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Abstract
Motivation: Including ion mobility separation (IMS) into mass spectrometry proteomics experiments is useful to improve coverage and
throughput. Many IMS devices enable linking experimentally derived mobility of an ion to its collisional cross-section (CCS), a highly reproducible
physicochemical property dependent on the ion’s mass, charge and conformation in the gas phase. Thus, known peptide ion mobilities can be
used to tailor acquisition methods or to refine database search results. The large space of potential peptide sequences, driven also by
posttranslational modifications of amino acids, motivates an in silico predictor for peptide CCS. Recent studies explored the general performance
of varying machine-learning techniques, however, the workflow engineering part was of secondary importance. For the sake of applicability,
such a tool should be generic, data driven, and offer the possibility to be easily adapted to individual workflows for experimental design and data
processing.

Results: We created ionmob, a Python-based framework for data preparation, training, and prediction of collisional cross-section values of
peptides. It is easily customizable and includes a set of pretrained, ready-to-use models and preprocessing routines for training and inference.
Using a set of �21000 unique phosphorylated peptides and �17000 MHC ligand sequences and charge state pairs, we expand upon the space
of peptides that can be integrated into CCS prediction. Lastly, we investigate the applicability of in silico predicted CCS to increase confidence in
identified peptides by applying methods of re-scoring and demonstrate that predicted CCS values complement existing predictors for that task.

Availability and implementation: The Python package is available at github: https://github.com/theGreatHerrLebert/ionmob.

1 Introduction

Ion mobility enhanced mass spectrometry coupled with liquid
chromatography (LC-IMS-MS) improves throughput and
coverage of proteomics experiments (Meier et al. 2015).
Traditionally, proteomics analyses have been performed by
separation of peptides using reversed phase liquid chromatog-
raphy (LC), interfaced by electrospray ionization to mass
spectrometry (MS) to analyze the mass to charge ratio (m/z)
of the analyte ions. Ion mobility separation (IMS) adds an ad-
ditional dimension of separation. Its functionality is based on
the fact that in the presence of an electric field, small, compact
ions will behave differently when flying through a cloud of
charge-neutral gas than larger ones (Valentine et al. 2005).
This enables to distinguish molecules, such as isobaric ions
with the same m/z but differing sequences or modifications,
that can’t be separated by LC-MS (Meier et al. 2021b, Ogata
et al. 2021). Additionally, IMS allows for filtering or untar-
geted annotation (Dodds and Baker 2019).

Depending on the hardware setup, the IMS can be used to
calculate the collisional cross-section (CCS) value of the ions
by applying kinetic theory that links experimentally deter-
mined reduced ion-mobilities to their momentum transfer
collision integral through the Mason–Schamp equation
(Revercomb and Mason 1975, Gabelica et al. 2019). The
translation of the reduced mobility, K0, to CCS depends on
several factors including ion mass and charge, as well as the
mass and temperature of the drift gas. However, the applica-
tion of this theory makes some simplifying assumptions in-
cluding that the electric field applied is low enough to be
negligible. As a result, the translation of experimentally deter-
mined drift times to CCS can only be performed for low field
devices such as drift tube, travelling wave, or trapped ion mo-
bility (DTIMS, TWIMS, and TIMS), but not for devices in-
volving high fields such as field asymmetric ion mobility
spectrometry (Dodds and Baker 2019). For an in-depth
description of differences in the determination of K0 from
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experimental setups see e.g. Gabelica and Marklund (2018),
Dodds and Baker (2019), and Gabelica et al. (2019). As the
ion CCS is an inherent physicochemical property, CCS calcu-
lations from IMS data are highly reproducible (Bush et al.
2012, Meier et al. 2021a). Thus, LC-IMS-MS offers both in-
creased capability of ion separation and identification crucial
for the ultimate task of elucidating the chemical composition
of samples.

There are two principal reasons for establishing a CCS pre-
dictor. First, it offers potential insight into how specific fea-
tures can influence the ion conformation in the gas phase
(Ogata et al. 2021, Meier et al. 2021a). These could be used
to drive particular experimental setups tailored to certain
types of peptides (Gomez-Zepeda et al. 2023). Second, given
their high reproducibility, CCS of ions hold valuable informa-
tion ready to be integrated into candidate scoring. Thus, it
can help to increase the confidence and overall number of
identifications of peptides. Especially the second point is of
particular importance, as in bottom-up proteomics one has to
also perform the peptide to protein inference. Both factors
can improve the coverage of peptides and thus of proteins
identified.

Recently, there has been steadily increasing interest in the
prediction of peptide CCS values (Meier et al. 2021a, Chang
et al. 2021, Samukhina et al. 2021, Zeng et al. 2022). This task
boils down to designing a function defined over some space of
arguments resulting in a (real-valued) CCS prediction, which
can be easily recognized as a regression task. In contrast to a
simple database look-up, the key advantage of this approach
comes from the possibility to obtain predictions for previously
unobserved data. For example, a given sample might result in
ions with sequences that were previously not observed. A
prominent example is posttranslational modifications (PTMs)
derived from biological conditions (e.g., phosphorylation) or
experimental setups (e.g., carbamidomethylation). IMS can
help to differentiate peptides with identical sequences but dif-
ferent PTM positions, which may have different biological
results. Another relevant example is MHC ligands sensed by
the immune system to trigger the defense against possible
threats, such as cancerogenic cells or virus infections. Detecting
MHC peptide ligands, also called immunopeptides, is essential
for developing vaccines and immunotherapies. MHC ligands
result from the cleavage of proteins mediated by diverse
enzymes in the cell, exponentially expanding the search space
and thus complicating their identification. In addition, immu-
nopeptidomics samples are more likely to contain isobaric pep-
tides than proteomics samples due to conserved patterns in
their sequences. Since LC-MS alone cannot separate such pepti-
des, IMS becomes essential to improve the identification of
MHC ligands. Overall, the space of observable ions is huge,
but there exists complex yet stable principles that govern the
observed CCS values.

To establish such a predictor, several modeling strategies
are available. Historically, due to small number of available
reference data-points, mostly low-parametric approaches
were used. One of the first was based on intrinsic size parame-
ters (ISPs; Henderson et al. 1999), where every amino acid is
assigned some fixed value a priori. ISPs were derived from a
set of 660 peptide sequences. A prediction of CCS for a spe-
cific sequence is then carried out by simply summing over all
contributions. Applicability for enhanced peptide identifica-
tion based on ISPs has also been discussed (Valentine et al.
2011). This idea was later extended to also account for e.g.

PTMs by adding up contributions of individual atoms instead
of amino acids (Kaszycki and Shvartsburg 2017). Other
approaches included a multi-layer perceptron architecture
and support vector machines (Wang et al. 2009, 2013) that
relied on engineered features derived from 595 peptide
sequences. While those models are quick to run and already
do offer a lot of insight into the problem, they simply cannot
fully account for the richness of the configuration space of
ions.

With the increased use of LC-IMS-MS methods into main-
stream proteomics and the resulting increase in the availabil-
ity of measured CCS values (Meier et al. 2021b), more
complex data-driven approaches were proposed. Using posi-
tional encoded ISPs with a linear regression model was imple-
mented by a very recent study by Chang et al. (2021). This
way, increased expressiveness of the predictor was achieved
with features that could be extracted from a training dataset
of 135 000 peptide sequences. A very different approach was
taken by Meier et al. (2021a), where the authors trained a
deep recurrent neural network end-to-end. This was possible
due to the generation of a training set with �550 000 exam-
ples. Their model achieves state-of-the art prediction accuracy
on a test set of �150 000 unique test sequences. Samukhina
et al. (2021) also built upon this dataset using deep learning.
They applied a mixed architecture of 1-D convolutions and
handcrafted features for sequences in combination with
model-averaging, which resulted in increased prediction accu-
racy. To give a complete picture of potential approaches, rea-
soning based on physics were also performed, where one used
Monte Carlo molecular dynamics to simulate the CCS values
(de Carvalho et al. 2013, Kondalaji et al. 2017, Villatoro
et al. 2019). However, these simulations are prohibitively de-
manding in terms of computational time and therefore im-
practical to use in high-throughput scenarios.

Overall, there are many similarities in the techniques used
currently to model ion mobilities to those used for retention
times (Ma et al. 2018, Gessulat et al. 2019), i.e. the LC-
derived measurements. Given the much higher stability of the
ion mobility measurements, it is interesting to ask what these
models can bring to the table.

Apart from the proper choice of the architecture of the pre-
dictor, additional steps have to be typically performed to pre-
process the data. From the practical standpoint, these steps
take most of the actual work of the data-scientist. These steps
include solving issues such as outlier detection, deduplication,
feature generation and alignment of new data. We present
here ionmob—a Python package for preprocessing datasets
and fitting predictors of the CCS values of peptides identified
by LC-IMS-MS using data acquired in timsTOF instruments.
It offers routines necessary to solve all of the practicalities
mentioned above and results in a prediction accuracy match-
ing the state-of-the-art models. In addition, we included a selec-
tion of pretrained models and architecture primitives, which
are easy to integrate into existing workflows. Importantly,
ionmob integrates trypsin-cleaved peptides, phosphorylated
tryptic peptides and also MHC ligands into deep learning
driven CCS prediction, making our models more expressive.
The package is well documented and available free of charge
under the MIT license from github. Finally, we investigated
how in silico prediction of CCS could be utilized to improve
identification of peptides, allowing to integrate additional in-
formation from LC-IMS-MS proteomics experiments. ionmob
will facilitate the training and incorporation of CCS-prediction

2 Teschner et al.



in diverse workflows for LC-IMS-MS proteomics and peptido-
mics experiments.

2 Approach
2.1 General ionmob workflow

An ionmob workflow can be composed of one or more build-
ing blocks, depending on the task at hand. An overview is
given in Fig. 1A.

The regular occurring tasks roughly fall into three catego-
ries: data preprocessing, model training, and CCS inference.
We provide explicit functionality for:

• detection of peptides with multiple conformations,
• deduplication of data points followed by an aggregation

strategy,
• feature generation, e.g. tokenization, based on data from

multiple software sources,
• alignment of new datasets for optimal prediction perfor-

mance, and
• pre-trained models for CCS inference out-of-the-box.

2.2 Modeling strategy and predictor architecture

Previous models used machine-learning algorithms to predict
CCS directly from peptide sequence and charge. However, the
CCS of an ion is highly correlated with its mass and charge

(Meier et al. 2021b) (see Fig. 2). This fact can be exploited to
reformulate the prediction task to only predict the residues
with respect to an initial projection of mass and charge.

The reformulation yields multiple advantages: first, it
reduces the convergence time of training considerably since
the starting initial CCS is already much closer to the real
value. Second, fitting a regression model with gradient-based
optimization was numerically unstable for models with few
parameters. This could be because the output domain of a
model needs to span a wide range of values and higher charge
states are underrepresented compared with lower ones. Third,
having this simple component of the predictor separated from
more complex ones makes it convenient to look at the contri-
butions of higher-order interactions of features. Fourth, it
also establishes a baseline accuracy (see Fig. 2).

We therefore decided to rephrase our approach. First, an
initial CCS value is calculated solely based on an ions mass
and charge, see Equation (1), where a coefficient wc and an
intercept bc are fit separately for each modeled charge state c
a priori.

CCSinitðmz; cÞ ¼ wc
ffiffiffiffiffiffiffi

mz
p

þ bc (1)

Afterward, a regressor M with parameter set h is fit to fur-
ther lower the mean absolute error (MAE) of predicted CCS
values compared with the experimentally observed ones, see
Equation (2).

Figure 1. (A) General workflow of ionmob. (a) Data are generated from different samples, devices and laboratories. A sample of interest (S1, S2) is

analyzed through multiple replicates (R1, R2) and combined into an identification table during raw data analysis (E1, E2). (b) For a representative set of

training values, peptide charge state pairs are pre-processed e.g. deduplicated. Raw data are then translated into sets of features for machine learning.

This results in data ready for training. (c) Training then is an iterative process where the internal state of a predictor is changed so that its output better

resembles the desired output based on some objective measure. This results in a trained model that can be used for prediction. (d) Before trained model

outputs can be compared with data derived from a new source, a dataset specific shift needs to be calculated. After that, predictions of a model are

ready, e.g. for rescoring. (B) Proposed model architecture. (a) Simple initial projection fitting a square-root function and a bias with mass and charge of a

peptide as inputs. (b) Recurrent neural network using GRUs to predict higher-order interactions that contribute to observed CCS based on peptide

sequences. Deeper dense layers are also provided with the charge state of the ion as additional input. AAs stands for amino acids. (c) Final CCS values

are then calculated as sum of initial projection and deep residues
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CCSfinalðmz; c; sjMÞ ¼ CCSinitðmz; cÞ þMðs; c; hÞ (2)

Input features may vary for different implementations of M
but are all based on information derived from peptide se-
quence s and charge state c. A concrete implementation is
shown schematically in Fig. 1B, representing our proposed
predictor architecture. It has �550 000 trainable weights.

Here, the residues with respect to the initial square-root fit
are modeled by a deep recurrent neural network, using token
embeddings for amino acids and bidirectional gated recurrent
units (GRUs; Chung et al. 2014) to provide a sequence spe-
cific contribution (see Fig. 2).

3 Materials and methods
3.1 Sample preparation and LC-IMS-MS data

acquisition

The detailed methodology for sample preparation and LC-
IMS-MS analysis is included in Supplementary Material and
Methods. LC-IMS-MS was performed in nanoAcquity
(Waters) or nanoElute (Bruker) chromatography systems con-
nected to either timsTOF Pro-2 or timsTOF SCP (Brunner
et al. 2022) (Bruker) MS, using DDA-PASEF (Meier et al.
2018) for MS acquisition.

3.2 Hardware, raw data analysis, and regression

modeling

MaxQuant version 2.0.3.0 (Cox and Mann 2008, Sinitcyn
et al. 2021) and PEAKS XPro version 10.6 (BSI, Canada)
were used to process generated .d raw files. Results used for
training were filtered at 1% FDR at the peptide-spectrum
match (PSM) and peptide level. For phosphopeptides, only
identifications with a PTM AScore > 20 were used (99% con-
fidence). Data preprocessing, model training and package de-
velopment were performed on a workstation running Ubuntu
20.04 with 32 GB of RAM, an AMD Ryzen 7 3700X 8-Core
Processor and a NVIDIA RTX 2070 SUPER GPU with
CUDA version 11.2 and cuDNN 8.1.1. Peptide identification
was performed with the andromeda search engine and refer-
ence X-FASTA sequences. All regression models were imple-
mented with scikit-learn (Pedregosa et al. 2011) version
1.1.0, scipy (Virtanen et al. 2020), version 1.8.0 or
TensorFlow (Abadi et al. 2016), and version 2.9.0 using
Python 3.9.

3.3 Data aggregation

The peptide identification text files created by MaxQuant and
PEAKS were used to generate our in-house datasets. Feature
duplicates consisting of (sequence, charge, and CCS) instances

Figure 2. m/z versus CCS for observed (blue) and predicted (orange) CCS values of MHC peptides, model performance. (A) Ground truth versus predicted

CCS after initial projection with a simple square-root function, see Equation (1) and Fig. 1Ba. (B) Final CCS prediction as sum of initial projection and deep

residues, see Equation (2) and Fig. 1Bc. (C) Boxplots showing charge state wise relative errors comparing both prediction accuracies. (D) Total relative

error distributions for both models after training
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were aggregated and their occurrences tracked. In order to
distinguish between differently folded populations of peptides
with the same charge state and sequence but notably different
CCS values, modality classes were assigned. Features with
identical charge and sequence that diverge the boundary of
2-times the standard deviation to the main feature are consid-
ered to be secondary features. Thereby, a distinction between
unimodal and bimodal distributions of CCS values for a fea-
ture is established. Within the bimodal fraction of features, a
main feature is determined based on the peptide mode with
highest occurrence. Features that displayed CCS values within
the boundary of 2-times the standard deviation to the main
feature are considered as part of the main feature and there-
fore aggregated/fused. The difference in CCS values for the
latter features are attributed to measurement inaccuracies.
The resulting CCS value is the occurrence-weighted average
of all (sequence, charge)-duplicates within the same modality
class. In case of multi-modality of a feature, only the main fea-
ture was kept.

3.4 External datasets

We downloaded the peptide identification tables from the
following publicly available datasets acquired in timsTOF
instruments.

1) The tryptic peptide training and test sets published by Meier
et al. (2021a) (data preparation described therein) available
at github from their repository (https://github.com/theislab/
DeepCollisionalCrossSection, accessed 10.07.22). The com-
bined dataset contained 718 917 unique pairs of charge
state and sequence.

2) The tryptic peptide results published by Chang et al.
(2021) that were made accessible through jPOST, data-
set id JPST 000959, JPST 001017, and JPST 001176.
The dataset was deduplicated by the same strategy de-
scribed for our own dataset, see previous section.
Sequence charge state pairs that were already present in
one of the other datasets were removed, which left a total
of 5064 examples.

3) The results published by Feola et al. (2022) (MHC
ligands) and Ogata et al. (2021) (phosphopeptides) that
were made accessible through PRIDE, dataset id PXD
026463 and jPOST, dataset id PXD 019746. The data-
sets were deduplicated by the same strategy described for
our own dataset, see previous section. Sequence charge
state pairs that were already present in one of the other
datasets were removed, which left a total of 7366 exam-
ples and 7742 examples, respectively.

We extracted 42 sequence, charge state pairs acquired using
N2 as drift gas and measured twice, once with TWIMS and
once with DTIMS from Bush et al. (2012) for evaluation of
CCS prediction performance on non-timsTOF data.

3.5 Alignment of collisional cross-section values

A dataset specific, linear shift in CCS was calculated by
matching sequence and charge state pairs identified in both
the dataset obtained from Meier et al. and each of the other
datasets (in-house and external). Using this dataset as refer-
ence is practical, as it holds by far the most sequences. This
aligns the means of all observed CCS values in different data-
sets and is necessary to avoid systematic error.

3.6 Training, validation, and test set generation

A concatenation of training and test sets published by Meier
et al. (2021a) together with our in-house generated phosphor-
ylation and MHC ligand datasets were used as training set,
the in-house generated tryptic dataset was used as validation
set. The three remaining external datasets were later used as
test sets.

3.7 Model training

Initial square-root fit was performed separately for each
charge state using SciPy, see Equation (1). Resulting parame-
ter values were then used to parameterize a custom tensorflow
layer with nontrainable weights. Model optimization was per-
formed with gradient descent using MAE as objective func-
tion. The Adam optimizer was used with an initial learning
rate of 10�3. Dropout regularization with a dropout rate of
0.2 was applied between the last two deep dense layers. After
each epoch, MAE was calculated on the validation set. If there
was no decreased MAE for at least three epochs, the learning
rate was lowered by an order of magnitude. If there was still
no improvement on the validation set for another three
epochs, training was stopped.

3.8 External collisional cross-section predictors

We downloaded the CCS predictor tools described by Meier
et al. (2021a), Zeng et al. (2022), and Samukhina et al.
(2021). We ran those models on our three test datasets
according to the provided instructions. In the latter case, we
therefore calculated the resulting CCS value for a given se-
quence and charge state pair as the average of all five created
predictions.

3.9 Calculation of additive scalar amino-acid

properties

The pepdata Python package (v1.0.7; https://github.com/
openvax/pepdata) was used to calculate scalar features for
peptide sequences. The package provides scalar descriptors of
different amino-acid properties like hydropathy or polarity as
mappings from a given amino acid to the respective value. For
the scalar descriptors volume, polarity, hydropathy, hydro-
philicity, solvent-exposed area, accessible surface area, acces-
sible surface area folded, local flexibility, and pK side-chain,
we calculated their normalized value by summing over the in-
dividual contributions of amino acids per sequence and di-
vided by the sequence length.

3.10 Rescoring with collisional cross-section

features

We tested the impact of using CCS predictions by adding CCS
features as feature set to the current implementation of
MS2Rescore (v2.1.2; Declercq et al. 2022) in addition to the
existing peak intensity and retention time prediction features.
For this, the mzid PEAKS search engine output files from the
tryptic, phosphorylated and MHC ligand peptide data were
used as is. Furthermore the MHC peptide dataset was ac-
quired using a method optimized to include singly charged
peptides (Gomez-Zepeda et al. 2023). All three were parsed
with the PEAKS pipeline of MS2Rescore; however, the pin
files were modified with additional CCS features before run-
ning percolator. These features include the observed and pre-
dicted CCS value, the error, the absolute error and the
percentual CCS error between observed value and predicted
value. Peptides that carried >4 charges were left out since the
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CCS predictor was not trained for these charges.
Subsequently, these modified pin files were rescored with per-
colator (The et al. 2016) (v3.05.0) as well as a pin files with-
out these features to be able to compare the effects of CCS
features when rescoring. The additional rescoring analyses
were done in jupyter notebooks and plots were generated us-
ing matplotlib(v5.3.2) and seaborn(v0.11.2).

4 Discussion
4.1 Model accuracy and comparison

To evaluate the performance of our model based on bidirec-
tional gated recurrent units (gru), we compared it with three
previously published deep predictors: Meier et al. (2021a)
(lstm) using long-short term memory cells, Samukhina et al.
(2021) (conv) using a mix of handcrafted features, convolu-
tions, and model averaging, Zeng et al. (2022) (apd) using
transformer-style attention. The results are shown in Fig. 3.
Median absolute percent error (MAPE) was used as compari-
son metric, since the spread of CCS values for a given charge
state increases with the mass of the ion (see Fig. 2).

Other studies predicting CCS made use of the Pearson cor-
relation coefficient as an additional metric. However, we ob-
served that the square-root baseline already had a correlation
value of �0:97 and therefore think that it adds no significant
insight into model performance. Interestingly, it can be ob-
served that both the long-short term memory (lstm) and con-
volutional model (conv) show performances comparable to
our predictor (gru) on the dataset from Chang et al. (2021)
and our in-house tryptic dataset. However, they show a lower
performance on the dataset from Feola et al. (2022). This
could stem from the fact that the latter dataset contains MHC
ligands, a type of peptide not present in the dataset those
models were trained on but part of our in-house generated
dataset. The CCS and IMS patterns of MHC ligands may be
different since their C-ter amino acid is not necessarily Arg or
Lys, as it is usually the case for tryptic peptides analyzed in
proteomics experiments (Purcell et al. 2019). It hints that even
if the authors of Meier et al. (2021a) could not observe signifi-
cant improvements in prediction accuracy for their model be-
yond a training set size of �300 000 examples, the richness of
naturally occurring peptides and experimental conditions
might not be fully explored yet. Achieved accuracy on

Figure 3. A performance comparison between ionmob GRU predictor and freely available deep predictors. (A–C) Performance per charge state for

different test datasets. The gru model has a slight performance boost over the others for the Feola et al. (2022) dataset, likely since in contrast to the

others it was explicitly trained on MHC peptides. Surprisingly, for charge state 4, prediction error for the Chang et al. (2021) dataset is relatively high for all

models. (D) Boxplots of relative error distributions for all models. Overall performance of conv Samukhina et al. (2021), lstm Meier et al. (2021a), and gru

model are relatively on par with each other, while the apd Zeng et al. (2022) model seems to perform a little worse. The ensemble prediction is calculated

as the average predicted CCS value over all four models
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phosphorylated peptides could only be evaluated for our pre-
dictor and the model from Zeng et al. (2022) and is shown in
Supplementary Fig. S6.

4.2 Prediction of collisional cross-section for singly

charged peptide ions

In most proteomics workflows, the MS is configured to skip
the fragmentation of singly charged ions or they are simply
not considered for peptide identification during data process-
ing (Prianichnikov et al. 2020, Gomez-Zepeda et al. 2023,
Purcell et al. 2019). This is because, first, singly charged pepti-
des are more difficult to identify since only one of the two
fragments is charged and can be detected after collision-
induced dissociation. Second, most contaminants are singly
charged as well and can be ignored thereby (Declercq et al.
2022). This also means that the range of inverse ion-mobility,
where experimental measurements can be reliably transferred
from reduced mobilities to CCS, will rarely cover those ions,
since the instrument resolution is finite and tuned to the
regions of highest interest (see Supplementary Fig. S7). This
changes for MHC ligand peptides, as those can be singly
charged due to their nontryptic origin, hence missing the
C-terminal arginine or lysine as well as being relatively short
(Declercq et al. 2022). We acquired an additional dataset of
MHC peptides using Thunder-DDA-PASEF, which is explic-
itly set-up to cover those ions (Gomez-Zepeda et al. 2023).

4.3 Comparing predicted collisional cross-section to

experimentally acquired values from different ion

mobility separation devices

As mentioned above, CCS values are never directly measured
but derived from experimentally determined ion-mobilities by
e.g. the Mason–Schamp equation or using a calibration curve
(Dodds and Baker 2019). However, it is still a matter of ongo-
ing debate under which experimental conditions this holds
true (Gabelica and Marklund 2018). To gain insight whether
or not our predictor might be applicable for IMS acquisitions
that do not use TIMS separation, we compared predicted
CCS values with results published by Bush et al. (2012). Here,
a custom Synapt MS (Waters Corp.) with both a traveling-
wave IMS (TWIMS) and a drift tube IMS (DTIMS) devices
was used to derive CCS values for a total of 42 peptide se-
quence, charge state pairs that had 27, 11, and 4 sequences of
charge state 2, 3, and 4, respectively. Results are graphically
shown in Supplementary Fig. S5. The prediction accuracy was
highest in the TWIMS analyses for ions with charge two and
three (MAPE of 0.81 and 1.78, respectively) and for doubly
charged ions in the DTIMS analyses (1.06). The error in-
creased for ions with charge four in TWIMS (1.85) and ions
with charge three or four in DTIMS (2.48 and 3.3, respec-
tively). While these results offer preliminary insights, it is im-
portant to note that they were based on a very small sample.
Therefore, gathering more data for evaluation would be nec-
essary to confirm these findings. However, at the time of pub-
lication, we did not find available published data including
the CCS for a larger number of peptides from any of these
devices. In summary, although larger datasets are required to
validate these results, ionmob has the potential to be applied
to predict IMS in other instruments.

4.4 Driving factors of collisional cross-section

prediction
4.4.1 Embeddings of amino acids
The learned residues of peptide CCS values with respect to
the initial fit use an embedding (here, 128 dimensional) to rep-
resent amino acids as dense vectors before being fed to the
GRU units. This gives the opportunity to inspect how
unmodified and modified amino acids are grouped relatively
to each other in the embedding vector space by the network.
To explore it, we evaluated the agglomerative clustering of
amino acid features as shown in Fig. 4. Outgroups are formed
by the phosphorylated amino acids Y, S, and T, acetylated
N-termini and lastly the three positively charged amino acids
H, K, R, and cysteinylated C. The inner clusters roughly fall
into aliphatic or aromatic as well as hydrophilic or hydropho-
bic groups. Even though the network was not presented with
any chemical or physical descriptors of the individual amino
acids, information about them is learned from the relationship
between sequences, charges, and the resulting CCS values.

4.4.2 Correlation of deep residues with additive scalar
descriptors of peptide sequences
Besides evaluating the individual relationships between amino
acids in the embedding space, we also explored the linear rela-
tionships between sequence-wise predicted deep residues and
additive scalar properties that can be directly calculated from
amino acid sequences. A recent study, Chang et al. (2021)
identified that increased hydropathy contributed to a higher
CCS values, which we could observe as well. Additionally, we
observed that local flexibility increases the overall relative
CCS value of a given sequence as well. Those correlations are
only moderate (0.55 and 0.53, respectively) but are in congru-
ence with the relative grouping of individual amino acids in
the embedding space of the predictor (see Fig. 4). All calcu-
lated Pearson correlations are visualized in Supplementary
Fig. S4.

4.4.3 Impact of phosphorylation on collisional cross-section
predictions
In a recent study, Ogata et al. (2021) confirmed on a large
scale that phosphorylation of peptides often leads to a more
compact configuration of the ion in the gas phase, thereby
lowering observed CCS values for modified peptide sequences
compared with the unmodified version of these sequences.
This effect outweighs the increase in peptide mass induced by
such a modification (Ogata et al. 2021). Our analyses repro-
duced this finding for our in-house generated datasets and,
consequently, this effect can also be observed when looking at
synthetic predictions. We evaluated this by analyzing pre-
dicted CCS values for synthetically phosphorylated sequences
with one phosphorylation site added at random compared
with the unmodified sequence. We calculated the pairwise me-
dian relative percent decrease in predicted CCS of syntheti-
cally modified peptides compared with unmodified peptides
per charge, which were 2.08, 2.85, and 3.86 for the charge
states 2, 3, and 4, respectively (see Supplementary Fig. S1).
The integration of in-silico predicted CCS for phosphorylated
peptides into identification workflows might therefore be an
excellent opportunity to be specifically integrated, which is al-
ready under commercial development (www.bruker.com/ru/
news-and-events/news/2022/bruker-releases-ccs-enabled-tim
score.html, accessed: 12.07.2022).
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In summary, the GRU model implemented in ionmob not
only enables the prediction of peptide CCS values from tryp-
tic, nontryptic and modified peptides but also allows the eval-
uation of feature-specific contributions at the amino acid,
sequence, and PTM levels.

4.5 Raw-data mobility distributions

To establish prediction tools, one highly relevant question is
whether or not the ion-mobility signal distribution should be
taken into account when predicting CCS values. So far, all
approaches including our own were implemented as maxi-
mum likelihood estimators. The simplification allows for a
more straightforward formulation of the mobility modeling
task. However, following this approach might be disadvanta-
geous if the underlying assumption that signal distribution
displays a single maximum does not hold. Notably, we and
others observed that single peptide sequences can sometimes
have multiple conformations in the gas-phase (Meier et al.
2021a). This in turn then results in a multi-modal distribution
of ion mobility and an observable split of the ion clouds for
charge state 3 and 4 (see Fig. 5).

Similar to the approach described by Meier et al. (2021a),
we dealt with multi-modality of peptide collisional cross sec-
tions by first identifying and then removing all occurrences
except the one with highest abundance. For a maximum likeli-
hood estimation strategy, which will otherwise converge to
their mean value, this is a necessary step. This strategy can be
justified by the overall low number of multi-modal peptides,
here �3%–5%. However, it obviously removes potentially
valuable information and one should therefore try to derive
driving factors of multi-modality. If identified, they could in
turn be used to decide for a given prediction instance a priori
if it might be necessary to predict more than one CCS value.
Due to the relatively low number of candidates and potential

stochastic processes driving multi-modality, we consider this
to be an open challenge for future investigations (Table 1).

4.6 Impact of collisional cross-section features in

peptide-spectrum match rescoring

Using CCS predictions as an additional feature set in rescor-
ing of database search results can provide increased perfor-
mance to further separate true from false targets and gain
confidence in the identified PSMs. To evaluate the value of
CCS prediction for identification rescoring, we incorporated
the ionmob models to the features used by MS2Rescore
(Declercq et al. 2022) for the evaluation of true positive iden-
tifications. Rescoring including CCS features shows similar
results for all three datasets, tryptic, phosphorylated, and
MHC ligands (including singly charged), with a small increase
in total number of identified PSMs and peptides, with the big-
gest increases seen for the MHC ligand dataset (Table 1).
When investigating this dataset more closely, we found that
38.4% of the PSMs identified with CCS features that were
not identified without these features are singly charged.
Furthermore, all of these had a very low percentual CCS er-
ror, in contrast to singly charged PSMs that previously were
identified and now not anymore due to the CCS features,
where a lot of outliers are seen (Supplementary Fig. S2).
Moreover, this trend was also seen in the other datasets where
peptidoforms that were removed in comparison with rescor-
ing without CCS features had higher errors. Even though the
total number of identifications does not increase spectacu-
larly, the feature weights show that they are indeed used by
percolator when rescoring PSMs (Chang and Lin 2008). It
demonstrates the value of using these features when rescoring
PSMs, especially for the immunopeptidomics dataset
(Supplementary Fig. S3). CCS features offer valuable informa-
tion alongside peak intensity and retention time features

Figure 4. Agglomerative clustering of amino acid and modification embedding vectors. Outgroups are formed by phosphorylated, acetylated and

positively charged amino acids. Inner groups are roughly divided between aliphatic and aromatic as well as hydrophilic and hydrophobic amino acids
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allowing the rescore algorithm to select the best features for
separating true from false targets for each database specifi-
cally. This filtering capability can be highly valuable for
immunopeptidomics, where a high certainty level of identifi-
cation is required to select the best targets for vaccines and
immunotherapies.

5 Conclusion

We implemented ionmob, a framework for preprocessing,
training and inferring peptide CCS values. ionmob includes a
novel network architecture that combines a simple function
fit with gated recurrent units, helping to stabilize and speed
up training and make model outputs easier to interpret. By in-
cluding phosphorylated peptides and MHC ligands also cov-
ering singly charged ions into the training set, we extend the
applicability of our model, enabling the accurate prediction of
a wider variety of PTMs than recently published models.
Furthermore, our results suggest that local flexibility of pepti-
des is an additional driving factor of increased CCS and con-
firm recently published findings that phosphorylation lowers
CCS, which could be indicative of charge interaction-based
compaction in the gas phase. Lastly, we demonstrate that in
silico predicted CCS values can be used to increase confidence
in peptide identifications by applying methods of rescoring. In
summary, ionmob is an easily deployable package for the
training and incorporation of peptide CCS prediction.
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Figure 5. Marginal distributions of intensity along the ion-mobility dimension of peptide features, recorded with a timsTOF instrument. Left: Intensity

distribution along the scan dimension (blue) for a uni-modal peptide feature, reported CCS is calculated from apex value (black). Right: intensity

distribution for a multi-modal peptide. MaxQuant reported this peptide twice at the same retention time with differing scan indices (orange, red). Raw data

extracted using opentims Łącki et al. (2021). 1=K0 was converted to CCS using the Mason–Schamp equation

Table 1. Number of PSMs and unique identified peptides in terms of

sequence for 1% for rescoring with or without CCS features.

Dataset PSMs unique peptides CCS features

Tryptic 60 850 2901 þ
60 850 2882 �

Phospho 224 109 29 046 þ
223 595 28 928 �

MHC ligands 392 092 20 232 þ
389 113 20 130 �
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