 
with no significance at a more basic pH of 8.0 (Fig. S2). To test whether butyrate’s ability 
to modulate C. difficile growth is dependent on its metabolic environment, we grew C. 
difficile with or without butyrate in minimal media (CDMM) supplemented with different 
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single carbohydrate sources known to support C. difficile growth (Fig. 2) (59, 60). We 
observed decreased growth of C. difficile with butyrate in CDMM supplemented with 1% 
lactose and raffinose only (Dunnett’s test, P < 0.05) (Fig. 2). The addition of butyrate did 
not significantly influence growth of C. difficile in CDMM supplemented with cellobiose, 
maltose, or trehalose. Surprisingly, butyrate increased the growth of C. difficile in CDMM 
supplemented with fructose, mannose, and mannitol (Dunnett’s test, P < 0.01), and 
trended toward increase in growth in the presence of glucose and sucrose (not signifi-
cant). These results suggest metabolism-dependent impacts of butyrate on C. difficile 
growth.

Butyrate increases toxin and spore production in C. difficile

We next assessed the impact of SCFAs on C. difficile toxin and spore production, which 
typically occur during the stationary growth phase (61). We assessed toxin production in 
the presence of SCFAs using an in vitro cell rounding assay (62). After 24 h of growth, we 
observed increased toxin by C. difficile strain 630 in the presence of all SCFAs, compared 
to BHI alone (Fig. 3A, Dunnett’s test, P < 0.001). All SCFAs significantly increased toxin 
activity as early as 6 to 12 h in strain 630 (Fig. S3C, Dunnett’s test, P < 0.05, P < 0.01, P < 
0.001). Despite minimal effects on growth, SCFAs increased toxin activity in C. difficile 
strains VPI10463 and R20291 (Fig. S3A and S3B, Dunnett’s test P < 0.05), which typically 
produce more toxin than C. difficile strain 630 (63). Enhanced and significant toxin activity 
was also observed at increasing butyrate concentrations starting at 12 h as low as 5 mM, 
and at all concentrations except at 10 mM at 24 h (Fig. 3B, Dunnett’s test, P < 0.01). To 
further validate these observations, we used RT-qPCR to assess the expression of tcdR 

FIG 1 Butyrate inhibits the growth of C. difficile strain 630. (A) Growth curves [log10(OD600)] over 24 h (n = 7 per condition). 

(B) CFUs after 24 h (n = 21 per condition) and (C) at 6, 12, 18, and 24 h of growth in BHI supplemented with 5 and 25 mM 

acetate, propionate, or butyrate (n > 15 per condition). (D) Growth curves [log10(OD600)] over 24 h in BHI supplemented 

with increasing concentrations of butyrate (0, 5, 10, 25, 50 mM; n = 3 per condition). Statistical significance calculated using 

Dunnett’s test: *P-value <0.05; **P-value <0.01; ***P-value <0.001.
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and tcdC, the positive and negative regulators of C. difficile toxins located on the PaLoc 
(64), during early log (~0.2 OD600) and late log (~0.5 OD600) growth of C. difficile with or 
without butyrate (Fig. 3C). In the presence of butyrate, tcdC expression was decreased 
during both early and late log growth, whereas tcdR expression was increased during 
both late and early log growth, albeit not significantly.

To assess spore CFUs, C. difficile 630 cultures were heated at 65°C for 20 min to kill the 
vegetative cells prior to plating anaerobically on TCCFA. Compared to BHI alone, we 
observed significantly higher spore counts in the presence of 25 mM propionate and 
butyrate after 24 h (Dunnett’s test, P < 0.05, P < 0.01) (Fig. 4A). Significantly increased 
spores were also observed as early as 6 h and later at 18 h specifically in the presence of 
butyrate, even as low as 5 mM (Fig. 4B, Dunnett’s test, P < 0.05). Additionally, more spores 
were observed at increasing butyrate concentrations compared to BHI alone (Fig. 4C, 
Dunnett’s Test, P < 0.001). The ability of butyrate to increase spore production was also 
observed using phase contrast microscopy. Using a modified sporulation assay and 
phase contrast microscopy (43), we calculated the sporulation efficiency with and 
without butyrate after 24 h of growth (Fig. 4D through F). We observed higher sporula
tion efficiency in the presence of butyrate (13.26%) compared to BHI alone (3%). (Fig. 4F, 
Welch’s two-sample test, P < 0.001).

FIG 2 Butyrate-induced inhibition of C. difficile growth is dependent on the metabolic environment. 

Growth curves of C. difficile strain 630 [log10(OD600)] over 24 h in minimal media (CDMM) in the presence 

of a single sugar supplemented with (red) and without (black) 25 mM butyrate (n = 3 per condition). 

Statistical significance calculated using Dunnett’s test: *P-value <0.05; **P-value <0.01; ***P-value <0.001.
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Butyrate induces the expression of genes related to spore production and 
alternate metabolic pathways

To determine global expression changes induced by butyrate, we conducted RNA-Seq of 
C. difficile strain 630 grown in BHI with and without 25 mM butyrate at both early (~0.2 
OD600) and late log (~0.5 OD600) growth, and mapping the sequencing reads to C. 
difficile strain 630 (GCA_000009205.2; BioProject: PRJNA78). Non-metric multidimen
sional scaling (NMDS) of all identified genes demonstrated clustering of samples based 
on the presence of butyrate (Fig. 5A). Initial gene set enrichment analysis on genes 
expressed during early or late log growth identified differential pathways with or without 
butyrate (cutoff > log2 fold change, with adjusted P < 0.05 calculated with Wald’s test). 
During early log growth, genes related to the phosphotransferase system (PTS) and 
sucrose and starch metabolism were over-represented in the presence of butyrate, 
whereas genes related to nucleotide metabolism, aminoacyl-tRNA biosynthesis, and 
ribosomal functions were under-represented when the genes are in decreasing order of 
log2 fold change (Fig. 5B). During late log growth, genes related to peptidoglycan 
biosynthesis were over-represented in the presence of butyrate, whereas genes related 
to secondary metabolites, amino acid, and carbon metabolism were under-represented 
(Fig. 5C).

FIG 3 Short-chain fatty acids increase C. difficile toxin production. Toxin activity (log10 of toxin mg/mL) of C. difficile strain 

630 normalized to the average C. difficile load [log10(CFU/mL)] per condition, as measured by an in vitro cell assay (A) after 

24 h of growth in BHI supplemented with 5 and 25 mM acetate, propionate, and butyrate (n = 21 per condition), and (B) at 

6, 12, 18, and 24 h in BHI supplemented with 5 and 25 mM acetate, propionate, or butyrate; n > 6 per condition. (C) Toxin 

activity (log10 of toxin mg/mL) of C. difficile strain 630 after 24 h in BHI with increasing concentrations of butyrate (0, 5, 10, 25, 

50 mM; n > 3 per condition). (D) Log2 fold change of tcdC and tcdR expressions in C. difficile strain 630 growing in BHI with 

25 mM butyrate over without butyrate (measured at early and late log growth using RT-qPCR, n = 5 per condition). Statistical 

significance calculated using Dunnett’s test, *P-value <0.05; **P-value <0.01; ***P-value <0.001.
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At the level of individual genes, 38 and 8 genes were significantly over- or under-
expressed during early log growth in the presence of butyrate (Fig. 6A and C, Wald’s test, 
log2 fold change >1 and adjusted P < 10−6). Many of these included genes related to 
sporulation, such as stages II, III, or even V sporulation proteins, as well as spore endo
peptidases, which are required for spore germination and produced during sporulation 
(Fig. 6C). The toxin gene TcdA was significantly over-expressed (Wald’s test, adjusted P < 
0.05) during early log growth but not late log, validating earlier production of toxin in the 
presence of butyrate (Fig. S4 and S5). Several sigma factors (sigma E, F, and G) that are 
involved in transcription regulation of sporulation typically expressed during later log 
growth (65–67) were also over-expressed during early log growth in the presence of 
butyrate (Fig. 6C). Several genes expressed significantly differentially during early log 
growth were also related to metabolism. Genes related to glycine metabolism, such as 
the bi-functional glycine dehydrogenase/aminomethyl transferase protein (gcvTPA), and 
glycine decarboxylase (gcvPB) were upregulated in the presence of butyrate (Fig. 6C). 
Other upregulated genes included phosphotransferase (PTS) genes related to lactose 
(PTS, lactose/cellobiose family IIBC), fructose (PTS, fructose/mannitol family IIB), mannose 
(PTS, mannose specific IIBC), and mannitol (PTS, fructose/mannitol family IIB), which 
collectively aid in non-glucose-related carbohydrate metabolism (Fig. S5) (68). Genes 
related to butyrate metabolism were also downregulated in the presence of butyrate, 

FIG 4 Butyrate increases C. difficile spore production. (A) Growth (log10 of colony-forming units) of C. difficile strain 630 spores (A) after 24 h of growth (n = 9 per 

condition) and (B) throughout growth at 6, 12, 18, and 24 h in BHI supplemented with 5 and 25 mM acetate, propionate, and butyrate (n = 9 per condition per 

timepoint), or (C) after 24 h of growth in BHI supplemented with increasing concentrations of butyrate (5, 10, 25, and 50 mM; n = 9 per condition). Cultures were 

collected at indicated timepoints and heated at 65°C for 20 min to kill off vegetative cells, reflecting spore CFUs. Representative phase contrast images (100×) of 

C. difficile strain 630 cells grown for 24 h in (D) 70:30 media alone (E) supplemented with 25 mM butyrate. (F) Sporulation efficiency calculated over 1,000 cells 

in 70:30 media with or without 25 mM butyrate (n = 3 experiments; >5 frames per experiment per condition). Welch’s two-sample test, *P-value <0.05; **P-value 

<0.01; ***P-value <0.001.
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such as gamma-aminobutyrate dehydratase gamma-aminobutyrate-dehydratase (abfD) 
and 4-hydroxybutyrate dehydrogenase (4hbD) (Fig. 6C), both involved in the succinate to 
butanoate fermentation pathway (69, 70).

At late log growth, 100 and 6 genes were over- and under-expressed, respectively 
(Fig. 6B and D). Many sporulation-related genes remained over-represented during 
later log growth, including sporulation stage IV proteins, stage II sporulation proteins, 
subtilisin-like proteases, oligoendopeptidases, and others, very likely due to the late 
log also being the stationary phase where sporulation is observed en masse. Butyrate 
metabolism-associated genes remained downregulated in the presence of butyrate, 
gamma-aminobutyrate-dehydrogenase, and 4-hydroxy dehydrogenase. Most notably, 
genes associated with sporulation were upregulated in the presence of butyrate, many 
of which are involved in later steps of sporulation, such as spore coat and maturation 
proteins (spore coat proteins sipL, cotB; spore maturation proteins spmA, spmB; stage V 
sporulation proteins spoIIIAB, spoIIIAC, spoIIIAF). The binary toxin regulatory gene from 
the LytR family of proteins, cdtR, was also upregulated. Other significantly downregula
ted genes included the ribosomal proteins L31 and L34, as well as a putative iron-sul
phur binding protein, and genes related to antibiotic stress, including a transcriptional 
repressor for the beta-lactams, and hydroxylamine reductase, which is upregulated in 
response to metronidazole and fidaxomicin stress (71, 72).

We also investigated the involvement of known C. difficile global regulators in 
butyrate-induced growth changes, such as CcpA, Rex, PrdR, and CodY, which are known 
modulators of C. difficile virulence in response to its environment (12). None of these 
global regulators were significantly differentially expressed (Fig. S4 and S5). Addition
ally, we did identify over-representation of transcripts encoding for a putative carbon 
starvation protein, CstA, in early log (Fig. 6C; Fig. S4 and S5), and for a histidine-kinase of 
Spo0A (CD630_15790) in late log (Fig. S4) that was recently identified to encode for an 
inhibitor of Spo0A (73).

DISCUSSION

Butyrate has shown major promise in alleviating prominent intestinal diseases, such as 
graft-versus-host disease (74) or inflammatory bowel disease (75). In the context of CDI, 
higher butyrate levels are correlated with successful FMT in human studies (24) and 
inversely correlated with C. difficile burden in mice (76). While recent studies, including 
the data presented here, have demonstrated an inhibitory effect on in vitro growth of 
C. difficile (26, 76), the mechanism by which butyrate could inhibit C. difficile remains 
unknown. Our current results suggest a more complex role for butyrate in directly 

FIG 5 Butyrate modulates C. difficile gene expression. (A) NMDS of C. difficile strain 630 transcriptomic sequences (n = 3 per condition; total n = 12) using 

Bray-Curtis dissimilarity and normalized enrichment scores (NES) for KEGG assignments significantly upregulated and downregulated genes at (B) early log (~0.2 

OD600), and (C) late log (~0.5 OD600) for C. difficile strain 630 grown in BHI with or without 25 mM butyrate. NES was calculated using clusterprofiler (gseKEGG) in 

R with P-values adjusted post hoc using false discovery rate.
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influencing C. difficile. Indeed, exogenous butyrate supplementation, while capable of 
attenuating disease via host effects, has not demonstrably reduced C. difficile burden in 
infected mice (27, 28). Furthermore, recent studies in mice also suggest that the presence 
of butyrate-producing bacteria alone is not sufficient to inhibit C. difficile colonization 
(77).

Our results support previous observations that butyrate can inhibit growth of C. 
difficile. These results were observed at different pH conditions, which have been 
previously demonstrated to influence C. difficile pathogenesis in vitro (78). However, the 
ability of butyrate to inhibit C. difficile was not observed for all strains tested in our 
study, nor was it universally observed across different media. In contrast to a recent 
study observing butyrate-induced growth inhibition of various clinical strains (albeit 

FIG 6 Butyrate upregulates genes related to spore formation and metabolism. Volcano plots of significantly upregulated and downregulated genes (Wald’s 

test, adjusted P < 10−6, log2 fold change > 1) at (A) early log and (B) late log growth of C. difficile strain 630 grown in BHI with or without 25 mM butyrate. 

Heatmap depicting normalized transcript counts of the top 50 significantly upregulated (top panels) and downregulated (bottom panels) genes in the presence 

of butyrate at (C) early log and (D) late log growth.
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in reinforced clostridial media rather than BHI) (26), we observed limited inhibition by 
butyrate against two commonly used lab strains, C. difficile strains VPI10463 and R20291. 
For strain 630, growth inhibition by butyrate was also context-dependent; when grown 
in vitro with CDMM and a single carbohydrate source, C. difficile growth was significantly 
inhibited by butyrate only in the presence of raffinose and lactose. Other tested sugars, 
including mannitol, fructose, and mannose, demonstrated increased growth of C. difficile 
with butyrate compared to without. These observations make sense in an in vivo context, 
where a diverse milieu of metabolites and energy sources could possibly negate the 
inhibitory effects of butyrate. For instance, we also observed increased growth of C. 
difficile in vitro in the presence of acetate, another prominent SCFA in the gut, although 
these differences were not significant.

Our results also demonstrate the ability of butyrate to modulate C. difficile pathogen
esis via spore and toxin production. To our knowledge, increased spore production 
by butyrate has not been previously demonstrated, although higher spore and toxin 
production has been predicted in response to increasing SCFAs, which were shown to 
decrease biofilm production (79). A previous study reported enhanced toxin production 
by C. difficile in the presence of butyrate, similar to our current study (80). This study 
also observed a correlation between toxin and butyrate production by C. difficile itself, 
whereby the addition of different amino acids downregulated the production of both. 
Furthermore, toxin production has been correlated with increased expression of butyrate 
metabolism in C. difficile in subsequent studies (81). This contrasts with our results, 
where we observed higher toxin production in the presence of butyrate, yet downregu
lation of 3-hydroxybutyryl-CoA dehydrogenase, an enzyme known to be involved in 
the production of butyrate and butanol in Clostridium acetobutylicum (82). Although 
these results might initially seem contradictory, we take these observations as further 
evidence for coordination of metabolism and toxin production by C. difficile, whereby the 
presence of butyrate might initially increase toxin production but later downregulate its 
production, either within the same cell or in different populations.

Perhaps more importantly, both our phenotypic and RNA-Seq data demonstrated a 
significant increase in C. difficile spore production in the presence of butyrate, which is 
connected to toxin production and metabolism (48). Indeed, a recent study demonstra
ted higher spore counts and increased disease severity in mice mono-colonized with a 
butyrate-producing bacterium, Clostridium sardiniense, prior to C. difficile infection (77). 
This is in contrast to impeded growth and attenuated disease in mice mono-colonized 
with Paraclostridium bifermentans, which can compete for amino acids via Stickland 
fermentation. Interestingly, our results mimic in vivo C. difficile RNA-Seq profiles of mice 
infected with pathogenic strains compared to strains deficient in toxin (33, 83), whereby 
PTS transport of alternative carbohydrate metabolic pathways, such as mannose, lactose 
or fructose, is preferred instead of glucose-focused pathways or other alternate carbon 
sources. Our RNA-Seq data in rich media also match what we observed phenotypically 
in the presence of carbohydrate supplementation of CDMM, in which butyrate only had 
a positive growth impact in the presence of certain carbohydrates, such as mannose, 
lactose, or fructose, reflected by the increased expression of PTS transporters of these 
carbohydrates in our RNA-Seq data. Though our data also show an increase in expression 
of PTS transporters of mannitol, cellobiose, and xylose, we did not test these carbohy
drates due to an expectation that these will also show similar results to mannose, lactose, 
and fructose in vitro.

In terms of how butyrate may impact regulation of C. difficile virulence (70), we might 
expect decreased codY, ccpA, and rex expression in the presence of butyrate, given 
that we observed increased toxin in the presence of butyrate. CodY and CcpA typically 
decrease toxin and butyrate production (84, 85), whereas Rex is an important global 
regulator that responds to NAD+/NADH ratios in the cell, particularly when glucose 
or other rapidly metabolized sugars are not around (12, 86, 87). While we observed 
increased ccpA expression during early and late log growth from our RT-qPCR data 
(~0.8 mean log fold change) but significantly decreased in our RNA-Seq (−1.23 log fold 
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change) only in early log, our results from both RNA-Seq and RT-qPCR for the canonical 
virulence regulators (codY, rex, prdR) were not significant in the presence of butyrate. The 
involvement of these genes cannot be resolved from our data alone, and it is possible 
that regulatory responses to butyrate may be independent of these regulators, even 
though our data suggest a metabolic connection. Interestingly, we observed significant 
upregulation of a putative, non-canonical, carbon starvation gene, cstA, during early 
log growth. The canonical gene cstA has been demonstrated to be involved in peptide 
utilization, agglutination, and motility in another gut pathogen, Campylobacter jejuni 
(88), which was not upregulated in our data. Given the effect of butyrate on toxin and 
spore production, as well as the types of genes that were upregulated by it, it is possible 
that butyrate induces a collective stress response via alternate regulatory mechanisms 
leading to premature induction of sporulation in vegetative cells.

Independent of the potential regulatory mechanisms, the effect of butyrate on 
C. difficile has important clinical implications (Fig. 7). While butyrate and C. difficile 
levels are consistently negatively regulated following successful FMT and have been 
demonstrated to attenuate inflammation via the host, our results suggest a complicated 
outcome for butyrate-focused treatments. For instance, treating patients with CDI with 
butyrate alone (either with butyrate-producing bacteria or exogenous application) may 
have a detrimental effect on the patient, as has been observed in vivo in mice (77). 
Yet, combining this approach with additional microbiota members that can compete 
with C. difficile for nutrients may appropriately supplement the anti-inflammatory, and 
potentially inhibitory, effect by butyrate in the gut environment. Identification of the 
regulatory elements that dictate the effects of butyrate may expedite these findings.
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