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SUMMARY Cells adjust growth and metabolism to nutrient availability. Having access to
a variety of carbon sources during infection of their animal hosts, facultative intracellular
pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source
controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium,
which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in
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mice, and propose that virulence factors can regulate carbon source prioritization by modi-
fying cellular physiology. On the one hand, bacterial regulators of carbon metabolism con-
trol virulence programs, indicating that pathogenic traits appear in response to carbon
source availability. On the other hand, signals controlling virulence regulators may impact
carbon source utilization, suggesting that stimuli that bacterial pathogens experience within
the host can directly impinge on carbon source prioritization. In addition, pathogen-trig-
gered intestinal inflammation can disrupt the gut microbiota and thus the availability of
carbon sources. By coordinating virulence factors with carbon utilization determinants,
pathogens adopt metabolic pathways that may not be the most energy efficient because
such pathways promote resistance to antimicrobial agents and also because host-imposed
deprivation of specific nutrients may hinder the operation of certain pathways. We propose
that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.

KEYWORDS cAMP, carbon, central metabolism, CRP, magnesium, PhoP, PTS,
Salmonella, virulence

INTRODUCTION

Here, we introduce carbon source utilization as a virulence determinant by discus-
sing how the utilization of different carbon sources can result in different physio-

logical consequences and how bacterial virulence comes at a metabolic cost. We pro-
pose that the regulation of virulence and of carbon metabolism are interconnected,
highlighting the importance of considering these two processes as one in the context
of bacterial infection of animal or plant hosts.

Bacterial survival requires continuous adaptations to environmental changes (1–3).
Even within the confines of the mammalian gut, individual bacteria of the microbiome
experience various conditions because they encounter different microbes in different
parts of the gastrointestinal tract and because most hosts do not ingest nutrients con-
tinuously. Moreover, a given niche typically contains multiple metabolizable carbon
sources that bacteria can utilize as energy or building blocks to sustain growth, making
metabolic prioritization imperative.

The study of how bacteria sense and acquire preferred carbon sources from their sur-
roundings has provided a wealth of fundamental knowledge about microbial physiology.
The classical example of glucose-lactose diauxie (4, 5) revealed that the gut commensal
bacterium Escherichia coli preferentially utilizes D-glucose (here, glucose) over lactose
when both sugars are present, thereby accelerating bacterial growth. This observation
established the phenomenon of carbon catabolite repression (CCR) (4, 6), whereby cells
prioritize which carbon source to utilize first when faced with several at the same time.
That bacteria prefer one carbon source over another is often ascribed to differences in
the energetic output that result from the utilization of individual carbon sources (7).

A predominant inequality in the utilization of carbohydrates as carbon sources concerns
their biochemical transformation into glucose derivatives (7). To be metabolized via glycol-
ysis, glucose must first be phosphorylated in two consecutive reactions, with the second
phosphoryl donor in bacteria being adenosine triphosphate (ATP) (Fig. 1). This energy-in-
tensive “preparatory” phase of glycolysis activates glucose to be further metabolized in the
“payoff” phase of glycolysis, which yields ATP and reducing equivalents in the form of
reduced nicotinamide adenine dinucleotide (NADH). For alternative carbon sources such
as disaccharides and oligosaccharides, the biochemical processes that convert these carbo-
hydrates into glucose or other derivatives require specific proteins that transport and
metabolize the carbohydrates and often require additional energy (i.e., ATP) or reducing
equivalents. In the case of noncarbohydrate carbon sources, such as intermediates in the
tricarboxylic acid (TCA) cycle (e.g., succinate, malate, etc.), the “payoff” phase of glycolysis is
skipped, depriving the bacterium of critical ATP pools. This explains, at least in part, why
growth on the latter substrates is suboptimal.

How do bacteria coordinate physiological status with the availability of specific car-
bon sources? Bacteria sense the presence of specific carbon sources and appropriately
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FIG 1 Core carbon utilization pathways operating in S. Typhimurium. Depiction of central metabolic pathways operating in S. Typhimurium (based
on strain 14028s, information derived from KEGG Pathway database). Depicted pathways include glycolysis (Embden-Meyerhof-Parnas versus

(Continued on next page)
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tune transport and metabolic activities, which dictate distinct growth properties. For
example, in E. coli, carbon source availability determines the relative metabolic cost of
amino acid biosynthesis, which corresponds to the point at which a given carbon
source enters the glycolytic pathway (8). Therefore, increasing or decreasing the meta-
bolic cost of synthesizing various amino acids according to carbon source availability
can augment protein synthesis by determining the relative availability of amino acids
required to translate mRNAs into functional proteins. Because proteins carry out the
vast majority of cellular work and are key structural components in all cells, the funda-
mental cellular process of protein synthesis directly correlates with bacterial growth
rate (9).

In Gram-positive bacteria, carbon source availability has been linked to cell division
and production of the peptidoglycan cell wall (10, 11), highlighting regulatory mecha-
nisms that coordinate catabolic and anabolic processes. In Gram-negative bacteria, the
regulation of carbon source utilization has also been associated with cell division (12),
and such association may dramatically impact pathogen behavior during infection.

The link between carbon source utilization and virulence has been established in a few
cases (13–15). These studies suggest that carbon source, like other nutritional cues, may
operate as an extracellular signal controlling virulence traits. In the Gram-negative patho-
gen Salmonella enterica serovar Typhimurium (S. Typhimurium), the master virulence regu-
latory system PhoP/PhoQ is activated by multiple intra- and extracytoplasmic signals,
including low Mg21 and certain cationic antimicrobial peptides (CAMPs) in the periplasm
and a mildly acidic pH in the bacterial cytosol resulting from acidification of the
Salmonella-containing vacuole (SCV) when the pathogen is inside mammalian cells (16,
17). These PhoQ-activating conditions depress S. Typhimurium growth and proliferation in
both laboratory media and host tissues (16–18), implying that bacterial replication and
induction of virulence programs can be in conflict. In agreement with this notion, the
induction of virulence determinants independently of specific environmental signals hin-
ders growth (19, 20) and virulence (21) in S. Typhimurium.

A limited number of metabolic enzymes are essential for S. Typhimurium virulence
(22), suggesting that this pathogen accesses various sufficient nutrients from the host
to sustain growth and display virulence properties. These findings raise several ques-
tions, such as to what extent access to preferred carbon sources alleviates a conflict
between growth and virulence and how bacteria have adapted their virulence pro-
grams to the availability of specific carbon sources from the eukaryotic host and from
other microbes that coexist with the pathogen in a given locale.

In this article, we explore the relationship between carbon source utilization and vir-
ulence using S. Typhimurium as a case study. We propose that the regulation of carbon
source utilization and virulence is reciprocal because regulators of virulence dictate
carbon source utilization, and regulators of carbon metabolism govern virulence.
Importantly, these two processes are pivotal and interdependent (rather than discrete)
mediators of bacterial physiology.

We first discuss the regulatory mechanisms that enable preferential utilization of carbon
sources in S. Typhimurium. We then review how these systems regulate S. Typhimurium
virulence in the context of bacterial metabolism and host metabolic reprogramming dur-
ing infection. Finally, we elaborate how virulence programs sustain bacterial viability during
infection by regulating carbon source utilization. This perspective synthesizes basic features
of bacterial physiology (e.g., central carbon metabolism) with a sophisticated understand-
ing of bacterial virulence. This synthesis aims to resolve apparent contradictions in the
understanding of bacterial pathogenesis by interrogating the underlying molecular, meta-
bolic, and physiological bases for behaviors displayed by pathogens during infection.

FIG 1 Legend (Continued)
Entner-Doudoroff), TCA cycle, pentose phosphate, acetate overflow, and the intersection between glycolysis and the utilization of alternative
carbon sources, using glycerol and fructose as examples. Protein annotations specify either single metabolic enzyme, enzyme complex or protein
isoforms (separated by forward slash). Blue letters are used to designate Mg21-coordinating enzymes.
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REGULATION OF CARBOHYDRATE UTILIZATION CONFERS FLEXIBILITY IN GROWTH
ANDMETABOLISM

Here, we discuss the major mechanisms dictating carbon source utilization that op-
erate at the transcriptional and posttranscriptional levels. We propose that the regula-
tion of carbon metabolism enables broad flexibility in carbon source utilization under
nutrient-replete conditions. That is, if other requisite (micro)nutrients are available to a
pathogen, the regulation of carbon metabolism ensures efficient utilization of a wide
array of carbon sources, guaranteeing that the viability and basic growth requirements
of the cell are satisfied.

The Phosphoenolpyruvate-Carbohydrate Phosphotransferase System Mediates
Carbohydrate Uptake

The central systems regulating preferential carbon source utilization are of the phos-
phoenolpyruvate (PEP)-carbohydrate phosphotransferase system (PTS) class. These systems
are widespread in bacteria, including the human gastroenteritis- and murine typhoid-caus-
ing S. Typhimurium and the human-adapted typhoid agent S. enterica serovar Typhi
(S. Typhi). We provide an overview of the ability of PTS systems to discriminate among car-
bon sources, with an emphasis on the regulatory mechanisms that coordinate these proc-
esses, and refer the reader to extensive reviews on the function and control of PTS systems
(23–25). Where direct evidence is lacking for Salmonella, we consider findings obtained in
E. coli. However, mechanisms present in E. coli but absent from Salmonella (such as regula-
tion of beta-glucoside utilization by BglG-dependent antitermination [26]) are not dis-
cussed in detail.

In general, PEP-carbohydrate PTSs are phosphorelay networks that phosphorylate
specific carbohydrates as they enter the cell, preventing carbohydrate escape from the
cytoplasm and favoring carbohydrate entry into the glycolytic pathway. For example,
the glucose PTS system in the family Enterobacterales includes the following compo-
nents (with the corresponding genes italicized and in parentheses): PEP, enzyme I (EI/
ptsI), histidine protein (HPr/ptsH), enzyme IIA (EIIA/EIIAGlc/crr), and enzyme IIB/C (EIIBC/
PtsG/ptsG) (Fig. 2A) (24). EI and HPr are often involved in the uptake of different PTS
sugars (25). The EIIB and EIIC proteins of some PTS systems are encoded by distinct
genes, and some bacteria contain additional permease subunits, designated EIID (25).

The phosphorelay begins with PEP donating a phosphate to a conserved histidyl
residue in EI, which then donates this phosphoryl group to His-15 in HPr (27, 28). In
Firmicutes and some proteobacterial species (but not S. enterica), HPr is also phospho-
rylated by the protein HprK/P at Ser-46 (29, 30). In these species, HPr plays a broader
regulatory role and can exist in four phospho-states. In all cases, the phosphoryl group
in HPr’s His-15 is donated to EIIA, again at a conserved histidyl residue (31). Phospho-
EIIA then donates the phosphoryl group to EIIB (or, in the case of the glucose PTS, the
EIIB/C protein, PtsG), typically at a conserved cysteyl residue (32). For EIIBs of the man-
nose PTS, however, phospho-EIIA donates the phosphoryl group to a conserved histi-
dine in EIIB (32). Finally, the phosphoryl group is transferred from EIIB to the incoming
sugar as it is being imported from the periplasm into the cytoplasm by the integral
membrane protein EIIC.

The subsequent metabolism of glucose-6-phosphate (G6P) in the glycolytic
pathway leads to the generation of PEP (Fig. 1). Therefore, the PEP/pyruvate ratio
determines the relative activity of the PTS phosphorylation cascade (Fig. 2A) (33).
That is, when the PEP concentration is low relative to that of pyruvate, EIIAGlc is
predominantly dephosphorylated, having donated its phosphoryl group to PtsG
(EIIB/C), which, in turn, donates it to the incoming glucose molecule. By contrast,
when the PEP concentration is high relative to that of pyruvate, EIIAGlc exists
mostly in the phosphorylated state because there is a surplus of PEP, the initial
phospho-donor in the PTS phosphorelay. Therefore, EIIAGlc has emerged as a prin-
cipal regulator of the process of CCR due to its close association with the terminal
steps of glucose uptake (34).
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FIG 2 Regulatory circuits governing carbon source utilization in S. Typhimurium. (Some of the depicted regulatory interactions are presumed to
be operating in S. Typhimurium based on findings in E. coli.) (A) Control of carbon source utilization by cAMP. The glucose-phosphoenolpyruvate

(Continued on next page)
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Enzyme IIA-Glucose Dictates Alternative Carbon Source Utilization

Inducer exclusion is a phenomenon by which bacteria (E. coli being the prototypical
example) grown on a preferred carbon source actively reduce the uptake of alternative
(nonpreferred) carbon sources (35, 36). This process is proposed to explain, in part, the
phenomenon of glucose-lactose diauxie. The primary molecular mechanism underly-
ing inducer exclusion involves inhibition of the permeases responsible for import of
carbohydrates other than glucose by dephosphorylated EIIAGlc (Fig. 2A) (37). For exam-
ple, inhibition of lactose uptake in the presence of both glucose and lactose results
from dephosphorylated EIIAGlc binding to the cytoplasmic face of the lactose/H1 sym-
porter LacY complexed with lactose at the periplasmic face of the membrane, thereby
preventing lactose import from the periplasm to the cytoplasm (38–41). Salmonella
cannot utilize lactose due to the absence of the lac operon; however, this regulatory
scheme also applies to the uptake of galactose, melibiose, and raffinose (42, 43), which
Salmonella can utilize.

EIIAGlc blocks maltose translocation from the periplasm into the cytoplasm through
a slightly different mechanism from that inhibiting lactose uptake. EIIAGlc targets the
membrane-associated ATPase MalK rather than binding to the integral membrane per-
mease subunits MalF and MalG (44). EIIAGlc prevents ATP hydrolysis by MalK, a member
of the ATP-binding cassette protein family, which utilizes the energy derived from ATP
hydrolysis to move substrates across the cytoplasmic membrane with the participation
of the integral membrane components (44–46).

EIIAGlc excludes glycerol from the cytoplasm by inhibiting glycerol kinase GlpK (47, 48),
the enzyme that catalyzes the first step of glycerol metabolism using ATP to phosphorylate
glycerol into glycerol 3-phosphate (49). EIIAGlc binds GlpK distal to the catalytic site and
appears to regulate its activity allosterically (50, 51). This distinct regulatory strategy reflects
that the glycerol permease GlpF mediates the ATP-independent facilitated diffusion of
glycerol from the periplasm to the cytoplasm (52, 53) and that GlpK is activated by glycerol
diffusion through GlpF (53). Thus, by inhibiting GlpK-dependent phosphorylation of glyc-
erol, EIIAGlc hinders glycerol retention within the cytoplasm.

Critically, the phosphorylated and unphosphorylated states of EIIAGlc exert completely
different effects on the utilization of alternative carbon sources. Whereas dephosphorylated
EIIAGlc promotes inducer exclusion, phosphorylated EIIAGlc (P-EIIAGlc) stimulates the activity
of adenylate cyclase (CyaA, encoded by the cyaA gene), the enzyme that converts ATP into
the second messenger cyclic AMP (cAMP) (Fig. 2A) (54–56). When bound to cAMP, the
cAMP receptor protein (CRP; also known as catabolite activator protein [CAP], encoded by
the crp gene) (57) binds to target DNA sequences, altering transcription of a large number

FIG 2 Legend (Continued)
phosphotransferase system (glucose-PEP PTS) is a central node in the regulation of carbon source utilization. When glucose is present, dephosphorylated
enzyme IIA-glucose (EIIAGlc) excludes inducers for other carbohydrate utilization genes, thereby suppressing uptake of carbon sources other than glucose.
When glucose is absent, phosphorylated EIIAGlc promotes cAMP synthesis by adenylate cyclase (CyaA), thereby increasing transcription of catabolite-repressed
genes by the cAMP-bound cAMP receptor protein (CRP). CyaA activity is inhibited by a-keto acids, which are part of the TCA cycle. The unphosphorylated
form of the histidine phosphocarrier protein (HPr) activates the glycolytic enzymes PykF and PfkB. Activation of the transcriptional regulator CytR by the
nucleoside cytidine increases transcription of the rpoH gene, specifying the heat shock sigma factor RpoH. RpoH promotes transcription of some CRP-
activated genes, such as malT. (B) cAMP-independent control of carbon source utilization. The catabolite repressor/activator (Cra) protein represses fructose
uptake and promotes glycolytic/gluconeogenic flux. Transcriptional repression of the fruBKA operon by Cra leads to an apparently indirect decrease in cAMP
amounts by promoting the dephosphorylated form of EIIAGlc. Paradoxically, Cra also promotes transcription of the crp gene, which increases transcription of
catabolite-repressed genes. Cra promotes transcription of the ppsA gene, which specifies a protein that initiates the fructose PTS cascade that results in the
formation of fructose-6-phosphate, which is converted into fructose-1,6-bisphosphate and enters glycolysis. Both fructose-6-phosphate and fructose-1,6-
bisphosphate negatively regulate Cra. (C) Posttranscriptional control of carbon source utilization. CRP-cAMP represses transcription of the spf gene, which
encodes both the small regulatory RNA Spot 42 and the small peptide SpfP. Spot 42 reduces the mRNA abundance of CRP-activated mRNAs but increases
the abundance of the sRNA CsrC. SpfP antagonizes CRP-cAMP recognition of the promoter of the galETKM operon. The RNA-binding protein CsrA reduces
the abundance of the glgC mRNA, which specifies an enzyme that converts ATP and glucose-1-phosphate into ADP-glucose and diphosphate. CsrA
increases the abundance of the response regulator SirA, which is activated by the bile- and acetate-responding sensor BarA. SirA promotes transcription of
the csrB and csrC genes, specifying sRNAs that bind to CsrA, preventing CsrA from exerting its regulatory effects. CsrA also protects Spot 42 from
degradation by RNase E. Glucose uptake through the Glucose-PEP PTS decreases CsrA activity because dephosphorylated EIIAGlc sequesters the CsrD
protein away from the sRNAs CsrB and CsrC, thereby preventing degradation of these sRNAs by RNase E and thus increasing CsrA sequestration away
from its targets. In addition, accumulation of phospho-sugars, such as glucose-6-phosphate, increases the activity of the SgrR protein, a transcriptional
activator of the sRNA-encoding sgrS gene. The sgrS gene specifies the sRNA SgrS, which reduces the stability of the ptsG transcript, and the small peptide
SgrT, which reduces the activity of the PtsG protein. The Cra protein represses transcription of the sgrS gene. In all panels, ovals represent proteins,
rectangles represent genes, where necessary, and diamonds represent regulatory sRNAs or the mRNAs transcribed from respective genes.
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of genes (58, 59). The concentrations of both cAMP and P-EIIAGlc are thought to reflect the
degree of catabolite repression experienced by bacteria, being low in catabolite-repressed
bacteria (i.e., grown in the presence of glucose) and high in bacteria not experiencing
catabolite repression (i.e., grown in the absence of glucose) (60).

Curiously, P-EIIAGlc alone is not sufficient to stimulate cAMP synthesis by purified CyaA
in vitro, and cAMP synthesis increases in the presence of a crude E. coli extract (61). An
additional component(s) of the PTS system appears to activate CyaA because the cAMP
concentration is lower in mutant E. coli lacking the entire pts operon than in a strain lacking
only crr, the gene specifying EIIAGlc (62). In addition, both sn-glycerol-3-phosphate (G3P)
and G6P antagonize CyaA activation by P-EIIAGlc (63), which explains, in part, catabolite
repression in the presence of non-PTS carbon sources (Fig. 2B).

Regulation of CyaA activity by P-EIIAGlc is purported to explain the increase in cAMP
amounts when bacteria grow in the absence of glucose. However, this may not be the
case because the cAMP concentration begins to increase even at saturating glucose
concentrations for the glucose importer PtsG (64). Given that dephosphorylated EIIAGlc,
rather than P-EIIAGlc, should predominate under saturating glucose concentrations, the
relevance of P-EIIAGlc in stimulating CyaA activity is presently unclear. Perhaps cAMP
abundance responds to the energy status of the cell rather than carbon source per se
(65). Alternatively or in addition, P-EIIAGlc amounts available to stimulate CyaA may not
be strictly linked to glucose saturation of PtsG.

The regulatory schematic deployed by EIIAGlc, whereby its phosphorylation status
dictates regulatory activity, is also utilized by the PTS component HPr. The dephospho-
rylated form of HPr allosterically activates one of the two pyruvate kinase isozymes—
PykF—and one of the two phosphofructokinase isozymes—PfkB (Fig. 2A) (66). In addi-
tion, dephosphorylated HPr binds to the anti-sigma factor protein Rsd, antagonizing its
association with the s 70 sigma factor during logarithmic growth (67). Phosphorylated
HPr, on the other hand, allosterically activates the adenylate kinase Adk (66), an essen-
tial enzyme that catalyzes the reversible conversion of two molecules of ADP into one
molecule of AMP and one of ATP. The phosphorylation state-dependent regulatory ac-
tivity of HPr thereby enables tuning of metabolism and physiology with carbon source
availability.

CRP Controls Transcription of Genes Involved in Catabolism

The global transcriptional regulator cAMP receptor protein (CRP) and its ortho-
logues in various species are the only proteins known to bind cAMP in bacteria. The
CRP-encoding crp gene in E. coli was identified as one of two genes that, upon inactiva-
tion, prevented induction of the lac operon in the presence of lactose (68), the other
being cyaA. Cyclic AMP binds each monomer of the apo-CRP dimer with negative
cooperativity at two distinct sites, the first of which exhibits high affinity and promotes
sequence-specific DNA-binding by CRP-cAMP (69–71). Thus, upon binding cAMP, CRP
experiences an allosteric conformational transition in its C-terminal DNA-binding do-
main (72). Occupation of the second cAMP-binding site at high cAMP concentrations
reduces the affinity of CRP-cAMP for DNA (73), implying that transcriptional activation
by CRP is optimal only within a certain cAMP concentration range. By contrast, the
apo-CRP dimer lacks sequence-specific DNA-binding activity, leading to the suggestion
that apo-CRP functions as a nucleoid-associated protein that silences gene transcrip-
tion in a cyaA mutant, which mimics low-cAMP conditions (74, 75).

CRP-cAMP helps prioritize carbon source utilization, as in the case of glucose-lactose
diauxie, wherein glucose is preferentially utilized before lactose when E. coli is grown in the
presence of both carbon sources (76). This is accomplished by the implementation of
coherent feed-forward loops composed of CRP-cAMP, the catabolic gene(s) of interest that
is transcriptionally activated by CRP-cAMP, and a carbohydrate-dependent transcriptional
regulator that is regulated by CRP-cAMP and then regulates transcription of the catabolic
gene(s) of interest (77). For example, CRP-cAMP activates transcription of both malT, the
gene encoding the ATP-dependent, maltotriose-responsive transcriptional activator MalT
(78), and the malK-lamB and malEFG operons encoding the various proteins required to
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take up and catabolize maltose in the cell (79). The architecture of this regulatory circuit
imposes a requirement for the relevant carbohydrate on the cell such that various carbohy-
drate-specific catabolic genes are not needlessly expressed in the absence of the cognate
carbohydrate, e.g., maltose or maltotriose, in the case of the malK-lamB and malEFG oper-
ons (80).

Critically, CRP activity is modulated by molecules other than cAMP. For instance,
Jacques Monod proposed in his final publication that a “catabolite modulator factor”
present in the water-soluble fraction of an E. coli cell lysate hinders transcriptional con-
trol by CRP-cAMP (81, 82). It has been proposed that this factor is the pyrimidine
nucleoside cytidine, which binds to the transcriptional regulator CytR, resulting in tran-
scriptional repression of the heat shock sigma factor gene rpoH (83), which is required,
in turn, for transcription of CRP-regulated genes such as malT (Fig. 2A) (84). However, it
is unclear whether this indirect effect (i.e., via CytR and RpoH) is sufficient to explain
the original observations made by Monod using E. coli cell lysates. In agreement with
this notion, cytidine does not influence promoter recognition of the wild-type CRP in
vitro (84).

CRP is also subjected to posttranslational modification that impacts its activity as a
transcriptional regulator and alters its subcellular localization. CRP can be acetylated
on at least nine lysine residues in E. coli (85, 86), but few modified residues have been
assigned a molecular function. Acetylation at residue K100 promotes the steady-state
abundance of the CRP protein while reducing its affinity for class II promoters (87),
which depends on multiple positively charged residues making contact with various
negative residues of the RNA polymerase a subunit (88).

CRP self-acetylates at residue K100 using the metabolic intermediate acetyl phos-
phate as acetyl donor. Therefore, conditions that favor acetate fermentation, such as
growth on glucose where overflow metabolism leads to the accumulation of acetate
(Fig. 1), may favor CRP acetylation and thus transcriptional activation of class I pro-
moters (87, 89). Acetylation of E. coli CRP requires both the ackA-pta operon, encoding
proteins responsible for the synthesis and degradation of acetyl phosphate, and the
N« -lysine acetyltransferase-encoding yfiQ gene (90). Moreover, synthesis of the strin-
gent response alarmone guanosine (penta)tetraphosphate [(p)ppGpp] promotes CRP
acetylation in E. coli because a relA mutant lacking one of the (p)ppGpp synthetases
(the other being encoded by the spoT gene) exhibits reduced amounts of acetylated
CRP and reduced expression of CRP-activated genes (90).

In Vibrio cholerae and E. coli, CRP is reported to associate with the bacterial inner
membrane (91). In V. cholerae, the membrane association of CRP depends on acetylation
of residues K26 and K35 and succinylation of residue K52 (91). Membrane association of
CRP promotes sequestration of the DNA-binding protein PepA, altering transcription of
PepA-regulated genes. Thus, CRP activity is responsive to multiple intermediate metabo-
lites in the cell, including acetate and succinate.

Signaling by cAMP is proposed to link the composition of the bacterial proteome to
metabolic demands (92). Carbon-limited growth promotes expression of genes involved in
carbon catabolism (e.g., lacZ), whereas limitation of nutrients other than carbon (e.g., nitro-
gen limitation) suppresses expression of such genes. Critically, both carbon limitation and
nitrogen limitation decrease ribosomal protein content, which decreases protein synthesis.
Metabolic intermediates such as a-keto acids induce a transient decrease in the expression
of catabolic operons concomitantly with decreased cAMP synthesis. Therefore, it is possible
that such metabolic intermediates balance carbon intake with nitrogen intake by reducing
CRP-cAMP activity. This would coordinate catabolic and anabolic proteome capacity to
ensure that carbon intake matches nitrogen intake in the production of amino acids for
protein synthesis (92). CyaA regulation by such precursor metabolites presumably impacts
CRP-cAMP activity by reducing the cAMP pool (Fig. 2A) (93). Beyond catabolite repression,
transcriptional regulation by CRP-cAMP has been implicated in a wide variety of biological
processes, including nitrogen metabolism (94), the stringent response (95), flagellum bio-
synthesis (96, 97), and, as discussed below, bacterial virulence.
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CRP is often considered a prototypical gene regulator in bacteria (98). However,
some CRP-mediated behaviors are paradoxical. For example, CRP-cAMP activates ptsG
transcription during the glucose growth phase in a glucose-lactose diauxic growth
condition, resulting in PtsG-mediated glucose uptake (99), which is puzzling because the
imported glucose is expected to lower the cAMP concentration, thereby reducing the
amount of cAMP-bound CRP (i.e., the active form of the CRP protein). The higher rate of
glucose uptake results in larger amounts of dephosphorylated EIIAGlc, which inhibit the
uptake of alternative carbon sources via inducer exclusion, as described above.

How, then, does CRP-cAMP retain enough activity to induce ptsG transcription in
cells growing on glucose? There are at least three contributing factors. (i) The presence
of two CRP binding sites within the ptsG promoter may alleviate the necessity for high
CRP-cAMP amounts to activate ptsG transcription (100). (ii) Transcription of the crp
gene is both positively and negatively autoregulated (101), with negative autoregula-
tion predominating at low cAMP concentrations (102). This feedback mechanism bal-
ances apo-CRP amounts with cAMP concentration so that CRP is predominantly in the
regulation-competent cAMP-bound state. (iii) Finally, ptsG transcription is repressed by
additional factors (103–105), notably the global repressor of carbohydrate uptake
known as Mlc.

Dephosphorylated PtsG sequesters Mlc at the bacterial inner membrane and away
from target promoters (106, 107). Importantly, it is the association of Mlc with PtsG at
the membrane that results in inactivation of Mlc, as the cytoplasmic domain of PtsG
(EIIBGlc) alone is insufficient to hinder Mlc activity (108). This is perhaps surprising given
that there exist many notable examples of active membrane-bound DNA-binding pro-
teins, such as the transcriptional activator of cholera toxin gene expression ToxR in
V. cholerae (109) and the highly expanded family of hybrid two-component systems
from the commensal gut bacterium Bacteroides thetaiotaomicron, which encode all com-
ponents of classical two-component systems in a single polypeptide located in the inner
membrane (110, 111). Nevertheless, as glucose is imported into the cell, Mlc repression
is relieved, and CRP-cAMP promotes ptsG transcription. The resulting increase in PtsG
protein abundance results in Mlc sequestration, producing a positive feedback loop that
increases ptsG transcription by hindering Mlc access to the ptsG promoter (Fig. 2A).

The Global Repressor of Carbohydrate Uptake Mlc Counteracts CRP-cAMP-Dependent
Activation of Transcription

Mlc is a transcriptional repressor of the catabolite-repressed malT and manXYZ
genes (112, 113). This is paradoxical because, as noted above, Mlc’s activity is nega-
tively correlated with glucose uptake. That is, transcriptional repression by Mlc is high
when alternative carbon sources are being utilized even though the genes responsible
for utilization of these carbon sources are activated by CRP-cAMP, ultimately determin-
ing the transcriptional output (114). One possible explanation for this behavior is that
negative autoregulation of mlc gene transcription by the Mlc protein (112) results in
sufficiently low levels of Mlc that are superseded by the available CRP-cAMP molecules.
However, CRP-cAMP also activates transcription from the mlc promoter (Fig. 2A) (115),
suggesting that posttranscriptional regulatory mechanisms play more determinative
roles in the amounts of active Mlc protein, potentially by regulating the stability or
turnover rate of the mlc mRNA (115). Regardless of the mechanism, Mlc sequestration
by PtsG ties Mlc to glucose uptake and positions Mlc as a key regulator of carbon
metabolism.

The Catabolite Repressor/Activator Cra Determines cAMP-Independent Catabolite
Repression and Gluconeogenic Flux

Early observations that catabolite repression was displayed by mutant E. coli lack-
ing cyaA or crp led to the hypothesis that cAMP-independent mechanisms of CCR
exist in enteric bacteria (116, 117). The catabolite repressor/activator Cra (formerly
referred to as FruR) emerged as the principal regulator of cAMP-independent catabo-
lite repression (118, 119). S. Typhimurium and E. coli strains deficient in cra are unable
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to grow in media containing gluconeogenic substrates as the sole carbon source
(120, 121), implicating cra in the regulation of metabolic flux (122). In these strains,
the fru operon, encoding the proteins that constitute the fructose PTS system, is con-
stitutively expressed, and growth on gluconeogenic substrates cannot be restored by
addition of cAMP. Cra can either repress or activate gene transcription, and its DNA-
binding activity is antagonized by micromolar amounts of fructose-1-phosphate or
millimolar amounts of fructose-1,6-bisphosphate (123–125), key intermediates in glycoly-
sis (Fig. 1). Curiously, Cra activates crp transcription (126) but indirectly decreases CyaA
activity. The latter regulation results from Cra promoting transcription of the fru operon,
which results in fructose uptake and increases the abundance of dephosphorylated
EIIAGlc (127), the EIIAGlc form that does not stimulate CyaA activity (Fig. 2B) (54–56).
Therefore, Cra is closely intertwined with the cAMP-dependent CCR network even though
Cra activity is cAMP-independent.

Bacteria Rely on Various Forms of Posttranscriptional Regulation of Carbohydrate
Utilization Determinants

Several posttranscriptional mechanisms direct carbon source utilization down-
stream of the EIIAGlc, CRP-cAMP, Mlc, and Cra proteins, with small RNAs (sRNAs) being
one of the best characterized (we direct the reader to a recent, comprehensive review
on the subject [128]). For instance, the spf-encoded sRNA Spot 42 was first discovered
for its role in hindering E. coli adaptation to nutritional shifts (129) and has since been
implicated in CCR by virtue of its role in repression of the galactokinase-encoding galK
gene (Fig. 2C) (130–132). Importantly, spf is one of the few genes repressed by CRP-
cAMP (133), tying Spot 42 activity to cAMP concentration in the cell. In most cases,
Spot 42 represses translation of mRNAs for genes transcriptionally activated by CRP-
cAMP, leading to coherent feed-forward loops that regulate CCR (131, 134). Spot 42 is
predicted to regulate at least 29 genes, including the glycerol permease-encoding glpF
(134, 135), linking Spot 42 activity to the inducer exclusion mechanism described above
for glycerol uptake and retention. Surprisingly, the Spot 42 sRNA from E. coli also func-
tions as an mRNA: it encodes a 15-amino-acid peptide—termed SpfP—that binds CRP-
cAMP to inhibit transcriptional activation of catabolite repressed genes, such as those in
the galETKM operon (Fig. 2C) (136). The carbon-storage regulator CsrA regulates Spot 42
abundance by protecting the spfmRNA from degradation by RNase E (137).

CsrA is an RNA-binding protein that plays a key role in carbon source utilization
(138). Originally identified as a repressor of glycogen biosynthesis in E. coli (139), CsrA
has emerged as a widespread regulator of Salmonella physiology (140). CsrA controls
protein abundance using a variety of mechanisms but primarily inhibits translation by
binding to mRNAs and occluding their Shine-Dalgarno sequences (141–143). CsrA is
antagonistically regulated by the sRNAs CsrB and CsrC (Fig. 2C), which harbor Shine-
Dalgarno-like sequences, thereby competing with targeted mRNAs for binding to CsrA
(141, 142).

CsrA can repress transcription through Rho-dependent transcription termination
(144) as well as activate transcription of certain genes (145). In E. coli, CsrA indirectly
activates transcription and translation of the uvrY gene (146) (designated sirA in
Salmonella), which encodes the response regulator of the BarA/UvrY two-component
system. UvrY promotes csrB transcription in E. coli (147), thereby generating a negative
feedback loop that controls CsrA abundance (Fig. 2C). Unphosphorylated EIIAGlc also
regulates turnover of CsrB and CsrC by sequestering CsrD, a protein that targets these
sRNAs for RNase-E-mediated degradation (Fig. 2C) (148). In addition, transcription of
csrC, but not csrB, is activated by Spot 42 in a CRP-cAMP-dependent manner (Fig. 2C)
(149).

The sRNA SgrS mediates a response to phospho-sugar stress (150), the growth inhi-
bition resulting from accumulation of phosphorylated carbohydrates such as G6P
(151). Synthesized in response to excess glucose-phosphate, SgrS specifically promotes
decay of the ptsG mRNA, reducing PtsG amounts, and subsequently decreasing glu-
cose uptake (Fig. 2C) (152). In E. coli, the sgrS gene is transcriptionally activated by the
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regulatory protein SgrR (153), which likely binds phospho-sugars that stimulate its ac-
tivity, and is repressed by Cra (Fig. 2C) (154). Like Spot 42 the sgrS sRNA is unusual in
that it also functions as an mRNA that specifies a 40-residue peptide designated SgrT
(Fig. 2C) (155). The SgrS sRNA reduces ptsG mRNA amounts (155), whereas the SgrT
peptide inhibits PtsG activity, thereby reducing glucose uptake (Fig. 2C) (156).

In sum, multiple regulators dictate various aspects of carbon source utilization to
tune bacterial metabolism to growth requirements. These regulators include DNA-
binding proteins, RNA-binding proteins, sRNAs, and metabolites that control the activ-
ity of these regulators. The targets of these regulators often overlap, highlighting the
complex network that enables bacteria to respond to changes in carbon source while
moving between environments with various nutrient compositions.

HOST CELL METABOLISM AND SALMONELLA VIRULENCE

Here, we discuss how S. enterica metabolism and virulence are interdependent and
reflect the environment the pathogen experiences inside host cells. Virulence-inducing
conditions alter Salmonella metabolism, and host cell metabolism dictates the environ-
ment with which the bacterium interacts. Therefore, a delicate balance exists between host
metabolic conditions that hinder versus promote the success of intracellular bacteria.

Infectious Life Cycle of Salmonella enterica

To establish a replicative niche within mammalian cells, Salmonella coordinates the
expression of a large cohort of gene products that elicit bacterial uptake by host cells,
manipulate host cellular processes, aid survival of host-originated insults, and maintain bac-
terial viability when key nutrients are sequestered by the host (157). After colonization
of the gastrointestinal lumen, S. enterica relies on effector proteins injected into host cells by
the Salmonella pathogenicity island 1 (SPI-1)-encoded type III secretion system 1 (T3SS-1) to
invade the epithelial mucosa (158, 159). Upon invasion, S. enterica enters the mildly acidic,
lysosome-like SCV (160). The intravacuolar environment is modified by effector proteins
translocated into the host cell cytoplasm via the SPI-2-encoded T3SS-2 to sustain bacterial
replication and viability (161). A small fraction of bacteria escapes the SCV into the cytosol of
the host epithelial cell, where the pathogen hyper-replicates (162, 163).

Salmonella recognition by the host immune system triggers a proinflammatory immune
response that results in lymphocyte recruitment from the proximal lamina propria (164,
165). Salmonella can invade various cells of the monocytic lineage, through which it dis-
seminates into distal tissues to cause systemic infection (166). Ultimately, the host either
succumbs to infection or prevents further proliferation and clears the pathogen. This multi-
stage infectious life cycle is tightly regulated and involves multiple regulatory circuits (167–
169). Here, we focus on the central role that the regulation of central metabolic processes
plays in S. enterica virulence.

Metabolic Requirements of Salmonella during Infection

As discussed above, S. enterica can take up and metabolize a wide array of carbohy-
drates and gluconeogenic substrates (100, 170, 171). Thus, the availability and utility of
particular carbon sources inside host tissues contribute to the outcome of S. enterica
infection. For example, S. Typhimurium requires the pfkAB-encoded glycolytic enzyme
phosphofructokinase (Fig. 1) for full virulence in cultured murine macrophages and a
mouse model of infection (172). By contrast, inactivation of the PTS responsible for
importing glucose causes a relatively moderate defect, implying that central metabolic
functions such as glycolysis play a more pivotal role in virulence than carbon source
prioritization through the PTS (172–174).

S. Typhimurium retains full virulence upon inactivation of genes encoding enzymes
that participate in gluconeogenesis, with the exception of a mutant defective in both
the PEP carboxykinase-encoding pckA gene and PEP synthase-encoding ppsA gene
(175). The pckA ppsA double mutant fails to feed the tricarboxylic acid (TCA) cycle
because it cannot convert substrates such as pyruvate and oxaloacetate into PEP (Fig. 1).
Although the full TCA cycle is required to maintain wild-type virulence, neither the
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reductive branch of the TCA cycle nor the glyoxylate bypass is necessary for S. Typhimurium
virulence (Fig. 1) (175–177). However, an sdhCDA mutant, lacking succinate dehy-
drogenase, is mildly attenuated for virulence, and an frdABCD mutant, lacking fu-
marate reductase and incapable of running the reductive branch of the TCA cycle,
is fully virulent, whereas the sdhCDA frdABCD double mutant is avirulent (177). The
latter behavior has been ascribed to the ability of the frdABCD-encoded fumarate
reductase to compensate for the absence of the sdhCDAB-encoded succinate dehy-
drogenase, thereby running the full TCA cycle (Fig. 1). Such compensatory action
likely reflects the plasticity of S. Typhimurium metabolism during murine infection,
presumably a requirement for the pathogen to successfully navigate diverse host
environments (22, 170, 173).

During infection of mammalian cells, S. Typhimurium predominantly utilizes the
Entner-Doudoroff (ED) glycolytic pathway for carbon catabolism (178, 179) (Fig. 1). This
pathway converts glucose to pyruvate through a distinct set of enzymes from the clas-
sical Embden-Meyerhof-Parnas (EMP) glycolytic pathway (Fig. 1) (180). The preference
for the ED pathway likely reflects that this pathway links glycolysis to the pentose
phosphate pathway (PPP) (Fig. 1) (180). S. Typhimurium residing within colorectal ade-
nocarcinoma epithelial cells (Caco-2) relies heavily on the PPP for biosynthesis of the
amino acids phenylalanine, histidine, and tyrosine (181). In fact, metabolic flux through
the PPP can outweigh flux through the EMP glycolytic pathway in S. Typhimurium, as
glucose is shunted toward ED rather than EMP glycolysis (182). It appears that glucose
is a crucial carbon source because Salmonella does not appear to readily access gluco-
nate (the immediate glucose derivative feeding the ED pathway) as a carbon source to
fuel the PPP during infection (181).

Intriguingly, competition studies in which mice were coinfected with wild-type
S. Typhimurium and a mutant strain in which the genes glpFK, gldA, glpT, and ugpB
were inactivated implicated glycerol as a pivotal carbon source for S. Typhimurium
within a mammalian host (173). That is, S. Typhimurium mutants defective in the
uptake of glycerol and glycerol-3-phosphate (Fig. 1) were more readily outcompeted
by wild-type S. Typhimurium in a mouse model of intravenous infection than mutants de-
fective in the uptake of glucose (173). In fact, glucose uptake-deficient Salmonella repli-
cates to similar levels as wild-type Salmonella in Caco-2 cells (174), reflecting their ability to
readily access 3-carbon substrates, such as glycerol and lactate, to generate biomass (181).

It is important to keep in mind that competition studies require careful interpretation
because they assume that phenotypes in mutant strains are due solely to the metabolic
function of the protein encoded by the inactivated gene(s) rather than potential nonmeta-
bolic (i.e., moonlighting) roles, which have been reported for other key regulators of carbo-
hydrate metabolism, including EIIAGlc (183). In addition, competition studies can hide mu-
tant phenotypes when a wild-type bacterium supports growth of a mutant strain, as in the
case of wild-type Salmonella supporting passive entry of noninvasive bacteria into host
cells (184). Moreover, such studies typically entail infections with bacterial doses orders of
magnitude higher than those necessary for lethality. Nonetheless, S. Typhimurium can uti-
lize diverse carbon sources throughout infection and may depend on access to alternative,
3-carbon substrates when glucose is limited. It is now critical to define when and where
these carbon sources are essential for pathogen growth and survival.

The Gastrointestinal Microbiome Provides Carbon Sources to Salmonella during
Gut Colonization

The intestinal microbiome can promote or hinder pathogen infection depending, in
part, on the availability of microbiome-derived or -eliminated carbon sources (185).
S. Typhimurium induces inflammation in the gut, promoting pathogen proliferation in
the intestinal lumen (186). Intriguingly, the ability to utilize carbon sources scavenged
from the inflamed gut differs among S. enterica serovars according to their host specif-
icities and disease conditions these serovars promote. For example, the genes associ-
ated with the utilization of inflammation-derived metabolites, such as ethanolamine,
are no longer functional in Salmonella serovars that are primarily extraintestinal (e.g.,
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S. enterica serovar Choleraesuis) (187). By contrast, these genes are functional in gastro-
intestinal S. Typhimurium, which can readily utilize ethanolamine when intestinal
inflammation promotes the production of the respiratory electron receptor tetrathio-
nate by the mammalian host (Fig. 3, top) (188). A similar schema applies to the utiliza-
tion of the microbial fermentation by-products 1,2-propanediol (189) and fructose-as-
paragine (190), whereby S. Typhimurium must promote intestinal inflammation to
utilize these carbon sources in a manner dependent on host-derived tetrathionate as
an electron acceptor in anaerobic conditions (Fig. 3, top).

Specific microbiota-derived carbon sources, such as butyrate, also display serovar-
specific utilization. For example, the extraintestinal serovar S. Typhi lacks the ydiQRSTD
operon and thus cannot utilize the microbial short-chain fatty acid butyrate (191). By

FIG 3 Metabolic state of S. Typhimurium during infection of a mammalian host. (top) During colonization of the
mammalian gastrointestinal tract, S. Typhimurium provokes inflammation, resulting in the release of the electron
acceptor tetrathionate by host cells. Tetrathionate enables S. Typhimurium to utilize certain microbiota-derived carbon
sources, such as ethanolamine and 1,2-propanediol. S. Typhimurium performs the complete, oxidative TCA cycle in the
gut lumen, enabling the utilization of microbiota-derived succinate as a carbon source. (bottom) When inside host cells,
the T3SS encoded in SPI-1 secretes effector proteins, such as SopE2, that trigger host cell metabolic reprogramming,
eliciting “Warburg-like” glycolysis (aerobic glycolytic fermentation) that results in accumulation of glycolytic
intermediates (e.g., 2/3-phosphoglycerate). S. Typhimurium can utilize such intermediates as carbon sources. In addition,
accumulated pyruvate and lactate activate the regulatory system CreB/CreC of S. Typhimurium, resulting in increased
transcription of SPI-2 genes that further intracellular replication. Activated upon infection with S. Typhimurium, the host
immune responsive gene 1 (Irg1) converts the TCA cycle intermediate aconitate into itaconate. The GTPase Rab32
traffics Irg1 to the SCV, where itaconate inhibits the bacterial isocitrate lyase of S. Typhi, thereby reducing intracellular
replication. By contrast, S. Typhimurium harbors an itaconate degradation gene cluster (ripCBA) that enables itaconate
metabolism, the secreted cysteine protease GtgE that degrades Rab32, and the secreted effector SopD2 that exhibits
GAP activity toward Rab32, inactivating the GTPase.
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contrast, the ydiD gene confers upon the intestinal serovar S. Typhimurium protection
from butyrate-induced suppression of SPI-1 gene transcription and host cell invasion
(191). In addition, S. Typhimurium actively inhibits the production of butyrate in the
gut by promoting inflammation, which antagonizes the growth of butyrate-producing
members of the resident microbiota such as Clostridia spp. (192).

Infection-Driven Metabolic Reprogramming of Mammalian Host Cells Governs
Salmonella Virulence

Mammalian cells undergo metabolic reprogramming upon pathogen infection, shifting
their metabolism in ways that influence pathogen biology (193–197). In general, bacterial
infection or stimulation of mammalian cells with specific bacterial compounds, such as li-
popolysaccharide (LPS), shifts cellular metabolism away from oxidative phosphorylation
(OXPHOS) and toward aerobic glycolytic fermentation (i.e., the Warburg effect often exhib-
ited by cancer cells) (194, 198), usually in a pathogen-specific manner (193). This process
has been observed in cells infected by the intracellular bacterial pathogen and tuberculosis
agent Mycobacterium tuberculosis, in which a predominant result of metabolic reprogram-
ming is the accumulation of molecules, such as lactate and fatty acids, that support myco-
bacterial growth (199, 200). This is apparently also the case for two other intracellular
pathogens—Legionella pneumophila and Chlamydia trachomatis—that rely on aerobic gly-
colysis for access to amino acids (201) and nucleotides (202), respectively.

S. enterica also reprograms mammalian cell metabolism to access carbon sources that
promote bacterial growth and pathogenesis. For instance, S. Typhimurium requires the
host cell nuclear fatty acid receptor PPARd to access host glucose pools during infection,
supporting bacterial replication (203). Curiously, S. Typhimurium reduces macrophage glu-
cose amounts by activating Warburg-like glycolysis, resulting in suppression of serine bio-
synthesis and accumulation of 2- and 3-phosphoglycerate (2/3-PG), PEP, and succinate,
among other metabolites, furthering bacterial growth (Fig. 3, bottom) (204). The SPI-1
T3SS-secreted effector protein SopE2 is required for the accumulation of 2/3-PG and PEP,
and subsequent accumulation of lactate and pyruvate activates the bacterial CreB/CreC
two-component regulatory system (Fig. 3, bottom). The DNA-binding protein CreB pro-
motes transcription of the vprB gene, which encodes a LysR-type regulator that directly
regulates transcription of genes in SPI-2, such as spiR (also referred to as ssrA) and ssrB
(204). These two genes specify a S. enterica-specific two-component system that governs
transcription of genes within as well as outside SPI-2 (205), including ancestral genes that
control S. Typhimurium virulence (206).

It has been proposed that S. Typhimurium elicits succinate accumulation in host
macrophages; that the accumulated succinate is sensed by S. Typhimurium independ-
ently of its ability to metabolize it; and that S. Typhimurium responds to the accumu-
lated succinate by promoting transcription both of genes regulated by the two-com-
ponent system PmrA/PmrB and of genes located within SPI-2, resulting in enhanced
bacterial virulence (207). The proposed connection between succinate accumulation
and S. Typhimurium virulence is hard to reconcile with reports from multiple groups
over the past 25 years (208–211). Below, we discuss evidence that contradicts the pre-
mise that succinate controls Salmonella virulence.

Succinate is reported to increase S. Typhimurium resistance to the antimicrobial peptide
(AMP) polymyxin B (PMB) (207), which is taken as an indication of succinate promoting
S. Typhimurium virulence. However, the relevance of these findings is highly debatable
given that the antibiotic polymyxin B is not used to treat Salmonella infections and that
there is no correlation between PMB resistance and S. Typhimurium virulence in mice. For
instance, a pmrA-null mutant is 10,000 times more sensitive to PMB than a phoP-null mu-
tant when grown in the presence of the PmrB-activating signal Fe31 (212, 213), but a phoP
mutant has a median lethal dose (LD50) following intraperitoneal inoculation of mice that is
;100,000 times higher than that of wild-type S. Typhimurium (214), whereas a pmrA-null
mutant is actually hypervirulent (208).

If succinate were important for S. Typhimurium virulence, preventing succinate
uptake would attenuate S. Typhimurium virulence. However, inactivation of the
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succinate uptake gene dcuB had no effect on wild-type S. Typhimurium virulence
(207). Inactivation of the dcuB gene showed mild attenuation in a phoP mutant back-
ground in a competition experiment in which mice where inoculated with both a dcuB
phoP double mutant and a phoP single mutant (see above for caveats of competition
assays) (207). As discussed above, phoP specifies the master regulator of S. Typhimurium
virulence (215), and a phoP single mutant is already attenuated 100,000-fold in LD50

experiments, raising questions about the significance of the mild attenuation in a com-
petition assay resulting from inactivation of the dcuB gene, which does not alter viru-
lence in a wild-type strain (207).

Because the PmrA protein binds to the ssrB promoter and hinders ssrB transcription
(208), the proposal that succinate increases transcription of both SPI-2 genes and genes
activated by PmrA is paradoxical, unless the proposed increases take place at different
times during infection and/or in different tissues or cell types. Nevertheless, S. Typhimurium
also utilizes succinate as a carbon source, and microbiota-derived succinate does support
S. Typhimurium growth in the intestinal lumen (216), suggesting that succinate availability
benefits S. Typhimurium as it competes for carbon sources in the gut.

Host cell metabolic reprogramming results in itaconate accumulation (207), as aconitate
is diverted away from the TCA cycle by the enzymatic activity of the host protein immune-
responsive gene 1 (Irg1) (217). Itaconate has been ascribed a largely anti-inflammatory role
in the modulation of activated macrophages and plays crucial immunomodulatory roles
during inflammation, tumorigenesis, and infection (195, 218). Itaconate inhibits the bacte-
rial isocitrate lyase, the key enzyme in the glyoxylate shunt of the TCA cycle (217).

Bacterial pathogens such as Yersinia pestis and Pseudomonas aeruginosa detoxify itaco-
nate by degrading it to acetyl-coenzyme A (acetyl-CoA) and pyruvate, thereby supporting
bacterial growth and pathogenicity (219). S. Typhimurium, but not the human-adapted S.
Typhi, possesses an itaconate degradation gene cluster encoded by the ripCBA operon
that confers a similar advantage during infection (220). However, the host GTPase Rab32
functionally interacts with Irg1 during S. Typhimurium infection to deliver itaconate to the
SCV, a process regulated by the host transcription factor EB (221), suppressing growth of
S. Typhi (Fig. 3, bottom) (222). By contrast, S. Typhimurium encodes the secreted cysteine
protease GtgE (223), and the GTPase-activating protein SopD2, which respectively target
Rab32 for degradation (224) and suppress Rab32 GTPase activity (Fig. 3, bottom) (225).
These findings support the previously reported dispensability of the glyoxylate shunt dur-
ing murine infection by S. Typhimurium (175), which can degrade itaconate and degrade
or inactivate the Rab32 GTPase. Furthermore, these results suggest that the glyoxylate
shunt may play a more fundamental role in the metabolism of S. Typhi during infection,
which remains sensitive to itaconate because it does not encode GtgE or the itaconate-
degradation cluster, and because sopD2 has been pseudogenized (226). The accumulation
of itaconate during infection illustrates how host metabolic reprogramming can influence
the outcome of bacterial infection.

Salmonella achieves metabolic reprogramming of the host cell via secreted effec-
tors such as SopE2 (227). SopE2-dependent reprogramming enables bacterial access to
distinct nutritional niches that promote pathogen growth (e.g., 2/3-PG and PEP) (204).
In turn, host metabolic reprogramming produces metabolites such as itaconate that
suppress S. Typhimurium growth (222) but, counterintuitively, may also be degraded
into derivatives that promote replication (219, 220). Considered together, these find-
ings may reflect the coevolution of pathogen and host resulting in metabolic reprog-
ramming of infected cells. Host cell metabolic reprogramming likely influences the ac-
tivity of key regulators of carbon metabolism in S. enterica, and these regulators in turn
impact S. enterica virulence.

REGULATORS OF CARBONMETABOLISM CONTROL SALMONELLA VIRULENCE

There is considerable overlap in the regulatory outputs of factors thought to act pri-
marily on only one of two processes—metabolism or virulence—which are often seen
as operating in discrete fashions. This overlap underscores that, together with physical
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and other chemical cues, the availability of specific carbon sources is crucial to S. enter-
ica virulence. In this section, we discuss the regulators of carbon source utilization and
metabolism that play roles in S. enterica virulence.

An array of extracellular and intracellular signals control virulence programs. Such sig-
nals often alert a pathogen to activate or suppress processes that dictate survival and pro-
liferation and can impact preference for one carbon source over another. The mildly acidic
environment of the SCV (226, 228, 229) and starvation of the essential cation magnesium
(Mg21) (18, 230) regulate virulence in a wide variety of pathogenic Salmonella biovars with
different host specificities. If a particular carbon source is readily available in the SCV,
S. enterica may link the sensation of mildly acidic pH to uptake of that carbon source. In
addition, the effect of carbon source on the activity of key regulators, such as CRP-cAMP,
may have prompted the recruitment of specific virulence determinants into a previously
unrelated (i.e., metabolic) regulatory circuit. Such relationships would enable a highly gran-
ular distinction between specific biological processes that depend on a given set of nutri-
tional signals and stress conditions that denote the multifarious host environments experi-
enced by a pathogen during infection.

Adenylate Cyclase and CRP are Required for Salmonella Virulence

cAMP and CRP orthologues regulate virulence attributes, such as T3SSs, toxin production,
and intracellular survival determinants, in several pathogens, including M. tuberculosis, cholera
agent V. cholerae, and opportunistic pathogen P. aeruginosa, that have different lifestyles and
inhabit different locales (231). CRP-cAMP also regulates S. Typhimurium virulence because
cyaA and crpmutants fail to disseminate from the murine intestine into lymph nodes and pe-
ripheral organs such as the spleen (232, 233). This defect renders S. Typhimurium avirulent,
suggesting that the ability to regulate carbon source utilization is crucial to bacterial virulence.
Given that cyaA and crp null mutants still manage to infect the intestinal epithelium (i.e., the
bacteria are not broadly attenuated in gaining access to host cells), this virulence defect
appears to result from the inability to utilize alternative carbon sources in deep tissues.
However, cAMP and CRP may contribute to virulence in additional ways.

For example, cyaA and crp null mutants fail to form flagella, leading to a strong motility
defect (96), and derepress the spv operon located in the virulence plasmid of S.
Typhimurium (234). Transcriptional activation of the sdiA gene by CRP-cAMP (235) may
also impact S. Typhimurium growth in the gut by enabling the LuxR-type transcription fac-
tor SdiA to detect a specific N-acyl homoserine lactone(s) produced by other species (236,
237). Most organisms harboring LuxR-type regulators also produce the specific N-acyl
homoserine lactones that bind to such regulators, resulting in quorum sensing abilities
(238). S. enterica is unusual in that it lacks the genes responsible for synthesis of N-acyl
homoserine lactones but harbors the gene specifying the regulatory protein that detects
such molecules (236). In S. Typhi, CRP-cAMP directly promotes transcription of the yihU-
yshA operon, which supports biofilm development and gallbladder colonization (239).

CRP-cAMP and CsrA Control Salmonella Pathogenicity Island-1 Gene Expression

The BarA/SirA two-component system and the SPI-1-encoded regulators HilA, HilC, HilD,
and InvF control transcription of the T3SS encoded in SPI-1 (159). The complete details of
this regulatory network are beyond the scope of this review, and it will suffice to note that
BarA/SirA promotes transcription of the key SPI-1 regulatory gene hilA in response to an
unknown stimulus (240, 241). Notably, the barA and sirA genes are encoded in separate
regions of the genome (242), allowing the sensor BarA to also activate under physio-
logical conditions the noncognate response regulator RcsB, which governs tran-
scription of a large number of genes, including several impacting S. Typhimurium
virulence (243). Thus, conditions increasing BarA activity may reflect effects on RcsB,
and potentially other regulators, rather than SirA’s transcriptional output (244).

By promoting hilA transcription, BarA/SirA triggers several positive feedback loops
within the HilA-HilC-HilD-InvF regulatory network and responsible for expression of
SPI-1 genes necessary for S. Typhimurium invasion of epithelial cells (158, 245, 246).
Key negative regulators, such as HilE (247) and the carbon storage regulator CsrA (248,
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249), are counterbalanced by other participants in the regulatory circuit. For instance,
BarA/SirA promotes transcription of the sRNA genes csrB and csrC, thereby antagonizing
hilD silencing by the RNA-binding protein CsrA, thus favoring hilD expression (249–251)
(Fig. 4). As discussed above, the regulation of csrB and csrC turnover by EIIAGlc’s sequestra-
tion of CsrD (148) and the specific regulation of csrC by CRP-cAMP (149) tie CsrA regula-
tion of SPI-1 genes to carbon source signals during infection.

FIG 4 Intersection of the regulatory circuits governing virulence and carbon source utilization in
S. Typhimurium. Unphosphorylated EIIAGlc promotes the assembly of the T3SS encoded in SPI-2 and
secretion of effector proteins. Phosphorylated EIIAGlc stimulates CyaA activity, thereby increasing cAMP
amounts. CRP-cAMP represses transcription of the spf and csrC genes, specifying the sRNAs Spot 42
and CsrC, respectively. Spot 42 increases the abundance of both CsrC sRNA and the HilD protein. HilD
is a transcriptional activator of the hilA gene, specifying an activator of SPI-1 genes, including the invF
gene. InvF is a transcriptional regulator of SPI-1 genes, including those specifying the components of
the T3SS machinery and secreted effectors. The RNA-binding protein CsrA increases the amounts of
SirA, which is activated by the bile- and acetate-responding sensor BarA. Activated SirA promotes hilA
transcription and negatively regulates hilD and hilE translation. A negative regulator of SPI-1 genes,
HilE antagonizes HilD. The global regulator of carbohydrate uptake Mlc represses transcription of the
hilE gene. Because unphosphorylated PtsG sequesters Mlc, hilE transcription should be derepressed in
the absence of glucose. Simultaneously, CRP should be activated by cAMP because phosphorylated
EIIAGlc promotes CyaA activity. The sRNAs CsrB and CsrC bind CsrA, preventing it from exerting its
regulatory functions, with only csrC transcription being repressed by CRP-cAMP. Ovals represent
proteins, rectangles represent genes, where necessary, and diamonds represent regulatory sRNAs or
the mRNAs transcribed from respective genes.
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How does CRP-cAMP impact Salmonella’s behavior inside infected cells? On the one
hand, the RAW 264.7 macrophage cell line infected with a crp-null mutant experiences
lower levels of apoptosis and altered glycolytic metabolism than when infected with
wild-type S. Typhimurium (252). Reduced levels of apoptosis and glycolysis may result
from reduced fitness of the crp mutant and/or altered abundance of specific virulence
factors. On the other hand, a S. Choleraesuis crp null mutant exhibited reduced secre-
tion of the SPI-1-encoded effector proteins SipB and SopB, leading to decreased cyto-
toxicity toward infected macrophages (253). The reported decreased secretion of SPI-1
effectors exhibited by the S. Choleraesuis crp mutant is paradoxical given CRP-cAMP’s
role in silencing SPI-1 genes. That is, CRP-cAMP promotes expression of SPI-1 genes by
repressing transcription of the Spot 42 sRNA, stabilizing the hilD mRNA by interacting
with its 39 untranslated region (Fig. 4) (254).

The sRNA-encoding csrC gene is transcriptionally activated by BarA/SirA (250) and posi-
tively regulated by Spot 42 (149). If the CsrA-dependent protection of Spot 42 RNA from
RNase E-mediated degradation described in E. coli (137) also takes place in S. enterica (Fig.
2C), CsrA sequestration by CsrC may render Spot 42 susceptible to RNase E-mediated
cleavage and limit Spot 42’s role in activation of SPI-1 via HilD (Fig. 4) (254). However, CsrC
also antagonizes CsrA-mediated repression of hilD translation and stability (249), suggest-
ing that CRP-cAMP sits atop an incoherent feed-forward loop that both inhibits and pro-
motes hilD expression via CsrC (Fig. 4). Curiously, the promoter activity of the prgH gene (a
proxy for transcription of SPI-1 genes) is efficiently suppressed in glucose-supplemented
minimal media (a condition in which CRP should be inactive due to low cAMP amounts)
compared to lysogeny broth (LB) (255). These regulatory interactions enable S. enterica to
control SPI-1 activation in response to carbon source, which may reflect the general nutri-
tional environment in the gut.

Transcription of the sirA gene is repressed during growth on glucose in a cyaA- and crp-
dependent manner (256). This repression appears to be indirect because CRP-cAMP exhib-
its no appreciable affinity for the sirA promoter. Given that BarA/SirA activity is modulated
by a wide array of stimuli, including short-chain fatty acids (257), bile (258), and changes in
osmolarity (259), it seems plausible that indirect catabolite repression of the sirA gene may
be overridden by other signals. In addition, the transcriptional outcome of a BarA/SirA two-
component system may differ depending on the specific signal activating the system
(215). Importantly, the reported studies of the regulatory effect of CRP-cAMP-repressed
Spot 42 on SPI-1 expression were performed by monitoring changes between exponential
and stationary-phase growth in LB, without supplementation of a specific carbohydrate
(149, 254). Thus, the signal controlling cAMP production, and by extension CRP-cAMP activ-
ity, in the latter studies may be unrelated to carbohydrate metabolism as carbohydrates
were not present in the media.

Glucose availability coincides with suppressed SPI-1 expression (255), suggesting that
glucose-responsive regulators besides CRP-cAMP similarly repress SPI-1. In agreement with
this notion, the sRNA SgrS represses transcription and translation of the sopD gene, which
specifies an effector secreted by both T3SS-1- and T3SS-2 (260). SgrS amounts increase in
the presence of phospho-sugar stress (in particular excess G6P) (152), a condition triggered
by excess glucose in a pathogen’s surroundings. Thus, Salmonella utilizes carbon source-
responsive regulators to avoid expression of virulence traits when glucose is in excess. It is
therefore plausible that Salmonella distinguishes between environments requiring and not
requiring the expression of virulence traits based on the relative amount of available glu-
cose. In support of this notion, an S. Typhimurium mutant deficient in glucose uptake suf-
fers only a mild competitive defect against wild-type bacteria in mice, whereas mutants
unable to utilize glycerol or mannose are more readily outcompeted (173).

The Global Repressor of Carbohydrate UptakeMlc Represses SPI-1 Gene Expression

The global regulator Mlc controls transcription of genes in SPI-1 by binding to the
hilE promoter and repressing hilE transcription (Fig. 4) (261). HilE is a key negative regula-
tor of SPI-1 genes (247). Because Mlc is sequestered by dephosphorylated PtsG after
PtsG-P has donated its phosphoryl group to an incoming glucose molecule, glucose
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import through PtsG is expected to derepress hilE transcription, resulting in repression
of SPI-1 genes. However, the increased expression from a hilE-lacZ transcriptional fusion
exhibited by S. Typhimurium grown on glucose, mannose, or arabinose (but not glyc-
erol) (261) was only partially ameliorated upon inactivation of the mlc gene, implying
that additional factors coordinate expression of SPI-1 genes with nutritional conditions.
These data suggest that inactivation of the hilE gene should prevent the increased tran-
scription of SPI-1 genes mediated by Mlc taking place in the presence of glucose.

The Regulator of Gluconeogenic Flux Cra is Required for Salmonella Virulence

The regulatory protein Cra monitors metabolic flux through the glycolytic and gluco-
neogenic pathways and is required for Salmonella virulence (262, 263). In Shigella flexneri
and enterohemorrhagic E. coli (264–266), Cra controls distinct virulence determinants, rais-
ing the possibility that a similar control operates in Salmonella; however, this possibility has
not been explored in detail. The virulence role of Cra is attributed to its regulation of the
genes encoding proteins that are part of the TCA cycle (175–177, 262).

Control of the SPI-2-Encoded Type III Secretion System by the PEP-Carbohydrate
PTS and EIIAGlc

Several regulators of carbohydrate metabolism that operate at the posttranscriptional
level contribute to S. Typhimurium virulence. For example, the mRNA abundance of several
genes, including those specifying the T3SS-2 and members of the PhoP regulon, is reduced
in a mutant harboring a transposon insertion in the ptsI-crr locus compared to the isogenic
wild-type parent (267). In addition, EIIAGlc supports the assembly of T3SS-2 by interacting
with inner membrane-bound components of this secretion apparatus and with secreted
effectors such as PipB (Fig. 4) (183). Consequently, EIIAGlc is required for secretion by the
T3SS-2 apparatus, which may be responsible for a crr-null mutant being rapidly outcom-
peted by wild-type S. Typhimurium following intravenous infection in mice (183), a model
that examines the pathogen’s proliferation in deep tissues.

Unexpectedly, substitution of EIIAGlc’s critical phospho-accepting histidine (H90) for ala-
nine did not alter S. Typhimurium virulence or effector secretion (183), suggesting that the
mechanism by which EIIAGlc promotes secretion by the T3SS-2 is distinct from that control-
ling carbohydrate metabolism (the latter requires phosphorylated EIIAGlc [41, 56]). It is pos-
sible, however, that inducer exclusion mediated by dephosphorylated EIIAGlc contributes
to virulence as well as metabolism (see discussion on EIIAGlc activity above). What role,
then, does EIIAGlc play in S. Typhimurium virulence experiencing different carbohydrates?

On the one hand, poor growth of the EIIAGlc-H90A strain on glycerol-supplemented
minimal media prevented examination of the efficiency with which effectors are trans-
located by the T3SS-2 system (183). (The H90A substitution prevents phosphorylation
of EIIAGlc.) On the other hand, secretion of effector SteC, and to a lesser extent SseJ,
was higher during growth on glycerol (when the phosphorylated form of EIIAGlc pre-
dominates) in the wild-type strain and in a strain expressing the phosphomimetic
EIIAGlc-H90D grown on glucose than in the wild-type strain grown under the same con-
ditions (183). That the phenotypes of these mutants are modest may reflect that regu-
lation by EIIAGlc (and potentially other proteins) is not binary and that various functions
are supported by the same regulatory states (and the carbon sources that promote
them) to greater or lesser extents. In other words, dephosphorylated EIIAGlc (i.e., H90A)
may satisfy basal T3SS-2 secretion needs but lacks the dynamic range of phosphorylat-
able EIIAGlc. Nevertheless, EIIAGlc’s involvement in promoting T3SS-2 effector transloca-
tion demonstrates the broadly intersecting nature of regulators of carbohydrate me-
tabolism and bacterial virulence.

In sum, bacterial pathogens experience a variety of metabolizable carbon sources dur-
ing infection. Although CRP-cAMP negatively regulates some virulence functions (254), the
association between heightened virulence states and growth on non-PTS carbohydrates
(e.g., saccharate [255, 268] and glycerol [173, 183]) and repression of the hilE gene by Mlc
(261) implies that S. Typhimurium pathogenicity benefits from access to alternative carbon
sources. This benefit is further realized by transcriptional repression of the sRNA-encoding
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gene csrC by CRP-cAMP, which antagonizes inhibition of the SPI-1 activator HilD by the
RNA-binding protein CsrA (149).

Critically, no single carbon source, member of the resident microbiota (with variable and
redundant capacity to metabolize complex carbohydrates), or host diet regulates the full
range of pathogen virulence functions in a binary way (i.e., as an “on/off” switch). Rather, the
composition of metabolizable substrates in the environment likely tunes virulence along a
spectrum, ensuring pathogen survival and maintaining a high level of plasticity and responsiv-
ity in specific virulence outputs. The expression of different metabolic and virulence determi-
nants reflects the highly variable nature of the environments S. Typhimurium occupies. In
addition, regulators of Salmonella virulence, and the stimuli that induce them, likely impact
carbohydrate uptake and the general metabolic or energetic state of the bacterial cell. In this
way, virulence cues may help pathogens “decide” when, where, and how to utilize the most
advantageous carbon source in the environments they experience.

PHYSIOLOGICAL CONNECTION BETWEEN VIRULENCE AND CARBON SOURCE
PRIORITIZATION

In this section, we propose an intimate link between carbon source utilization and
expression of virulence traits, whereby each process influences the other in a seem-
ingly continuous loop. We discuss the environmental conditions that induce virulence
behaviors, regulators that mediate such induction, and how the response can impact
the suitability of a given carbon source in supporting a successful bacterial infection.
We focus on the PhoP/PhoQ system, the master regulator of virulence and Mg21 ho-
meostasis in S. Typhimurium (215).

Premise: Host Environments that Require Expression of Virulence Traits do not
Always Favor Rapid Bacterial Growth

Salmonella grows slowly inside mammalian cells (269). This slow growth is presumably
due to the multiple stresses Salmonella experiences within mammalian cells, including
mildly acidic pH (229), CAMPs (270), and nutrient limitation (271), as Salmonella competes
with host cells for key carbon sources such as glucose and fatty acids (171). Salmonella fur-
thers its survival and proliferation in host tissues by coordinating nutrient utilization with
expression of virulence determinants, many of which mediate resistance to antimicrobial
agents produced by the host. Salmonella can benefit from reducing its growth rate to
accommodate virulence strategies and/or evade host antimicrobial defenses. That specific
Salmonella auxotrophs display slower growth and increased resistance to antibiotics (272–
275) than the wild-type strain during infection of macrophages suggests that conditions
that slow the growth of wild-type bacteria render them resistant to host-mediated
defenses which often target actively replicating bacteria.

The slow growth rate displayed by wild-type Salmonella inside mammalian cells reflects
both the hostile host environment and the expression of particular virulence factors, such as
those encoded in SPI-1. Curiously, S. Typhimurium expresses SPI-1 genes heterogeneously,
resulting in an altruistic behavior toward genetically identical bacteria that do not express
SPI-1 genes (19). Thus, bystander (non-SPI-1-expressing) bacteria avoid the metabolic bur-
den of expressing SPI-1 genes (19) and are internalized by host cells due to the biochemical
changes triggered by the effectors injected by SPI-1-expressing bacteria into host cells (21,
184). In addition to the metabolic costs resulting from expression of SPI-1 genes, the T3SS
apparatus encoded in SPI-1 decreases the permeability barrier of the bacterial inner mem-
brane, rendering S. Typhimurium hypersensitive to membrane-damaging agents (276). We
propose that, by reprograming their physiology, Salmonella species counteract the negative
effects resulting from expression of virulence determinants and that this reprogramming
entails a metabolic reprioritization that slows down the growth of intracellular bacteria.

The Salmonella-Containing Vacuole is Deprived of Mg2+ by Host Divalent Cation
Transporters

The murine endosomal divalent cation transporter encoded by the solute carrier fam-
ily 11 member 1 (SLC11A1) gene (formerly designated Nramp1, for “natural resistance
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associated macrophage protein 1”) is crucial to limit Salmonella growth (277). The
SLC11A1 protein localizes to the membrane of pathogen-containing phagosomes (278)
and transports divalent cations across the membrane in a pH-dependent manner (279).
The anti-Salmonella effect of SLC11A1 had originally been attributed to the depletion of
Fe21 and Mn21 from the phagosome (280–282) and promotion of a rapid inflammatory
response (283). Recent studies suggest that, rather than transporting Fe21 or Mn21,
SLC11A1 controls intraphagosomal replication of S. Typhimurium by depriving the
pathogen of Mg21 (18). Similarly, the human cation channel encoded by the MCOLN2
gene restricts S. Typhi replication by causing Mg21 starvation in the pathogen (284).
Competition for Mg21 during intracellular infection raises the question of how
Salmonella overcomes Mg21 limitation (230).

The PhoP/PhoQ Two-Component SystemMaintains Cytoplasmic Mg2+ Homeostasis
and Promotes Salmonella Virulence

PhoP/PhoQ is a two-component regulatory system that enables Salmonella to with-
stand Mg21 starvation in laboratory media (16) and to survive inside mammalian mac-
rophages. The response regulator PhoP is activated by multiple signals detected by
the PhoQ sensor kinase in the cytoplasm or periplasm (Fig. 5) (215). Activating signals
sensed by PhoQ include low periplasmic Mg21 (16), CAMPs in the periplasm (285),
mildly acidic cytosolic pH (17), hyperosmotic stress (286), and long-chain unsaturated
fatty acids (287). Activating signals promote the phosphorylated state of PhoP (PhoP-
P), which can result from increased PhoQ autophosphorylation and/or phosphotransfer
to PhoP and from decreased dephosphorylation of PhoP-P by PhoQ (288). Phosphorylation
promotes PhoP dimerization, resulting in PhoP-P binding to target sequences and transcrip-
tional regulation of the corresponding genes (289).

In addition to controlling genes directly by binding to their promoter sequences,
PhoP regulates genes indirectly, by controlling the abundance and/or activity or other
regulatory proteins or RNAs (215). That is, PhoP is a direct transcriptional activator of
the rstA (290, 291), slyA (292), and ssrB (293) genes, which specify DNA-binding regula-
tory proteins. PhoP also promotes expression of horizontally acquired genes by dis-
placing gene silencer H-NS from AT-rich DNA sequences, rendering H-NS a substrate of
the Lon protease and decreasing H-NS amounts 95% when S. Typhimurium is inside
macrophages (294, 295). Moreover, PhoP posttranslationally activates PmrA (213, 296)
and alters the stability of numerous proteins, including several transcriptional regula-
tors (297, 298), by decreasing the amounts (297) and activity (299) of the protease
adaptor ClpS.

The control of Mg21 homeostasis and the control of bacterial pathogenicity by
PhoP (215) appear to be intimately connected. All cells strive to maintain cytoplasmic
Mg21 homeostasis because Mg21 is the most abundant divalent cation (300) and can-
not be replaced by other cations as a cofactor for the .300 biochemical reactions that
require Mg21. Therefore, cells respond to Mg21 starvation by reprogramming cell phys-
iology, with a central goal of maintaining cytoplasmic Mg21 concentration above the
levels required for essential processes. Moreover, PhoP promotes the expression of
proteins required for both cytoplasmic Mg21 homeostasis and virulence.

S. enterica harbors three distinct Mg21 transporters: CorA (301), MgtA (302), and
MgtB (303). CorA is a relatively ubiquitous cation channel that mediates Mg21 uptake
and efflux (304). By contrast, MgtA and MgtB are P-type ATPases (i.e., they require ATP
hydrolysis to import Mg21 against an electrochemical gradient) expressed under condi-
tions resulting in cytoplasmic Mg21 starvation (304, 305), including hyperosmotic stress
(306, 307), high ATP (308), and/or Mg21-limited extracellular conditions (16, 304, 309).
Though both MgtA and MgtB further survival during Mg21 starvation (306), only MgtB
is required for virulence in S. Typhimurium (18, 310, 311) and Y. pestis (312).

PhoP is a direct transcriptional activator of the mgtA and mgtB genes (16, 309) and
is responsible for inhibition of CorA activity (313) by reversing membrane potential
(314). The mgtB gene is required to counteract the antibacterial effects of SLC11A1 in
murine hosts, but mgtA is not (18). Similarly, the mgtB gene, but not the mgtA gene, is

Bacterial Pathogens, Carbon Utilization, and Virulence Microbiology and Molecular Biology Reviews

September 2023 Volume 87 Issue 3 10.1128/mmbr.00198-22 22

https://journals.asm.org/journal/mmbr
https://doi.org/10.1128/mmbr.00198-22


required for bacterial survival for 24 h against Mg21 starvation in laboratory media
(311). Furthermore, the mgtB gene is more induced than the mgtA gene when the
Mg21 concentration in laboratory media decreases from 10 to 1 mM Mg21 (304). In
addition, mgtB is a horizontally acquired gene exhibiting a sporadic phylogenetic dis-
tribution, whereas mgtA is widespread within enteric bacteria (315). These data high-
light the critical role that MgtB-mediated Mg21 homeostasis plays during infection.

ATP exists as a Mg21 salt in living cells (316). S. Typhimurium responds to a decrease
in cytoplasmic Mg21 concentration by reducing the amount of the Mg21-chelating ATP
molecules (317, 318). This reduction in ATP decreases both the proteolytic turnover of

FIG 5 The master virulence regulatory system of S. Typhimurium—PhoP/PhoQ—promotes expression of
both virulence-advancing and virulence-suppressing determinants. Multiple signals activate the sensor
PhoQ, including low Mg21 in the periplasm and mildly acidic pH in the cytosol. Activated PhoQ promotes
the phosphorylated state of the regulator PhoP, which binds to specific DNA sequences modifying
transcription of dozens of genes. The PhoP/PhoQ system governs both Mg21 homeostasis and virulence.
PhoP promotes transcription of the mgtA and mgtB genes, which encode distinct Mg21 transporters that
import Mg21 from the periplasm to the cytoplasm, furthering Mg21 homeostasis. The PhoP-activated
mgtC gene encodes a protein required for virulence and Mg21 homeostasis. The MgtC protein decreases
the ATP concentration by inhibiting the F1F0 ATP synthase (ATPase) and a phosphate importer, liberating
Mg21 that is otherwise complexed with ATP. MgtC also binds to PhoP, protecting it from proteolytic
degradation by ClpSAP. Paradoxically, many PhoP activated genes decrease S. Typhimurium virulence.
Encoded by the last gene in the mgtCBRU-cigR operon, the CigR protein binds to MgtC, preventing
MgtC both from binding the F1F0 ATP synthase and inhibiting ATP synthesis and from protecting PhoP
from proteolysis by ClpSAP. The PhoP-activated amgR gene specifies a sRNA—AmgR—that promotes
degradation of the mgtC portion of the mgtCBRU-cigR transcript. PhoP promotes transcription of the pmrD
gene, which encodes a posttranslational activator of the regulatory protein PmrA, a transcriptional
repressor of the virulence regulatory gene ssrB, which is directly transcriptionally activated by PhoP.
Together with the sensor SpiR, the regulatory protein SsrB forms a two-component system necessary for
transcription of genes located within SPI-2 and for derepression of other horizontally acquired genes. The
PhoP-activated pcgL gene encodes a periplasmic D-alanyl-D-alanine (DAA) dipeptidase that converts DAA
into two molecules of D-Ala, thereby decreasing the amounts of the virulence-promoting DAA. In addition,
MgtC suppresses the synthesis of cyclic di-GMP (c-di-GMP), an allosteric activator for the cellulose synthase
BcsA. Cellulose hampers Salmonella virulence in mice because a bcsA mutant is hypervirulent and also
because inactivation of the cellulase-encoding bcsZ gene attenuates Salmonella virulence. Ovals represent
proteins, rectangles represent genes, where necessary, and diamonds represent regulatory sRNAs or the
mRNAs transcribed from respective genes.
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otherwise functional proteins (319) and the rate of protein synthesis (320, 321), liberating
Mg21 to participate in other biochemical processes (316). By inhibiting ATP synthesis,
S. Typhimurium initiates a global reprogramming of cellular metabolism, as essentially all
biological processes require ATP to proceed uninhibited. Growth in a virulence-priming,
PhoQ-activating medium (e.g., low Mg21 and mildly acidic pH) modifies S. Typhimurium’s
metabolism to accommodate the virulence program (322), further supporting the notion
that virulence and metabolism interact. In addition, Mg21 limitation promotes antibiotic
tolerance in S. Typhimurium (280). Consistent with this behavior, a reduction in ATP con-
centration (and resulting dampening of metabolic activity) in E. coli, Staphylococcus aureus,
and Acinetobacter baumannii furthered survival against bactericidal antibiotics (323).

Encoded by a Salmonella-specific gene (324) transcriptionally activated by PhoP (291),
the MgtC protein reduces the bacterium’s ATP amounts by targeting the Fo a subunit sub-
unit of the F1F0 ATP synthase subunit termed AtpB (317) and a phosphate importer (318)
whose identity is still unknown. MgtC is one of the most highly expressed S. Typhimurium
proteins when within the mildly acidic phagosome of mammalian macrophages (310,
324, 325). MgtC is necessary to buffer the cytosolic pH of the bacterial cell (317). Because
ATP is the primary energy currency of all living cells, the MgtC-dependent decrease in ATP
concentration has profound effects in Salmonella by reducing protein synthesis (318), the
cellular activity demanding the most energy (326, 327), and ATP-dependent proteolysis
(319). Since bacterial growth is largely correlated with the rate of protein synthesis (9), the
MgtC-dependent reduction in ATP results in a concomitant reduction in S. Typhimurium’s
growth rate (319). MgtC also decreases the amount of cyclic-di-GMP (328), the allosteric
activator of the bacterial cellulose synthase (329), thereby decreasing cellulose biosynthe-
sis when S. Typhimurium is within phagocytic cells (328). In addition, MgtC protects the
master virulence regulator PhoP from degradation by the protease ClpSAP (298), impact-
ing the stability of numerous regulatory proteins.

Thus, activation of PhoP provokes a dramatic physiological reprogramming designed to
maintain Mg21 homeostasis. This reprogramming involves increased Mg21 uptake into the
cytoplasm, as well as a dramatic reduction in ATP amounts, thereby reducing translational
activity. Moreover, it challenges the assumption that conditions that favor rapid growth are
always best for a cell. Instead, a cell may prioritize survival in the various environments it
experiences, such as the SCV or the mammalian gut for Salmonella. The adaptation
designed to maintain Mg21 homeostasis is accompanied by increased expression of viru-
lence factors necessary for Salmonella survival inside host tissues. Because the expression
of virulence factors imposes its own physiological costs, how does a bacterium balance
these various constraints?

Case Study: The Physiological Cost of Salmonella Virulence is Balanced by the
Expression of Antivirulence Factors

S. Typhimurium and many other bacterial pathogens harbor antivirulence factors, which
are proteins and RNAs that reduce virulence despite being synthesized by a pathogen dur-
ing infection. Antivirulence factors act directly or alter the abundance of metabolites that
determine the outcome of a bacterium-host interaction. That pathogens would produce
antivirulence factors seems paradoxical given that pathogens require virulence factors to
survive within host environments. However, if virulence is understood as balancing multi-
ple biological constraints (330, 331), such as the metabolic and/or physiological costs of
expressing virulence-associated proteins or the induction of a slow growth state, against
the need to survive in the host environment, then antivirulence factors may serve to curtail
an otherwise detrimental virulence program.

For example, the antivirulence gene pcgL specifies a periplasmic D-alanyl-D-alanine
(DAA) dipeptidase that hydrolyzes the dipeptide DAA into two molecules of D-alanine
(Fig. 5) (332). DAA accumulation and release into host tissues appear to be responsible for
the hypervirulence phenotype of a pcgL-null mutant, rather than PcgL slowing bacterial
growth, because injection of mice with synthetic DAA increases the number of wild-type
S. Typhimurium in the liver and spleen 100� to 1,000� and also because the pcgLmutant
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grows like the wild-type strain in laboratory media (333). Unexpectedly, the antivirulence
gene pcgL is transcriptionally activated by the virulence regulator PhoP (333).

Cellulose is a major component of S. Typhimurium’s biofilms (334, 335). Surprisingly,
inactivation of the bcsA gene, which specifies the catalytic subunit of the cellulose syn-
thase, increases S. Typhimurium virulence (328), whereas the cellulose-degrading BcsZ pro-
tein promotes virulence (336). The cellulose produced during infection may prevent host
cells from responding to S. Typhimurium surface molecules, such as the LPS, occluded by
cellulose. The bcsA-null mutant exhibits wild-type growth in laboratory media (328), sup-
porting the notion that BcsA, like PcgL, exerts its antivirulence effects by controlling the
abundance or accessibility of molecules that act on host cells.

Certain antivirulence factors operate within the pathogen to control the expression
or availability of virulence determinants. For example, the anti-sense RNA AmgR pro-
motes degradation of the mgtC portion of the mgtCBRUcigR polycistronic mRNA by
RNase E (337). Paradoxically, PhoP is a direct transcriptional activator of both the mgtC
(291) and amgR promoters (337), providing a singular example of a regulatory protein
essential for bacterial virulence that promotes expression of both a virulence gene and
its antagonizing antivirulence gene. Because larger amounts of active PhoP protein are
required to activate the amgR promoter than the mgtC promoter (337), AmgR’s role
appears to be in limiting MgtC’s effects over a defined time window.

CigR is an antivirulence protein that binds to the MgtC protein, thereby antagonizing
MgtC’s ability to reduce ATP amounts and protect PhoP from proteolysis by ClpSAP (338). A
cigR-null mutant replicates to higher numbers in murine macrophages than does wild-type S.
Typhimurium (338). As the cigR gene is also transcribed from a PhoP-independent promoter,
CigR sets a threshold that MgtC must surpass to exert virulence-promoting activities (338).

Activated by PhoP at the posttranslational level, the DNA-binding protein PmrA represses
transcription of the Salmonella-specific ssrB gene (208), which encodes the response regulator
of the SPI-2-activating SsrB/SpiR two-component system (339). PhoP is a direct transcriptional
activator of the ssrB (293) and pmrD (213) genes. This is curious because PmrD is responsible
for the posttranslational activation of PmrA (340). In other words, PhoP increases expression of
both a critical virulence regulator (SsrB) and of a protein (PmrD) that (indirectly) reduces
expression of that very same regulator.

Cumulatively, the results discussed above argue that virulence traits must be carefully
regulated to balance bacterial proliferation against survival inside a mammalian host. We
propose that a similar logic applies to the regulation of bacterial metabolism: when navi-
gating host environments, bacteria may dampen their metabolism to enhance survival
against antimicrobial products and/or to balance biological constraints, such as virulence
factor production, access to nutrients, and replication.

Hypothesis: PhoP Alters Carbon Prioritization to Maintain Cytoplasmic Mg2+

Homeostasis

The adenylate cyclase CyaA plays a critical role in carbon metabolism by synthesizing
cAMP, which is necessary for transcription factor CRP to bind its specific target DNA
sequences and regulate gene transcription. The adenylate cyclase from E. coli exhibits an
absolute requirement for Mg21 in permeabilized cells, cell extracts, or purified preparations
(341–345). CyaA coordinates Mg21 ions in its catalytic site to perform the cyclization of ATP
to cAMP (341, 344, 346). The preferred substrate of CyaA is likely ATP:Mg21, since ATP:
Mn21 exhibits much lower specific activity for the class III adenylate cyclase CyaB from
P. aeruginosa (346). In addition, unprotonated or uncomplexed ATP (i.e., ATP lacking Mg21)
inhibits mammalian adenylate cyclases (347, 348). The Mg21 dependence of CyaA activity
leads us to propose that cytoplasmic Mg21 starvation decreases CyaA activity in living bac-
teria because it entails a reduction in the concentration of both the substrate (i.e., ATP) and
cofactor (i.e., Mg21) of the reaction, which is anticipated to lower cAMP amounts and result
in decreased abundance of active CRP.

By extension, the restoration of cytoplasmic Mg21 homeostasis may support the syn-
thesis of cAMP, promoting CRP-cAMP activity. It makes intuitive sense that bacteria would
dampen their metabolic activity when experiencing cytoplasmic Mg21 starvation until
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conditions improve and prioritize processes essential for stress survival. Nevertheless,
Salmonella requires some level of active catabolism to remain viable during cytoplasmic
Mg21 starvation, and one way it may accomplish this is by importing Mg21 into the cyto-
plasm via the Mg21 transporters MgtA and MgtB (Fig. 6) (309).

Transcriptionally activated by PhoP, the mgtA gene and mgtCBRUcigR operon are also
regulated at the transcription elon2gation level by several signals (311, 349–355) that ena-
ble temporal and Mg21 concentration-dependent distinction between the expression of
MgtA and MgtB (310, 356). An intriguing possibility is that, while this regulation promotes
distinct phases of Mg21 uptake (dependent on the degree of cytoplasmic Mg21 starvation)
(356), it may also result in different cAMP amounts because CyaA activity is Mg21 depend-
ent (341–345). In other words, MgtA- and MgtB-dependent Mg21 uptake may determine
the utilization and catabolism of specific alternative carbon sources by controlling the
amount of CRP-cAMP. An expected consequence of such regulation would be the utiliza-
tion of readily available, host-derived alternative carbon sources, such as glycerol (173), if
access to primary carbon sources like glucose is limited. In conjunction with the inhibition
of ATP synthesis by MgtC (i.e., OXPHOS), growth on poorly fermented carbon substrates
may help ensure a smaller amount of ATP generation from substrate-level phosphorylation
(357, 358).

FIG 6 How the PhoP/PhoQ system may alter Salmonella metabolism by furthering cytoplasmic Mg21 homeostasis. PhoP promotes expression of the Mg21

importers MgtA and MgtB while decreasing the activity of the bidirectional Mg21 channel CorA (not shown). PhoP also promotes expression of the MgtC
protein, which decreases the ATP concentration by inhibiting both phosphate (Pi) uptake and ATP synthesis by the F1F0 ATP synthase. Because ATP exists
predominantly as a chelate salt with Mg21 in living cells, ATP abundance is closely tied to Mg21 availability. ATP:Mg21 is the substrate of the Mg21-
dependent adenylate cyclase CyaA. Thus, a reduction in the cytoplasmic Mg21 concentration below a certain threshold likely reduces CyaA activity and, by
extension, the activity of CRP, which requires cAMP as coactivator. Thus, when the cytoplasmic Mg21 concentration is above a certain threshold, CRP-cAMP
promotes the transcription of many genes involved in glycolysis and the TCA cycle, along with genes responsible for the uptake and breakdown of certain
carbon sources, and genes that encode factors that regulate SPI-1 gene expression. By contrast, when the cytoplasmic Mg21 concentration is below a certain
threshold, the resulting reduction in CRP activity should negatively regulate these processes, impacting the metabolic and energetic state of the cell, as well
as virulence. S. Typhimurium access to glucose may also influence this process because glucose uptake reduces CyaA activity via P-EIIAGlc and because acetate
generated from overflow metabolism of glucose promotes the acetylation of the HspQ protein by the protein acetyltransferase Pat using as acetyl donor
acetyl-CoA bound to Qad, a protein encoded by the PhoP-activated qad gene. Acetylated HspQ is no longer a substrate of the Lon protease. Both acetylated
HspQ and nonacetylated HspQ bind the protease adaptor ClpS, inhibiting the proteolysis of ClpS-dependent substrate of the ClpAP protease. Genetic
evidence suggests that one such substrate is the glucose transporter PtsG, favoring a state of increased glucose uptake and reduced cAMP synthesis. When
glucose is abundant, it overrides the inhibition of ATP synthesis by MgtC likely because larger amounts of ATP can be synthesized from substrate-level
phosphorylation rather than TCA-coupled oxidative phosphorylation. Ovals represent proteins and rectangles represent genes.
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To date, most studies on the regulation of Mg21 homeostasis in Salmonella have uti-
lized minimal media supplemented with either glucose or glycerol, and few comparisons
have been made between these growth conditions. Particularly with regard to the level of
ATP, it is conceivable that growth on an energy-dense carbon source like glucose will have
profound impacts on the overall physiology of a Mg21-starved cell. In support of this
notion, the dependence of MgtC on the atpB-encoded a-subunit of the F1F0 ATP synthase
to reduce ATP levels is conditioned by the carbon source available to S. Typhimurium (Fig. 6)
(318). That is, when S. Typhimurium is grown on an inefficiently fermented carbon
source such as glycerol, an atpBmutant exerts a dominant effect over mgtC because the
bulk of ATP synthesis results from low substrate-level phosphorylation, resulting in low
ATP. By contrast, growth on readily fermentable glucose decouples the effect of mgtC
from that of atpB as higher levels of ATP can accumulate by substrate-level phosphoryla-
tion independently of OXPHOS. Thus, S. Typhimurium may preferentially utilize subopti-
mal carbon sources during infection due to factors other than carbon source availability,
resulting in a low ATP concentration. This would reduce the rate of protein synthesis,
which is the cellular activity that demands the most energy, thereby decreasing bacterial
growth rate and resulting in increased resistance to antimicrobial agents that preferen-
tially kill growing bacteria (274, 359).

By contrast, some PhoP-dependent phenotypes benefit from bacterial access to glu-
cose. For example, along with ATP, the amounts of acetyl-CoA, the immediate end product
of glycolysis and initial substrate of the TCA cycle, increase during growth on glucose
(299). When S. Typhimurium experiences low cytoplasmic Mg21, PhoP promotes transcrip-
tion of the qad gene, which specifies the acetyl-CoA-binding protein Qad (360), resulting in
acetylation of HspQ, a substrate of the Lon protease that stimulates proteolysis of other
Lon substrates (299). Acetylated HspQ is no longer a Lon substrate or able to promote pro-
teolysis of Lon substrates. Instead, acetylated HspQ binds to ClpS, inhibiting proteolysis by
ClpSAP (299). Thus, access to glucose during Mg21 starvation would be expected to alter
the specificity of the Lon and ClpAP proteases, which together control the abundance of
hundreds of proteins, including several participating in central metabolism. For example,
the abundance of the EIIBC proteins PtsG and FruA, which import glucose and fructose,
respectively, is lower in a phoP mutant but higher in a clpS mutant than in the wild-type
strain (361). These results strongly suggest that PtsG and FruA are subject to ClpS-depend-
ent proteolysis by ClpAP because PhoP increases the abundance of the ClpS inhibitor
HspQ (360), as well as transcriptionally represses the clpS gene (297). Thus, growth on glu-
cose would be expected to preserve PtsG and FruA amounts during Mg21 starvation in a
PhoP-dependent manner (Fig. 6).

Transcription of the bcsA gene is positively regulated by the stress-responsive RNA poly-
merase sigma factor RpoS (362), the amounts of which are stabilized in low Mg21 by the
PhoP-activated iraP gene, which encodes a protein that binds protease adaptor RssB and
prevents RpoS delivery to the ClpXP protease (363). Because transcription of the rpoS gene
is negatively regulated by CRP-cAMP (364), high cellulose biosynthesis should correspond
to PhoP-activating and CRP-inactivating conditions, a plausible scenario for Salmonella
residing intracellularly. However, as noted above, the PhoP-activated mgtC gene reduces
cellulose biosynthesis by decreasing cyclic di-GMP amounts (328).

Apart from inhibiting ATP synthesis, MgtC also inhibits phosphate (Pi) uptake (Fig. 6)
(318, 365). ATP synthesis requires Pi to phosphorylate ADP. When S. Typhimurium experien-
ces cytoplasmic Mg21 starvation, a Pi-starvation response is triggered due to reduced ATP
consumption resulting from a decrease in translation, which lowers that concentration of
free Pi (320). MgtC actively inhibits Pi uptake to maintain low levels of ATP (315) rather
than accumulating Pi via induction of the PhoB/PhoR regulon.

Importantly, Pi is required for the catabolism of most carbohydrates because ATP
donates a phosphoryl group to incoming carbohydrates to prevent their diffusion back
across the cytoplasmic membranes (366, 367). Therefore, inhibiting Pi uptake may also
prevent efficient carbohydrate catabolism. In addition, the CyaA-dependent conversion
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of ATP into cAMP creates a pyrophosphate by-product that could conceivably contrib-
ute to Pi homeostasis in the cytoplasm (368).

The utilization of many alternative carbon sources entails less phosphorylation than does
the utilization of glucose. For example, G3P enters the glycolytic pathway as dihydroxyacetone
phosphate (DHAP), which represents a midway point of glycolysis and only requires the initial
phosphorylation of glycerol to G3P by GlpK (Fig. 1) (369). Furthermore, uptake of glycerol by
facilitated diffusion through GlpF does not require energy to be expended via ATP hydrolysis
(52). It is plausible that access to carbon sources such as glycerol benefits S. Typhimurium as it
attempts to balance central carbon metabolism against the demands of maintaining Mg21

homeostasis inside macrophages. Because Pi is required for the generation of ATP, reducing Pi
uptake and thereby ATP levels should also decrease cAMP generation. Thus, the activity of
regulators of Pi homeostasis such as PhoB (370) may intersect with the regulation of carbon
metabolism. In support of this notion, activation of the PhoB/PhoR two-component system
alleviates sugar phosphate stress in an sgrS-null strain of E. coli (371).

Minor differences in the abundance of;70 metabolites were recently reported among
a set of S. Typhimurium strains with a wild-type, constitutively active, or genetically inacti-
vated phoP gene when grown in low Mg21 laboratory media (372). Unfortunately, the
results are hard to interpret because the authors reported a decrease in ATP amounts in a
phoP mutant strain (372), despite prior reports that phoP mutant S. Typhimurium exhibits
greatly increased amounts of ATP in low Mg21 (321), and also because some of the results
were obtained by expressing PhoP at nonphysiological amounts.

The PhoP regulon likely has far-reaching, as-yet-underappreciated effects, on the regula-
tion of carbohydrate metabolism in Salmonella, impacting both the general physiological
and the metabolic state of the pathogen and influencing its behavior while in the SCV. By
reducing the ATP concentration in response to cytoplasmic Mg21 starvation, the PhoP-acti-
vated MgtC protein limits the amount of the precursor for cAMP synthesis, likely reducing
the regulatory activity of CRP-cAMP. Moreover, and to balance this effect, the PhoP-activated
Mg21 transporters MgtA and MgtB may support the Mg21-dependent activity of CyaA to
maintain a cAMP concentration sufficiently high for the catabolism of alternative carbon
sources (Fig. 6).

The hypothesis proposed here underscores central roles for both ATP and Mg21 in the
coordination of bacterial virulence and metabolism. However, other intracellular bacterial
pathogens such as Listeria monocytogenes lack adenylate cyclase (373). Interestingly, the
major virulence regulator of L. monocytogenes, PrfA (374, 375), a CRP-like protein that also
regulates facets of carbon metabolism (376–378), is allosterically activated by the tripeptide
glutathione (379, 380). It is likely no coincidence that glutathione is synthesized by the mul-
tidomain g -glutamylcysteine ligase/glutathione synthetase GshF in a reaction dependent
on ATP and Mg21 (381). That is, even in cases where cAMP is not the secondary messenger
for a regulator controlling virulence and carbon metabolism, ATP and Mg21 still impose
crucial regulatory checkpoints on the integration of these two activities.

In sum, both virulence factors and metabolic prioritization contribute to a success-
ful pathogen infection, which may explain the high level of overlap in their regulation
and physiological effects. That virulence and carbon metabolism are interconnected is
reflected in the dramatic physiological consequences on expression of PhoP-regulated
virulence proteins such as MgtC simply resulting from a change in the carbon source
available to Salmonella (318). Thus, virulence pathways can modulate carbon source
utilization, and carbon source utilization in turn governs virulence traits (Fig. 7).

PhoP-Regulated Metabolic Changes Resemble Those Exhibited by Certain Human
Tumors

Cancer cells reprogram cellular metabolism. This reprogramming is often manifested by
the conversion of glucose into lactate under aerobic conditions. Termed the Warburg
effect, this metabolic behavior is characterized by increased glycolytic flux despite the pres-
ence of oxygen enabling oxidative phosphorylation (382). This behavior is paradoxical
because the ATP yield per glucose molecule is up to 14.5 times lower in glycolysis than in
the TCA cycle and takes place in the presence of oxygen. However, the increased glycolytic
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flux in solid tumors is insufficient to compensate for reduced flux through the TCA cycle,
leading to decreased ATP amounts in solid tumors compared to metastases or healthy tis-
sue (383). What, then, is responsible for tumors employing a metabolic pathway that is less
energy efficient than one normally operating in healthy cells?

Cytoplasmic Mg21 availability may be responsible for the unexpected metabolic behav-
ior of tumors. For example, low cytoplasmic Mg21 can trigger cancer because this signal
decreases antioxidant defenses and increases the mediators of inflammation, favoring
angiogenesis (384). In addition, aberrant Mg21 uptake via the transient receptor potential
melastatin-subfamily member 7 (TRPM7) protein is associated with proliferation of meta-
static cancers (385, 386). TRPM7 is both a channel permeant to divalent cations and a ser-
ine/threonine kinase. TRPM7 activity is sensitive to the metabolic state of the cell, being
strongly activated when the Mg21-ATP concentration falls below 1 mM (387). Somatic
mutations of TRPM7 have been implicated in cancers of the pancreas, lung, stomach, skin,
prostate, and breast (387, 388). Moreover, TRPM7-mediated Mg21 influx is necessary for
growth signaling mediated by the PI3K/Akt/mammalian target of rapamycin (mTOR) path-
way, leading to rapid quiescent/proliferative metabolic transitions (387, 389).

The kinase mTOR is a critical sensor and regulator of cellular energy (390, 391). Like many
enzymes dependent on nucleotide triphosphates, mTOR requires two Mg21 ions in its nucle-
otide triphosphate-binding site for catalysis to occur (392, 393). This requirement confers sec-
ond order kinetics upon enzyme activity with respect to Mg21 concentration: small changes
in the concentration of free Mg21 ions can have large effects on enzyme reaction rates.

Phosphatases of regenerating liver (PRL-1, -2, and -3)—biomarkers for poor cancer
survival outcomes (394)—inhibit Mg21 export through the cyclin M Mg21 exporter

FIG 7 Virulence and carbon source utilization dictate a pathogen’s metabolic priorities. The metabolic
priority of a cell is dictated both by the availability of carbon sources in a given environment and the
presence of virulence-stimulating signals such as Mg21 starvation. Because regulators of carbon source
utilization also regulate virulence traits (such as CRP-cAMP, Mlc, and CsrA) and because virulence-inducing
signals such as low Mg21 and the physiological reprogramming required to withstand these stresses
impinge on the activity of catabolic regulators (such as CyaA and CRP), these two processes feed into one
another in a continuous loop. The outcome for the cell, either rapid growth or survival, is codetermined
by these various attributes.
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(CNNM) family of cation permeases (395). Inhibition of these permeases buffers against
reduced ATP:Mg21 amounts resulting from low extracytoplasmic Mg21, which involves
reprogramming metabolism through an AMPK/mTORC2-dependent pathway that acti-
vates PRL-2 translation by a Mg21-sensing untranslated open reading frame (396).

Both quiescent and dividing cells require glucose but differ in their ability to con-
serve Mg21 ions during glucose utilization. Quiescent cells recycle existing ADP:Mg21

to ATP:Mg21, so Mg21 is not lost to regenerate ATP, and new Mg21 ions are not needed
to support this conversion. By contrast, dividing cells require the import of a new Mg21

ion for newly synthesized ATP molecules, thereby linking Mg21 uptake with biosyn-
thetic metabolism.

Finally, it is remarkable that cAMP functions as a second messenger in eukaryotes as it
does in prokaryotes. cAMP activates protein kinase A (PKA) which, in turn, activates the
transcription factors cAMP-response element-binding proteins (CREB) and inducible cAMP
early repressor (ICER/CREM) via phosphorylation to regulate cell proliferation (397).
Accordingly, cAMP-PKA signaling has been linked to cancer progression in lung (398),
breast (399), and prostate cancer models (400, 401). Thus, reduced ATP amounts in solid
tumors may decrease signaling through cAMP-PKA-dependent pathways to limit metasta-
sis, thereby acting as a metabolic signature of proliferative and nonproliferative cancer
states. As discussed above, cAMP is the essential allosteric activator of the CRP protein, a
master regulator of carbohydrate utilization in bacteria.

A possible reason for cells utilizing cAMP as a second messenger, rather than relying
simply on ATP concentration itself, may be related to the close association of ATP and
cellular energetics with Mg21. The cAMP conjugate base (net charge 21) likely favors
protonation by a hydrogen atom rather than the formation of a chelate salt. Thus, by
converting ATP:Mg21 into cAMP, the latter molecule can perform signaling functions in
the cell and preserve Mg21 for other cellular processes exhibiting a strict dependence
on Mg21. That the cAMP-synthesizing adenylate cyclase is a Mg21-dependent enzyme
may reflect that cAMP signaling promotes catabolic functions that require Mg21 and
ATP, and thus should be suppressed in the absence of either precursor. Intriguingly,
bacteria such as E. coli secrete the overwhelming majority of cAMP synthesized in the
cytoplasm (402), and there is no clear function for extracytoplasmic cAMP. Intracellular
M. tuberculosis excretes cAMP to intoxicate the host cell through hyperactivation of
PKA/CREB (403), but this does not explain why commensal bacteria like E. coli would
excrete cAMP. Perhaps a closer interrogation of the intersection of cellular metabolism,
Mg21, and the signaling pathways that connect them will reveal new insights into
these processes.

CONCLUDING REMARKS

Virulence is a regulated, rather than constitutive, phenotype. The regulation of viru-
lence factors changes the physiological state of the bacterial cell, often resulting in
reduced growth, modification of the bacterial cell envelope, and other changes in the
behavior of a pathogen. These changes include maintaining access to preferable car-
bon sources, which often results in regulators of carbon metabolism also regulating vir-
ulence traits and vice versa (Fig. 7). One key example is provided by the PhoP/PhoQ
regulatory system and the targets of PhoP control, which are expected to impinge on
the control of carbon metabolism by altering the amounts of active CRP-cAMP, a regu-
lator responsible for bacterial access to less preferred carbon sources. The cumulative
effects of PhoP-regulated targets reduce ATP amounts while supporting the uptake of
alternative carbon sources.

The careful regulation of metabolism is essential for pathogens to survive both
host-derived and synthetic antibacterial agents. For example, the ptsI-encoded EI of
the PTS system (along with cyaA and crp) increases susceptibility to antibiotics (404)
because it initiates a CRP-cAMP-regulated bacterial cell death pathway that involves
shifting metabolism toward the TCA cycle, ATP surges, and the generation of reactive
oxygen species (405). Thus, preventing cell death in response to environmental stress,
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such as Mg21 limitation, may very well rely on inhibiting this bacterial cell death path-
way and by extension the PTS-CyaA-CRP axis.

In the absence of cAMP and PTS proteins, a bacterial species can still connect car-
bon source availability and metabolic and/or energetic prioritization. For example, the
human gut commensal Bacteroides thetaiotaomicron harbors a CRP-like transcription
factor—termed BT4338—that is necessary for both utilization of multiple carbohy-
drates (406) and fitness in the murine gut (407). Remarkably, B. thetaiotaomicron
devotes ;18% of its genome to the uptake and utilization of carbohydrates (408),
which enables it to utilize a much broader spectrum of carbohydrates than enteric bac-
teria such as E. coli or S. enterica. However, B. thetaiotaomicron lacks genes coding for
the cAMP-synthesizing CyaA and PTS components (408). The most highly upregulated
gene in a BT4338-dependent manner specifies an alternative form of the translation
elongation factor EF-G (407), enabling B. thetaiotaomicron to carry out protein synthe-
sis in an energy-efficient manner (409). Thus, carbon utilization and energy generation
are tightly connected to protein synthesis, which, in turn, governs bacterial growth.

In dismantling the strict categorical framework that assigns each given gene, pro-
tein, or pathway to a discrete biological process, we can begin to understand holisti-
cally how central biological processes interdependently interact with phenomena as
disparate as bacterial virulence and cancer.
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