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Abstract 

Artificial intelligence and machine learning are driving a paradigm shift in medicine, promising data-driven, per-
sonalized solutions for managing diabetes and the excess cardiovascular risk it poses. In this comprehensive review 
of machine learning applications in the care of patients with diabetes at increased cardiovascular risk, we offer a broad 
overview of various data-driven methods and how they may be leveraged in developing predictive models for per-
sonalized care. We review existing as well as expected artificial intelligence solutions in the context of diagnosis, 
prognostication, phenotyping, and treatment of diabetes and its cardiovascular complications. In addition to discuss-
ing the key properties of such models that enable their successful application in complex risk prediction, we define 
challenges that arise from their misuse and the role of methodological standards in overcoming these limitations. We 
also identify key issues in equity and bias mitigation in healthcare and discuss how the current regulatory framework 
should ensure the efficacy and safety of medical artificial intelligence products in transforming cardiovascular care 
and outcomes in diabetes.
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Introduction
The rapid progress in artificial intelligence (AI) and 
machine learning (ML) has raised hopes for a more 
personalized, efficient, and effective approach to the 
management of diabetes mellitus and its cardiovascu-
lar sequelae [1, 2]. It is estimated that nearly 529 million 
people worldwide and 35 million Americans currently 
have diabetes, with cardiovascular disease (CVD) repre-
senting the leading cause of morbidity and mortality [3, 

4]. Recognizing the need for improvement in the diag-
nosis, monitoring, and treatment of this growing patient 
population, AI and ML have already been applied to 
automate the screening of diabetes, detect macrovascu-
lar and microvascular complications [5–11], and enable 
multiomic phenotyping for personalized prevention and 
therapy recommendations [12, 13].

Unfortunately, most AI and ML-based tools fail to 
translate into improved outcomes for our patients and 
communities. This gap between evidence generation and 
clinical implementation is exemplified by the subpar real-
world uptake of multiple therapies that reduce cardiovas-
cular risk [14–17]. Furthermore, the current paradigm 
of medical AI heavily relies on existing data streams that 
reflect and thus perpetuate systemic biases. Acknowl-
edging these limitations is necessary to prevent the mis-
use and overuse of AI and ML in medicine and further 
underscores the need for good research practices to 
ensure reproducibility [18] as well as guide the practical, 
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ethical [19], and regulatory challenges that arise from the 
burgeoning use of these technologies [20, 21].

In this comprehensive review, we offer a broad over-
view of the various ML methods and how they may be 
leveraged in developing predictive models. This review 
focuses on these methods in the context of ML in the 
diagnosis, prognostication, phenotyping, and treatment 
of diabetes and its cardiovascular complications. In 
addition to discussing the properties of the models that 
enable their successful application in complex risk pre-
diction, we define challenges that arise from the misuse 
of AI and ML, and the role of methodological standards 
in combating these challenges. We also identify key issues 
on equity and bias mitigation in healthcare and ways in 
which the regulatory framework can ensure the efficacy 
and safety of ML and AI in transforming cardiovascular 
care and outcomes in diabetes.

Developing and evaluating clinical machine 
learning models
An understanding of the principal tenets of model devel-
opment and evaluation is essential for interpreting the 
evidence. These concepts are broad, applicable across a 
range of clinical conditions and ML tasks and represent 
the foundations of critical AI and ML appraisal.

Artificial intelligence (AI) and machine learning (ML)
Though AI and ML are inextricably linked, they are 
not identical terms [22, 23]. Artificial intelligence (AI) 
describes the ability of a machine to perform tasks that 
are typical of human intelligence, such as understand-
ing natural language, problem-solving, or creative tasks 
like generating images and text. On the other hand, the 
process through which an AI system acquires this ability, 
learning and improving from experience and observed 
data to make predictions about new or unseen cases, is 
called machine learning (ML).

Model training
The specific step during which a model learns from data 
is also known as training, whereas the respective dataset 
is referred to as training set. Here, the model makes pre-
dictions and subsequently adjusts its parameters based 
on a metric that quantifies how good or bad the predic-
tions are (loss function). It is typical that during training, 
the model will be applied to an unseen group of observa-
tions (validation set) to get a more reliable assessment on 
performance on unseen data. Further testing in external 
sets drawn from geographically and temporally distinct 
populations can serve to solidify claims about external 
model validity [24].

Supervised and unsupervised learning
The learning process can be supervised or unsupervised 
[22]. Supervised learning describes an iterative process 
that selects relevant input features and then assigns 
weights to link the input data to a given value (regression) 
or class (classification). Unsupervised learning, on the 
other hand, analyzes and clusters unlabeled datasets by 
identifying similarities and dissimilarities between data 
points, therefore uncovering hidden patterns in the data. 
These two approaches should be considered complemen-
tary and are often used in conjunction to address distinct 
problems. Supervised learning can be used to better pre-
dict future cardiovascular risk (regression), or the pres-
ence of diabetic retinopathy (classification), whereas 
unsupervised approaches can be used to identify distinct 
phenotypic clusters of patients with diabetes with differ-
ences in baseline risk, prognosis, and treatment response.

Building on these concepts, self-supervised learning 
(SSL) processes unlabeled data to create key representa-
tions that can facilitate downstream tasks [25]. In princi-
ple, SSL closely resembles unsupervised learning since it 
is applied to unlabeled data. However, instead of focusing 
on tasks like clustering, SSL attempts to solve tasks tra-
ditionally addressed through supervised learning, such as 
classification and regression [26]. We [27, 28], and oth-
ers [29, 30], have shown that this is a powerful method to 
train clinical models, especially when there is a paucity of 
high-quality labels.

Machine learning algorithms
Whether supervised or unsupervised, the ML process 
requires a set of rules and statistical techniques that can 
learn meaningful patterns from data, known as algo-
rithms. A representative list of ML algorithms used in 
medical applications is shown in Fig.  1. Ranging from 
linear regression to deep learning algorithms, these vary 
substantially in their ability to model complex data, inter-
pretability, and performance [22]. Further, they can be 
adapted to model not only cross-sectional or short-term 
outcomes, as done with logistic regression, but also long-
term predictions through survival analysis, similar to 
Cox regression modeling which has been widely used to 
estimate CVD risk in the US [31], UK [32], and Europe 
[33]. Some notable examples include (survival) random 
forests and deep learning algorithms, which have all been 
adapted to model long-term hazards [34–36].

Assessing model performance
The comprehensive evaluation of the performance of a 
predictive ML model requires an integrated assessment 
of discrimination, calibration, and clinical benefit (Fig. 2; 
a detailed table of metrics used in classification and 
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Fig. 1  Overview of commonly used algorithms in medical machine learning
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regression tasks, along with their strengths and weak-
nesses is also presented in Additional file  1: Table  S1) 
[37]. Commonly used discrimination metrics, such as the 
Area Under the Receiver Operating Characteristic curve 
(AUROC) and the Area Under the Precision–Recall 
Curve (AUPRC) describe the model’s ranking of indi-
vidual predictions and ability to discriminate between 
different classes. However, AUROC may not offer a com-
plete description of the model’s performance, particularly 
in imbalanced datasets. For instance, a model with 95% 
sensitivity and specificity screening for a rare label (e.g., 
screening for type 1 diabetes mellitus in the community, 
prevalence ~ 0.55%), a positive prediction is more likely to 
be false positive than true positive. Calibration assesses 

the agreement between the predicted and observed out-
comes across the entire range of predictions [38]. Two 
models may have a similar AUROC but may differ sub-
stantially in their calibration performance, a crucial dif-
ference that may often impact clinical decision-making if 
predictions consistently overestimate or underestimate 
risk. Guidelines on good research practices in predic-
tion modeling suggest that for any given model both dis-
crimination and calibration are reported [39]. Moreover, 
a complex model may have good discriminatory perfor-
mance but lack incremental value beyond a simpler or 
established model, something that can be further evalu-
ated by metrics such as the Net Reclassification Improve-
ment (NRI) and Integrated Discrimination Improvement 

Fig. 2  Discrimination, calibration, and net clinical benefit. The comprehensive evaluation of a predictive model requires the simultaneous 
evaluation of its discrimination, calibration, and incremental value beyond the current standard-of-care. A The area under the receiver operating 
characteristic curve (AUROC) reflects the trade-off between sensitivity (true positive rate) and specificity (1-false positive rate) at different thresholds 
and provides a measure of separability, in other words the ability of the model to distinguish between classes (0.5 = no separation, 1 = perfect 
separation). B Models with similar AUROC may exhibit different behavior when the prevalence of the label varies. The precision–recall curve 
demonstrates the trade-off between the positive predictive value (precision) and sensitivity (recall), and illustrates how the area under the curve 
may vary substantially as the prevalence of the label of interest decreases from 50 to 5%. C Models with similar AUROC may also differ in their 
calibration. A model with good calibration (i.e. blue line) makes probabilistic predictions that match real world probabilities. On the other hand, 
the model shown in orange underestimates and overestimates risk at lower and higher prediction thresholds, respectively. D Finally, models should 
be compared against established standard-of-cares while incorporating clinical consequences and comparing the net clinical benefit across varying 
risk levels to established or no risk stratification approaches. Curves were generated using synthetic datasets for illustration purposes
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(IDI) [37]. Finally, good discrimination and calibration 
do not necessarily translate into net clinical benefit for a 
specific clinical application. In this setting, decision curve 
analysis (DCA) can be used to assess the net benefit of a 
model across a range of potential thresholds for action, 
weighing the benefit versus harm versus alternative risk 
stratification approaches [40].

Interpretability and explainability
Human end-users may feel reluctant to use what they 
cannot understand. Interpretability and explainability 
describe two closely linked yet slightly different con-
cepts [41, 42]. Interpretability refers to the extent to 
which a human can understand how features are com-
bined to make predictions. This is particularly desirable 
when training a model to understand its general behav-
ior and identify potential sources of bias. Explainability 
is a property of ML models that describes the extent to 
which the inner workings of a model can be explained in 
human terms, that is, understanding why a model made 
a specific prediction (often on a case-by-case basis). This 
is important for the end-user and has practical and regu-
latory implications. A model can be interpretable with-
out being explainable, and vice versa; however, ideally, a 
model should be both [43].

Data‑driven advances in diabetes 
and cardiovascular disease
From continuous glucose monitoring devices to elec-
tronic health records (EHR), electrocardiograms (ECG), 
retinal images, and computed tomography images, the 
day-to-day monitoring, screening, and management of 
patients with diabetes have a constant stream of struc-
tured and unstructured data. The following section illus-
trates the breadth of tools that are being developed for 
use by individuals and their healthcare teams.

Targeted screening and risk stratification of prediabetes 
and diabetes
Both the American Diabetes Association (ADA) [44], and 
the United States Preventive Services Task Force (USPTF) 
[45] have emphasized the importance of early screening 
for pre-diabetes and diabetes among asymptomatic adults 
to ensure timely diagnosis and prevent downstream dia-
betes complications and its sequalae. Current guidelines 
recommend screening for pre-diabetes and type 2 dia-
betes with an informal assessment of risk factors or a 
validated risk calculator among all asymptomatic adults 
and testing among adults of any age who are overweight 
or obese and have one or more risk factors [44]. Several 
risk scores have been proposed for a more personalized 
risk assessment of type 2 diabetes, such as the American 
Diabetes Association questionnaire, a logistic regression 

model trained in National Health and Nutrition Exami-
nation Survey (NHANES), Atherosclerosis Risk in Com-
munities (ARIC) and Cardiovascular Health Study (CHS) 
studies with a reported AUROC of 0.79 to 0.82 for undi-
agnosed diabetes among U.S. adults aged 20  years or 
older [46], the Australian type 2 diabetes risk Assessment 
Tool (AUSDRISK) to predict the incidence of type 2 dia-
betes over 5 years among participants 25 years or older 
(AUROC of 0.78) [47], and the Cambridge Risk score to 
detect cross-sectionally elevated HbA1c levels among 
individuals aged 45 years (AUROC of 0.84 for HbA1c 7% 
or greater) [48]. The moderate accuracy of these tools in 
addition to concerns about their external validity [49] 
has prompted researchers to explore whether targeted 
screening could be improved through ML of structured 
and unstructured data [5–11].

In NHANES, an XGBoost classifier based on 123 varia-
bles showed an AUROC of 0.86 in detecting the presence 
of an established diabetes diagnosis, though the perfor-
mance dropped to 0.73 when detecting undiagnosed dia-
betes adjudicated based on abnormal laboratory findings 
[50]. In a retrospective analysis of 16 predictors from 
routine health check-up data of 277,651 participants 
from Japan, a light gradient boosting machine algorithm 
was able to predict the 3-year incidence of diabetes with 
an AUROC of 0.84, demonstrating significantly improved 
performance compared with a logistic regression model 
for large training populations of 10,000 patients or more 
[6]. Another ML algorithm built using EHR and adminis-
trative healthcare data from Canada reportedly identified 
type 1 diabetes cases with 87.2% sensitivity and 99.9% 
specificity [51].

Moving beyond EHR models relying on administra-
tive datasets, an analysis of 1262 individuals from India 
showed that an XGBoost algorithm using ECG inputs 
had excellent performance (97.1% precision, 96.2% 
recall) and good calibration in detecting type 2 diabetes 
and pre-diabetes [7]. Furthermore, the integration of a 
genome-wide polygenic risk score and serum metabo-
lite data with structured clinical parameters using a ran-
dom forest model resulted in improved type 2 diabetes 
risk prediction in a Korean cohort of 1425 participants 
[8]. Several other studies have also defined metabolomic 
[52] and proteomic signatures for identifying diabetes 
or insulin resistance [9]. Integrative personal omics pro-
files (iPOP) that combine genomic, transcriptomic, pro-
teomic, metabolomic, and autoantibody profiles from 
a single individual over several months can also be har-
nessed to connect genomic information with dynamic 
omics activity, describe host-microbiome interactions, 
and describe personal aging markers, thus risk stratifying 
various medical risks, including type 2 diabetes [53–57].
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Finally, imaging-based biomarkers are also being 
studied, with the development of DL models that can 
automatically segment and output measurements of pan-
creatic attenuation, volume, fat content, fractal dimen-
sion, and parameters associated with visceral adiposity 
and muscle attenuation/volume. For instance, in a ret-
rospective cohort of 8992 patients undergoing screening 
CT colonography, a DL model of the above phenotypes 
could predict the future incidence of diabetes with an 
AUROC of 0.81 to 0.85 [10].

Computable phenotypes of patients with diabetes
The traditional classification of diabetes into type 1 and 
type 2 does not fully capture the complex and highly het-
erogeneous nature of the condition. From the heteroge-
neity of the islet microenvironment to the diversity of 
pathophysiological endotypes that span multiple demo-
graphic groups, diabetes mellitus affects a diverse group 
of patients with distinct molecular underpinnings that 
require individualized approaches to therapy [58]. Mul-
tiomic signatures may provide insights into the interac-
tion of a patient’s genome, phenome, and environment 
[53–57], but are often hard to measure at scale.

Unsupervised ML techniques using routinely available 
EHR computable phenotypes can provide valuable data-
driven inference about distinct phenotypic clusters. In 
longitudinal DL-based clustering of 11,028 patients with 
type 2 diabetes using a kernelized autoencoder algorithm 
that mapped 5 years of data, there were seven phenotypic 
clusters with distinct clinical trajectories and varying 
prevalence of comorbidities (i.e., hypertension, hyper-
cholesterolemia) or diabetic complications [13]. In a 
separate analysis of 8,980 patients with newly diagnosed 
diabetes from Sweden, k-means and hierarchical cluster-
ing revealed five replicable clusters with significant dif-
ferences in the observed risk of diabetic complications 
[59]. A separate analysis of 175,383 patients with type 2 
diabetes further identified 20 frequent comorbidity clus-
ters, and using Bayesian nonparametric models demon-
strated a complex and dynamic interrelationship between 
diabetes-related comorbidities and accelerated disease 
progression [60].

Despite this, computable definitions can vary signifi-
cantly in their ability to capture the respective pheno-
types. Such differences can have a substantial impact 
on model performance even within the same center. In 
an analysis of 173,503 adults from the Duke University 
Health System, the concordance of variable definitions of 
diabetes (with or without ICD-9-CM codes) ranged from 
86% to as low as 50% [61].

Finally, DL approaches, such as natural language pro-
cessing, can be used to screen large hospital registries to 
monitor the quality of care. As shown in an analysis of 

33,461 patients with diabetes from 2014 to 2020 in North-
ern California, a natural language processing approach 
accurately identified statin nonuse (AUROC of 0.99 
[0.98–1.00]) and highlighted patient- (side effects/con-
traindications), clinician- (guideline‐discordant practice), 
and system-centered reasons (clinical inertia) for statin 
nonuse, with notable variation by race and ethnicity [62].

Predicting CVD among patients with diabetes (from 
diagnosis to risk prediction)
Diabetes is associated with a range of micro- and macro-
vascular complications [3]. Given their simplicity and 
wide availability, fundoscopic images were used in some 
of the earliest DL models in medicine, predicting diabetic 
retinopathy with performance matching that of expert 
readers [11, 63, 64]. This has opened the way for efficient 
screening of both diabetes, and diabetes-related chronic 
kidney disease and retinopathy in settings with limited 
resources, as demonstrated in real-world implementation 
studies in Thailand and India [65, 66].

While current guidelines endorse routine screening for 
microvascular complications, there is a paucity of data to 
support the routine screening for macrovascular compli-
cations in asymptomatic individuals [67]. Diabetes has 
traditionally been regarded as an atherosclerotic CVD 
(ASCVD) equivalent [44]. Non-invasive cardiovascular 
imaging approaches, such as measurement of coronary 
artery calcium (CAC) [68], coronary computed tomogra-
phy angiography [69], or functional testing [67], are often 
used to further risk stratify patients with diabetes and 
diagnosed subclinical CVD. However, such approaches 
are costly and hard to implement for population-level 
screening.

ML approaches may support more efficient screening 
of CVD in this population. In an analysis of NHANES, 
logistic regression, SVM, XGBoost and random for-
est models, as well as an ensemble of the four, showed 
comparable performance in detecting CVD among all-
comers with an AUROC of 0.81 to 0.83 [50]. In a sepa-
rate single-center study from China, training a model to 
predict the co-occurrence of coronary heart disease and 
diabetes using 52 structured features in 1273 patients 
with type 2 diabetes resulted in an AUROC of 0.77–0.80; 
however, this dropped to 0.7 in an independent dataset, 
highlighting the challenges in the generalizability of such 
tools when trained in single-center cohorts [70]. In a ret-
rospective analysis of administrative data from Australia, 
investigators combined ML techniques with a social net-
work analytic approach to define the disease network for 
patients with diabetes with or without CVD and iden-
tify discriminatory features for CVD presence, with a 
reported overall AUROC of 0.83 for the random forest 
classifier, only dropping to 0.81 for a logistic regression 
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model [71]. Overall, it appears that in most cohorts there 
were minimal gains from using more complex and less 
interpretable algorithms compared to standard logistic 
regression. Moreover, many studies do not report the 
incremental value beyond established risk scores such as 
the pooled cohort equations, which prevents a reliable 
assessment of their net clinical value.

Predictive models can further be customized for more 
specific cardiovascular conditions, such as congestive 
heart failure, and model survival analyses incorporat-
ing time-to-event outcomes. In a post hoc analysis of 
the ACCORD trial, a non-parametric random survival 
forest model predicted the risk of incident heart failure, 
with a C-statistic of 0.77 [72]. A parsimonious five-fea-
ture integer-based score based on this model maintained 
moderate discriminatory performance in both ACCORD 
(Action to Control Cardiovascular Risk in Diabetes) and 
an independent test set from Antihypertensive and Lipid-
Lowering Treatment to Prevent Heart Attack Trial (ALL-
HAT) with an AUROC of 0.74 and 0.70, respectively. In a 
separate retrospective analysis of an EHR-based cohort of 
patients with diabetes undergoing cardiac testing, a deep 
neural network survival method resulted in an AUROC 
of 0.77 for incident heart failure [36].

Many of these studies should be interpreted with cau-
tion. First, as shown in a recent systematic review of pre-
dictive models for the detection of CVD among patients 
with diabetes, there is often a high risk of bias in several 
studies and poor adherence to standardized reporting 
guidelines [73–75]. Second, retrospective analyses of 
single-center cohorts and administrative claims are also 
prone to perpetuating biases and inequities in healthcare 
since patients who have better access to healthcare are 
more likely to utilize such resources and be represented 
in administrative claims datasets [76].

Digital health for diabetes care optimization 
and personalization through predictive algorithms
As the focus shifts from the secondary prevention of dia-
betes-related complications to earlier prevention in the 
community, various  digital health technologies  emerge 
that can be deployed at scale and minimal cost. Large 
language models (LLM) have already led to smart con-
versational agents (“chatbots”), such as ChatGPT, which 
are freely accessible to most individuals with internet 
access. Such models are task-agnostic and have been 
shown to provide “concise”, “well-organized” and easy-to-
understand instructions to a series of questions regarding 
diabetes self-management, albeit with occasional factual 
inaccuracies [77]. Such tools could be incorporated into 
existing digital healthcare platforms that combine glu-
cometer, bioelectrical impedance, blood pressure, activ-
ity, and AI-derived nutritional analysis data to improve 

glycemia and weight loss among patients with type 2 dia-
betes [78].

In the same vein, the rapid uptake in the use of wear-
able devices and smartwatches has led to AI-enabled 
solutions to optimize glycemic management. These 
applications have built on an expanding body of research 
highlighting the value of AI-ECG (both using 12-lead or 
1-lead signals) in detecting subclinical forms of cardio-
myopathy and arrhythmias [79–81]. Recent work from 
our lab has further expanded these approaches to the use 
of ECG images [82, 83] and single-lead wearable signals 
[84], enabling the scaling of such technologies to low-
resource settings and to ubiquitous data streams.

In diabetes, AI-ECG-guided monitoring through 
customized DL models has shown promise in detect-
ing hypoglycemic events [85, 86], and is currently being 
studied in prospective studies [87, 88]. In one of the 
pilot studies, investigators trained personalized models 
using a combination of convolutional (CNN) and recur-
rent neural networks (RNN) for each participant using 
data collected over the run-in period, followed by sub-
sequent testing in the same patient. This combination of 
distinct model architectures takes advantage of the dis-
tinct strengths of each model type, with CNN learning 
hierarchical, abstract representations of the input space, 
whereas RNN learns sequence patterns across time [85]. 
Similar concepts have been applied to continuous glu-
cose monitoring (CGM). Here, multi-modal data inte-
gration from CGM devices, meal or insulin entries and 
sensor wristbands has shown promise in detecting hypo- 
or hyperglycemic events in patients with type 1 diabetes 
in both simulation [89], as well as small real-world pro-
spective studies [90]. While such technologies have the 
potential to democratize access to high-value care, we 
have shown that as of 2020 use patterns suggested dis-
proportionately lower use among individuals with or at 
risk of CVD than those without CVD risk factors, with 
fewer than 1 in 4 using such devices [91, 92].

AI‑driven innovation in clinical trials and evidence 
generation
Detecting heterogeneous treatment effects
Randomized controlled trials (RCTs) represent the meth-
odological and regulatory gold-standard to test the effi-
cacy and safety of new therapies [93]. However, RCTs 
traditionally report an average treatment effect (ATE) 
which does not adequately describe the individualized 
benefit for each unique patient profiles [94]. The detec-
tion of reliable heterogeneous treatment effects (HTE) is 
limited by the fact that in outcomes trials participants get 
assigned to one arm (thus the “counterfactual” is never 
observed). In addition, most trials lack statistical power 
to detect subgroup differences [95].
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One way to explore such differences is through a priori 
or post hoc-defined clinical subgroups. For instance, it 
has been shown that sex and body mass index are asso-
ciated with heterogeneity in the treatment and safety 
signal of thiazolidinediones and sulfonylureas [96], 
whereas insulin resistance has been associated with sig-
nificant differences in the glycemic response to dipepti-
dyl peptidase 4 (DPP-4) inhibitors [97]. Such subgroups, 
however, rely on simplistic subgroup definitions, and 
may not accurately reflect the phenotypic diversity seen 
in clinical profiles and treatment response. Various sta-
tistical approaches have been employed to identify such 
complex effects, with methods ranging from unsuper-
vised clustering [98] to causal forests and meta-learners 
(i.e. X-learners), algorithms that can use any supervised 
learning or regression method to estimate the conditional 
average treatment effect [94]. In applying this approach 
in ACCORD and Veteran Affairs Diabetes Trial (VADT), 
investigators described eight subgroups in which the dif-
ferences in major adverse cardiovascular events ranged 
from as low as -5.1% to as high as 3.1% [99].

Most of these approaches focus on the absolute risk 
reduction of a therapy, which reflects both the relative 
treatment effect as well as a patient’s baseline risk. We 
previously developed and tested a phenomapping-based 
method that creates multidimensional representations of 
a population based on the full breadth of pre-randomi-
zation phenotypes. Over a series of in silico simulations 
that account for the unique phenotype of each partici-
pant relative to all other participants, an ML algorithm 
learns signatures that are consistently associated with a 
higher or lower relative treatment effect. In representa-
tive applications, our approach has reproduced a ben-
eficial association between the use of anatomical as 
opposed to functional testing in patients with diabetes 
and chest pain [100, 101], and highlighted heterogeneity 
across phenotypes in the cardiovascular benefits of cana-
gliflozin [12] as well as intensive systolic blood pressure 
control [102] (Fig. 3). However, prospective validation of 
any post-hoc comparisons is required to inform treat-
ment decisions.

Towards smarter clinical trials
Furthermore, ML can be used to guide the design of adap-
tive clinical trials, guiding protocol modifications based 
on accumulating data [103] (Fig. 4). The need for meth-
odological innovation in this space has been embraced by 
the United States Food and Drug Administration (FDA) 
[104]. For instance, ML-driven approaches of individual-
ized predictive benefit could be integrated into interim 
analyses to prioritize randomization of patients with 
a higher expected net clinical benefit from the studied 
intervention [105]. In a simulation of real-world clinical 

trial data from Insulin Resistance in Stroke study (IRIS) 
[106], and Systolic Blood Pressure Intervention Trial 
(SPRINT) [107] an ML-informed strategy of adaptive, 
predictive enrichment enabled a consistent reduction in 
the number of enrolled participants, while preserving the 
original trial’s effect [105].

Causal inference from observational data
Modern RCTs are both resource and time-intensive 
[108], particularly when evaluating the effects of novel 
therapies on major clinical endpoints [109–111]. Feder-
ated analytic approaches that utilize large-scale, multi-
national, real-world databases, such as the Large-scale 
evidence generation and evaluation across a network of 
databases for type 2 diabetes mellitus (LEGEND-T2DM) 
initiative, are currently underway to enable comparative 
effectiveness analysis through both traditional and ML-
driven big data approaches [112, 113].

Key methodological considerations 
when interpreting ML models
Finding the best algorithm
In the ML literature, it is widely recognized that a priori 
knowledge of an optimal algorithm is challenging for any 
given task. This often depends on the underlying data-
set, the performance metric utilized, whereas for any 
given algorithm performance may still vary with tuning 
of model-specific hyperparameters (values used to con-
trol the training process that are external to the model 
and cannot be computed from the data). Second, there 
is a common misconception that for any given dataset, 
complex models will always outperform less complex 
ones. This may be true for tasks involving unstructured 
data, in particular biomedical images and videos, where 
DL models enable automatic learning and hierarchi-
cal combination of key spatial as well as temporal fea-
tures (rather than relying on hand-engineered features), 
as well as models that are robust to variations, scalable 
and transferrable across tasks [114]. However, for struc-
tured datasets, such as databases of clinical information 
used for predictive modeling, the performance of easily 
interpretable models, such as logistic regression, is often 
comparable to that of complex extreme gradient boosting 
or neural network methods [115]. Third, complex models 
are susceptible to learning noise that may not generalize 
to a new dataset (overfitting) [116]. In this context, care-
ful consideration of the available data and training plan 
(i.e., cross-validation), as well as strict separation of train-
ing and testing datasets, are warranted to maximize the 
external validity of new models.
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Geographic and temporal drift in model performance
The training of any clinical model should not stop at the 
time of deployment but rather continue by incorporat-
ing real-time data and updating its parameters to prevent 
a drift in performance when used in a different clini-
cal, geographical, or temporal setting [117]. A notable 
example here is a widely implemented and proprietary 
EHR-embedded sepsis prediction model whose external 
performance was substantially different from the one 
reported by the model’s creators (AUROC of 0.63 from 
0.76–0.83) when deployed across independent hospitals 
with heterogeneous patient populations [118].

Promoting explainable AI
To bridge the interpretability gap of complex “black box” 
algorithms, various approaches have emerged including 

Local Interpretable Model-agnostic Explanations (LIME) 
and SHapley Additive exPlanations (SHAP) [119, 120] 
(Fig.  5). Though such approaches are often imperfect, 
ensuring model explainability is not only a regulatory 
recommendation, but also enhances the adoption of the 
model in the real world. In a survey of 170 physicians, 
greater explainability of ML risk calculators was signifi-
cantly associated with greater physician understanding 
and trust of the algorithm [121].

Statistical, ethical and regulatory concerns: 
promoting equitable and safe AI use
Ensuring good research practices
Clinical predictions rarely rely on a single factor and are 
most often multivariable by design. In 2015, to provide 

Fig. 3  Phenomapping-derived tools for personalized effect estimates. Phenomaps enable a visual and topological representation of the baseline 
phenotypic variance of a trial population while accounting for many pre-randomization features. As shown in an analysis of the Canagliflozin 
Cardiovascular Assessment (CANVAS) trial [138], a phenomap representation of all enrolled patients shows that the study arms are randomly 
distributed in the phenotypic space (A). Through a series of iterative analyses centered around each patient’s unique phenotypic location, 
a machine learning model can learn phenotypic signatures associated with distinct responses to canagliflozin versus placebo therapy (B, 
C). An extreme gradient boosting algorithm trained to describe this heterogeneity in treatment effect in CANVAS successfully stratified 
the independent CANVAS-R population into high- (D) and low-responders (E). Panels reproduced with permission from Oikonomou et al. [12]
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a standardized framework for the creation and report-
ing of such statistical models, the transparent reporting 
of a multivariable prediction model for individual prog-
nosis or diagnosis (TRIPOD) statement was published 
[39]. This followed multiple reports, including system-
atic reviews of risk prediction models in type 2 diabe-
tes, that showed widespread use of poor methods and 
reporting [122, 123] contributing to “avoidable waste” 
in research evidence [124]. Unfortunately, several sub-
sequent reviews have shown poor adherence to these 
standards, particularly among studies using ML algo-
rithms [125]. The increasing adoption of ML algorithms 
in clinical prediction modeling, despite the lack of clear 
incremental value beyond simpler methods such as logis-
tic regression in most settings [115, 126], has prompted 
the original TRIPOD authors to update their statement 
(TRIPOD-AI, see [127]) researchers, clinicians, sys-
tematic reviewers, and policy-makers critically appraise 
ML-based studies. ML models should generally be used 
when processing large amounts of multi-dimensional or 
complex inputs (e.g. time-series from wearables, videos 
etc.), whereas head-to-head comparisons to traditional 

statistical models should be provided when feasible to 
assess the trade-off between performance, complexity, 
and interpretability.

Mitigating bias through AI
Since ML models learn from existing data and care pat-
terns, they can perpetuate human and structural biases 
[128, 129] (Table 1). Careful evaluation of the historical 
training data for health care disparities, ensuring that 
historically disadvantaged subgroups have adequate rep-
resentation, review of model performance across key 
subgroups, and incorporating feedback from key stake-
holders and patient representatives are some approaches 
that can be taken to mitigate bias [76, 128]. This is not a 
straightforward task and requires caution when assessing 
for confounders [130], since ML models have shown the 
ability to identify features such as race even when blinded 
to such labels [131].

Navigating the regulatory framework
While clinical decision support (CDS) tools used to 
assist with electronic patient records, administrative 

Fig. 4  Machine learning for predictive enrichment of randomized control trials. Machine learning can be used to guide adaptive clinical trial 
design though data-driven inference and predictive enrichment. Traditional fixed trial designs do not allow modifications in the patient population, 
whereas sample size adaptations only allow interim revisions in the power calculations and target sample sizes based on the accumulating rate 
of primary outcome and safety events. In trials whereas there happens to be clinically meaningful heterogeneity in the treatment effect, a priori 
inclusion of machine learning, data-driven inference may provide early signals of heterogeneous benefit or harm and a reference for adaptive 
predictive enrichment. This approach can optimize the trial’s efficacy, shorten its duration, minimize its costs, maximize inference, and ultimately 
ensure safety for the study participants. ML machine learning
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tasks, medical device data, and models aimed at support-
ing a healthy lifestyle fall outside the FDA’s definition of 
a “device” [132], most diagnostic and predictive clinical 
models and CDS are regulated under the “Software as 
Medicine Device (SaMD)” umbrella and categorized as 
class I (low-risk), II (moderate-risk), III (high-risk) [20]. 
In the US, the FDA mandates that class III devices gener-
ally undergo a longer and more in-depth review process, 
known as pre-market authorization. However, for lower 
or intermediate-risk devices (class I and II), alternative 
pathways exist [20]. The 510(k) pathway requires manu-
facturers to show that the risk presented by their device 
is no greater than that of a substantially equivalent predi-
cate device [20], whereas the de novo pathway is designed 
for class I or II devices without predicates [133]. While 
built to accelerate the regulatory process, the latter two 
pathways have been criticized on certain occasions for 

facilitating the clearance of devices based on faulty predi-
cates [134]. The regulatory process is different in Europe, 
where lowest risk devices (class I) are the responsibility 
of the manufacturer, whereas class II and III devices are 
processed in a decentralized way through private “Noti-
fied Bodies”. Of the 124 AI/ML-based devices approved 
in the USA and Europe between 2015 and 2020, 80 were 
first approved in Europe [20]. The European Union’s 
General Data Protection Regulation (GDPR) further lists 
explainability as a requisite for any medical AI applica-
tion [135]. Despite the above, there is no clear consensus 
as to whether regulatory bodies should require RCT-level 
evidence to support the effectiveness and safety of their 
proposed AI tools, even though recent studies have dem-
onstrated the feasibility of testing the net clinical benefit 
of AI-based ECG and echocardiographic models in the 
context of pragmatic RCTs [136, 137].

Fig. 5  Explainability and interpretability of medical machine learning. Broadly speaking, more complex algorithms demonstrate better 
performance when dealing with complex tasks and data inputs. For instance, the recognition of cardiomyopathy using echocardiographic videos 
may require a deep learning algorithm to model the full extent of temporal and spatial features that carry diagnostic value, whereas predicting 
the risk of re-admission using electronic health record data may be modelled using generalized linear models. Simpler models, such as decision 
trees and linear models are intuitive and interpretable, whereas ensemble and neural network-based methods are too complex for the human 
mind to fully understand. Explainable artificial intelligence (XAI) methods aim to bridge this interpretability gap by offering direct or indirect insights 
into the inner workings of complex algorithms
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Conclusions
Rapid advances in AI and ML have revolutionized the 
field of medicine and have identified new ways to opti-
mize the management of diabetes and its cardiovascular 
complications. Nevertheless, several challenges remain, 
ranging from standardizing the assessment of model per-
formance along with model interpretability and explain-
ability to mitigating bias during both development and 
deployment. Acknowledging these challenges and fos-
tering a collaborative environment between clinicians, 
researchers, sponsors, and regulatory agencies is a pre-
requisite to harness the full potential of AI in catalyzing 
the transition towards a more patient-centered approach 
to the care of diabetes and CVD.
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Table 1  Types and examples of bias in medical artificial intelligence

Bias type Definition: “A bias arising from…” Example

Confirmation bias A tendency to interpret data in a way that confirms our prior 
beliefs

A machine learning model confirms existing assump-
tions about certain broad phenotypic groups benefiting 
from a given therapy, potentially leading to unequal treatment 
and misdiagnosis

Sampling bias Non-random sampling which limits the generalizability 
of an algorithm

Enrolling patients who visit a particular clinic or location may 
not represent the broader diabetes population

Algorithmic bias The design and implementation of an algorithms that sys-
tematically discriminates against a given group

A blood pressure monitoring system that may provide consist-
ently inaccurate readings for a given demographic group

Aggregation bias Drawing misleading conclusions about individuals 
from group data

Concluding all patients with type 2 diabetes and hyperten-
sion benefit from a given medication without considering 
individual variations

Longitudinal data fallacy Poor analysis of temporal data Assessing quality of diabetes control and performing long-
term risk prognostication using a single laboratory reading 
rather than long-term patterns

Implicit bias Unintentional embedding of underlying biases and preju-
dices in algorithms

A model that is trained using records from a specific racial 
or ethnic group may make inaccurate predictions and dispro-
portionately misclassify individuals from other racial groups 
as having higher or lower risk of diabetic complications 
contributing to healthcare disparities

User interaction bias  Both the user interface and the user’s behavior A diabetes management digital health app only collects 
voluntary input data, thus not capturing all relevant patient 
information

Presentation bias How information is displayed to users A patient may miss important information on an app due 
to the information’s placement at the bottom of the screen

Emergent bias Longitudinal changes in population, societal habits, norms, 
and practices over time

An outdated diabetes therapy might persist due to long-
standing cultural beliefs

Evaluation bias The process of model evaluation The effectiveness of a novel antihyperglycemic therapy 
is evaluated against a benchmark that favors a particular 
demographic

Population bias Differences in user characteristics between the training 
and the intended population

A diabetes management application initially tested 
among tech-savvy young adults may not adequately address 
the needs of older adults
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