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Objective and Impact Statement. Distinguishing tumors from normal tissues is vital in the intraoperative diagnosis and
pathological examination. In this work, we propose to utilize Raman spectroscopy as a novel modality in surgery to detect
colorectal cancer tissues. Introduction. Raman spectra can reflect the substance components of the target tissues. However, the
feature peak is slight and hard to detect due to environmental noise. Collecting a high-quality Raman spectroscopy dataset and
developing effective deep learning detection methods are possibly viable approaches. Methods. First, we collect a large Raman
spectroscopy dataset from 26 colorectal cancer patients with the Raman shift ranging from 385 to 1545 cm 1. Second, a one-
dimensional residual convolutional neural network (1D-ResNet) architecture is designed to classify the tumor tissues of
colorectal cancer. Third, we visualize and interpret the fingerprint peaks found by our deep learning model. Results.
Experimental results show that our deep learning method achieves 98.5% accuracy in the detection of colorectal cancer and
outperforms traditional methods. Conclusion. Overall, Raman spectra are a novel modality for clinical detection of colorectal
cancer. Our proposed ensemble 1D-ResNet could effectively classify the Raman spectra obtained from colorectal tumor tissues

or normal tissues.

1. Introduction

Colorectal cancer (CRC) is a common health issue, with an
estimated 148,000 new cases and 53,000 deaths in America
in 2020 [1]. In order to reduce the incidence and mortality
of colorectal cancer, the effectiveness of guaiac fecal occult
blood test (gFOBT) and sigmoidoscopy screening has been
studied in randomized controlled trials [2-11]. Colonoscopy
is likely to reach the entire large intestine at least as effec-
tively as sigmoidoscopy, which reaches only the far end of
the large intestine [12]. Colonoscopy is a primary test for
diagnosing colorectal cancer. This process also has the poten-
tial to prevent diseases by eliminating precancerous lesions
and thus is an important tool to help improve clinical out-

comes. Unfortunately, the colonoscopy test is not 100% accu-
rate, and cancer can appear months or years later when a
colonoscopy test is negative for cancer. The World Endoscopy
Organization (WEO) defines such cases as postcolonoscopy of
colorectal cancer (PCCRCs) [13]. There is evidence that as
many as 700 patients in the National Health Service (NHS)
are diagnosed with PCCRCs each year [14]. Therefore,
improving the detection rate of colorectal cancer is vital.
Raman spectroscopy is a nondestructive chemical analy-
sis technique that attains the spectral characteristics of tis-
sues based on the molecular characteristics generated by
the inelastic scattering of the incident light. Inelastic scatter-
ing occurs when light interacts with matter, but its relative
importance is reduced by competing phenomena, including
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elastic scattering and absorption [15]. Raman spectroscopy
is used to observe low-frequency vibration patterns in the
system. Raman spectral results provide a fingerprint through
which different molecular species can be identified and their
relative concentrations assessed according to the intensities
of different peaks. Biological tissues, such as intestinal tissue,
contain a large number of Raman active molecules, resulting
in a spectral measurement that is actually a weighted spectral
sum from all the molecular species contained in the target
tissue volume [16].

At present, colonoscopy is based on biopsy or endo-
scopic tissue characteristics and in vivo classification. Color
endoscopy and Kudo classification are the main auxiliary
examinations for colon lesions [17], but it is difficult to iden-
tify some small lesions from the normal intestinal mucosa.
Therefore, clinical applications genuinely need a noninva-
sive, rapid, and high-precision diagnostic tool to detect some
early curable colorectal cancer. In addition, early detection
requires better clinical instruments than colonoscopy biop-
sies, which can be extended to a wider population rather
than limited by time and costs. In order to help address this
critical problem, Raman spectroscopy, a new diagnostic tool
featuring high speed, data preservation, and fine accuracy,
has been verified in many comprehensive studies, making
it possible to be applied in future clinical practice [18-22].
By comparing the Raman spectra of tumor tissues with those
of normal tissues, it is possible to find the main Raman spec-
trum characteristics that reflect these different tissues.

Recently, numerous machine learning methods have
been applied in spectral analyses [23]. Principle component
analysis (PCA) is the most commonly used one, which
extracts the top variances that contribute to the comprehen-
sive information. Some multivariate classifiers such as linear
discriminant analysis (LDA) or clustering methods (e.g., k
-nearest neighbor (KNN)) can be applied to further distin-
guish the targets through the PCA results [24]. Support vec-
tor machines (SVM) is another powerful tool, which enables
linear classification of the target data in a higher dimension
space by determining a hyperplane [25, 26]. Partial least
square regression (PLSR) is a bilinear factor method that
allows relating two data matrices through a linear multivar-
iate model [27]. Artificial neural networks (ANNSs) can sep-
arate data categories by passing information through
successive neuron layers [28]. However, these methods can
hardly learn more in-depth information within the spectra
data, such as the wavelength differences of subtle peaks,
because they consider only the disperse input points while
neglecting the internal relations.

As a subset of machine learning methods, deep learning
is a promising technique to extract effective features across
multiple levels of abstraction, which has demonstrated
state-of-the-art performance in a large number of challeng-
ing tasks such as medical image recognition [29-32]. Deep
learning applications on Raman spectroscopy data also
achieved promising results in various tasks such as Raman
denoising [33], brain tumor detection [34], and pathogenic
bacteria identification [35]. Compared with other machine
learning methods, deep learning models can capture infor-
mation from shared convolution kernels without manually
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selecting features. Among the above applications, one-
dimensional convolutional neural networks (1D-CNNs) are
effective deep learning models and have been widely used
in spectra recognition [36]. However, information transmis-
sion loss in CNNs may cause gradient loss and damage the
model performance. Inspired by the success of residual con-
nected networks against gradient loss, a one-dimensional
residual convolutional neural network (1D-ResNet) has been
utilized to improve the performance of spectra classifica-
tion [37].

Focusing on tumor detection, Ralbovsky and Lednev
reviewed machine learning methods in medical diagnosis
applications with Raman spectroscopy [23]. Based on spon-
taneous Raman spectroscopy (RS) and surface-enhanced
Raman spectroscopy (SERS), a large set of studies analyzed
cancer data with machine learning methods, and the types
of cancer examined included brain, breast, cervix, and liver.
On colorectal cancer, Gala de Pablo et al. investigated five
different colorectal cell lines with spontaneous RS and uti-
lized a PCA-LDA method to obtain a 92.4% classification
accuracy [38]. Krélova used SERS to analyze blood plasma
differences between normal persons and oncological patients
[39]. Still, most known RS studies on cancer diagnoses relied
on traditional machine learning methods like PCA to extract
features and classify sample types, but, due to limited dataset
sizes, the results of the previous studies are not general and
comprehensive enough.

In this work, we aimed to develop a new colorectal can-
cer detection method with Raman spectroscopy. For this
purpose, the effects of different tissues on Raman spectra
were investigated. Furthermore, we designed a deep learning
architecture to classify tumor tissues through their Raman
spectra. Comparison experiments and visualization results
demonstrated that our deep learning approach can detect
colorectal cancer fast and accurately. Our work could make
it possible for Raman spectroscopy combined with colonos-
copy to improve the detection rate of colorectal cancer in the
future.

2. Materials and Methods

2.1. Study Design. The objective of this study was to evaluate
the potential of using Raman spectroscopy to distinguish
colorectal cancer from normal tissues in grades 1 to 3 adeno-
carcinoma. This study investigated the capability of Raman
spectroscopy for intraoperative use on adult patients of colo-
rectal cancer surgery at the Second Affiliated Hospital of
Zhejiang University School of Medicine, China with grades
1 to 3 adenocarcinoma. All the patients included in this
study gave written informed consent and were fully aware
of the aims of the study. The surgeons were blinded to any
information about the acquired Raman spectra during the
resection procedures. The pathologists were blinded to any
information about the Raman spectra before performing his-
tological analyses. An overall schematic diagram of our pro-
posed approach is shown in Figure 1.

2.2. Sample Preparation. This study has been approved by
the Second Affiliated Hospital of Zhejiang University School
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FIGURE 1: A schematic diagram of our proposed deep learning approach for detecting colorectal cancer. (a) Preparing tissues and scanning
with a Raman spectrometer using x20 microscope objective lens. (b) Preprocessing the original data, including baseline correction,
denoising, and normalization. (c) Training the one-dimensional residual convolutional neural network to classify two tissue types from
Raman spectral data. (d) Visualizing the neural network by Grad-CAM and interpreting the meaning of activated peaks with deep learning.

of Medicine and the Institute of Translational Medicine of
Zhejiang University. All the tumor tissue samples and paired
normal tissues were obtained by surgical resection and
stored at —80°C from 2018 at the Second Affiliated Hospital
of Zhejiang University School of Medicine. The disease stage
was determined based on the pathological tumor-node-
metastasis (pTNM) classification system [40]. In summary,
there were 26 colorectal cancer samples including 6 grade
I, 12 grade II, and 8 grade III. The details were presented
in Table 1. All the samples were detected by Raman spec-
troscopy under tinfoil without any treatment. The results
of Raman spectra are shown in Figure 2.

2.3. Raman Spectral Data Acquisition. The Raman spectra
were collected in a dark room at 20° with Renishaw in via
Raman spectrometer (UK) equipped with the x20 micro-
scope objective lens. The scanning range was from 385 to
1545cm™. Each sample was detected three times to obtain
an average value. Before each experiment, the Raman spec-
trometer was calibrated using the 520.5 cm™ bands of a sil-

icon wafer. We split the collected tumor and paired normal
tissues into over 20000 small pieces on average and collected
the corresponding Raman spectrum of each piece. After-
ward, we built the Raman spectrum dataset of CRC, contain-
ing 20424 Raman spectrum data. The training set, validation
set, and test set account for 80%, 10%, and 10%, respectively.
The detail of the CRC Raman dataset is shown in Table 2.

2.4. Data Preprocessing and Data Augmentation. In the
model pretraining stage, we carry out two procedures, for
data preprocessing and data augmentation. First, we clean
the collected original Raman spectra data to reduce the
adverse effects of noise and improve the stability of the
mathematical model. As illustrated in Figure 1(b), there are
mainly three steps:

(i) Baseline correction: due to the fluorescence effect,
there are usually specific peak shiftings that may
cause overfitting of the model. The polynomial
baselines are fitted by an asymmetric least square
algorithm and removed from the original data



TaBLE 1: Description of the collected CRC samples.

N (%)
Age, years (median, range) 26 (50-73)
Gender
Male 16 (62%)
Female 10 (38%)
Primary location of neoplasm
Right colon 10 (39%)
Left colon 8 (31%)
Sigmoid colon 4 (15%)
Rectum 4 (15%)
TNM
I 6 (23%)
I 12 (46%)
11 8 (31%)
v 0 (0%)
Grade
Well differentiated 6 (23%)
Moderately differentiated 18 (69%)
Poorly differentiated 2 (8%)

(ii) Signal denoising: after the baseline correction, we
perform denoising of the Raman spectra data to
obtain purer data for analysis

(iii) Data normalization: the final step is scaling, in
which the intensity values of all spectra are normal-
ized to the range of [0, 1] so that the minimum
intensity value of each spectrum is 0, and the max-
imum is 1

The data preprocessing procedure is conducted using
Python 3.8 and the RamPy package. An example for tumor
tissue and normal tissue after preprocessing is given in
Figure 2 for comparison, in which the CRC tumor tissue
and normal tissue show only slight differences on some shift
peaks.

Next, in the data augmentation procedure, we seek to
extend our dataset with three operations. First, we generate
white Gaussian noise proportional to the magnitude at each
Raman shift. Second, we shift each spectrum left or right by
a few Raman shifts randomly. Third, we multiply the raw
spectra by a random intensity enhancement factor ranging
from 0.2 to 2.

2.5. Deep Learning Architecture. Convolutional neural net-
works (CNNs) and their variants such as residual networks
(ResNets) have shown very good potential to extract key fea-
tures from complex data and have been widely successful
across a set of image recognition tasks. ResNet uses short
connections between the input and output of each residual
block to prevent vanishing gradient and overfitting while
training a deep network architecture [37].

We utilize two types of residual bottlenecks, i.e., normal
bottleneck and downsample bottleneck, as the blue and
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green block shown in Figure 3. The input size is defined as
N * C,, * H, where N donates the batch size, C,, donates
the number of input channels, and H donates the height of
a feature map. Each residual block contains two batch nor-
malization (BN), activation layer (ReLU), dropout, and con-
volutional layer sets and has a short connection between
input and output. The batch normalization can prevent
overfitting effectively, which can be expressed as

BN(x,) = (—""r‘z “) +B (1)

where e donates a random noise, ¢4 and 0 donate the mean
and variance values in the batch, respectively, and y and 8
are adaptable parameters in training. In an activation layer,
we use rectified linear units (ReLU) as the activation func-
tion, which is described as

ReLU(x) = max (0, x). (2)

In a convolutional layer, we set the convolutional kernel
size as 1 x 3. A convolutional layer can be defined as

y =f<b’ +Qw’ s x’)’ (3)

where x' and y/ are the i input map and j output map,
respectively, w” donates the weight between the extracted
features and output, and b; stands for the bias of the i

map. The downsample bottleneck output size is N = C« H
/2, while the normal bottleneck output size is N * C * H in
a convolutional layer.

Each bottleneck contains a shortcut between the input
and output feature maps, which can be written as

H(X) = F(X, {w;}) + X, (4)

where X and H(X) are the input and output vectors of the
bottleneck, and F(X, {w;}) donates the residual mapping
to be learned.

Figure 3 illustrates the overall architecture of our pro-
posed 1D-ResNet model used in this work. Since the input
Raman spectral data is preprocessed as a 1x 1024 vector,
the input data size is N = 1 % 1024. The 1D-ResNet architec-
ture is similar to ResNet-34 [37]. Apart from the first bottle-
neck, downsample is conducted after two bottlenecks, until
we obtain the feature map of size N * 1024 * 1. After batch
normalization and activation of the final bottleneck, we use
a full connection layer and apply a sigmoid function to cal-
culate the probability, which can be expressed as

1
Sigmoid(x) = =1 (5)

2.6. Methods in Comparison. The CRC diagnosis using
Raman spectra data can be formulated as a binary classifica-
tion task. To verify the performance of our 1D-ResNet for
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FIGURE 2: An example possibility plot of the collected Raman spectra of CRC and normal tissues, normalized to [0, 1]. The upper red curve
represents CRCs, and the below green curve represents normal tissues, with only slight differences (blue curve) between the two sample
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TaBLE 2: Description of the collected CRC Raman dataset amount.

Tissue type Training set# Validation set# Test set# Overall
Normal 8684 1091 1091 10866
Tumor 7654 952 952 9558

this task, we conduct comparison experiments using several
commonly used machine learning methods, such as SVM,
LightBoost, XGBoost, and Random Forest [41]. SVM is a
classic linear classifier, XGBoost, and LightBoost are typical
boosting methods, and Random Forest is a kind of decision
tree method. We perform fine-tuning of the parameters for
each of these methods and record its best performance in
the validation set.

2.7. Implementation Details. The 1D-ResNet is trained with
the adaptive moment estimation (Adam) algorithm as the
optimizer, which is a variant of the stochastic gradient
descent method, for 200 epochs with a learning rate of
0.0001. The batch size is set to 128. To minimize the cost,
we use the weighted loss function as defined in Eq. (6):

n
jzzyiln)//\i"'(}//\i_yi)ln(l_)/}\i)’ (6)
i=1

where y, is the label of the i spectrum with value 1 or 0, ¥,
is the predicted probability of the i output by the model,
and n is the total sample size.

Figure 4 shows the changes in the accuracy and loss
curves of both the training set and test set with various num-
bers of epochs. As the number of epochs increases, the accu-

racy tends to increase, while the loss shows a decreasing
trend. The accuracy and loss reach stable values after hun-
dreds of epochs of training. We record the best performance
when the test accuracy reaches the maximum value.

Our experiments were performed on a workstation with
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 256 GB
RAM, and 8x NVIDIA Titan Xp GPU with 12GB GPU
memory. The code was implemented with PyTorch 1.6.1 in
Ubuntu 18.04.

3. Experiments and Results

3.1. Evaluation Metrics. To evaluate the model performance,
we report accuracy, precision, recall, and Fl-score of each
method. The definitions of the evaluation metrics are
defined as follows:

TP+ TN

A - , 7
Y = TP T FP + TN + EN @)

TP
Recall= —— 8
T TP EN )
TP
P 181 = —) 9
recision = 9)
2xTP
Fl-score= —————— (10)
2 x TP+ EN + FP

where TP, FP, TN, and FN represent the true positive, false
positive, true negative, and false negative prediction results,
respectively. Furthermore, we report the area under the
ROC curve (AUC) while comparing the performance of dif-
ferent machine learning methods.
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m—1
AUC= > Y (TPR;,, + TPR)(FPR,,, —FPR)),  (11)
i=1

1
2

where TPR and FPR donate the true positive rate and false
positive rate, respectively.

3.2. Training Results of 1D-ResNet. We train the 1D-ResNet
model described in Section 2.5. The accuracy of the model is
94.6%. To enhance the model performance, we utilize three
strategies to improve the model. On one hand, we intensify
the Raman shift peaks by multiplying some intensity factors
with the main peaks in the raw spectra, which is similar to
the data augmentation procedure. The accuracy of ResNet_
intensify raises to 95.3%. On the other hand, we split the
raw data into [0, 512] and [128-640] to capture partial fea-
tures, especially the parts with lower Raman shift. Consider-
ing only partial features achieves an accuracy of 92%.
Finally, we ensemble the three ResNet strategies by an
8:1:1 weight, and the final ensemble model attains a
95.8% accuracy for distinguishing CRC samples from nor-
mal tissues. Table 3 reports the accuracy, precision, and
recall of each model. Figure 5 demonstrates the confusion
matrix of the ensemble model performance on the test set.

3.3. Comparison Study. As discussed in Section 2.6, we con-
ducted comparison experiments to verify the performance of
our 1D-ResNet in distinguishing Raman spectra. As shown
in Table 4, we trained several classification models based
on SVM, Random Forest, LightBoost, and XGBoost, respec-
tively. The baseline machine learning methods were imple-
mented by scikit-learn package [42]. We selected the
hyperparameters with exhaustive grid search and ensured
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TaBLE 3: Comparison of 1D-ResNet classification performances
with three strategies.

Method Accuracy Precision Recall
Resnet_original 0.946 0.939 0.943
Resnet_intensify 0.953 0.943 0.954
Resnet_split 0.920 0.909 0.915
Ensemble 0.985 0.980 0.986
Normalized confusion matrix
1000
Normal 800
)
5 600
= 400
Tumor
200

Tumor

Normal

Predicted lable

F1GURE 5: The confusion matrix of our ensemble 1D-ResNet model
on the test set.

TaBLE 4: Performance comparison of several machine learning
classification methods.

Method Accuracy AUC Precision Recall Fl-score
SVM 0.7763  0.8679 0.7482 0.7836 0.7655
Random Forest  0.7837  0.8817 0.7388  0.8288 0.7812
LightBoost 0.9148 0.9697 0.9019 0.9170 0.9094
XGBoost 0.9055 0.9674 0.8957 0.9023 0.8990
Ours 0.9850 0.9981 0.9818 0.9859 0.9834

that each algorithm can converge eventually. Each experi-
ment was conducted with random parameter initialization
three times, and the best performance was reported.
Table 4 shows the results of the comparison experiments,
in which the accuracy, AUC, precision, recall, and F1-score
of each method are reported. Our proposed ensemble 1D-
ResNet method obtains the best classification performance
among all the machine learning methods considered.
Figure 6 displays the receiver operating characteristic
(ROC) curve of each method. SVM and Random Forest
show relatively poor performance in AUC ( ~0.86 and ~
0.88). The two boosting methods, LightGBM and XGBoost,
attain better AUC ( ~ 0.96). Our ensemble 1D-ResNet yields
the best AUC (0.986).

3.4. Visualization and Interpretation. Based on class activa-
tion mapping (CAM) analyses, we sought to provide some
intuitive insights into the capability of our 1D-ResNet model
on Raman spectra data. We collected tumor tissue spectra

— SVM
—— XGBoost

—— Ours
—— LightGBM

—— Random forest

FiGure 6: The ROC curves of several machine learning methods for
classifying two tissue types in Raman spectra data. Blue curve: our
ensemble 1D-ResNet method (AUC=~0.98); orange curve:
LightGBM method (AUC =~ 0.97); green curve: Random Forest
method (AUC = ~ 0.88); red curve: SVM method (AUC = ~ 0.87);
purple curve: XGBoost method (AUC = ~ 0.96).

data as well as normal tissue data. We fed the spectra data
to 1D-ResNet and plotted the CAM using Grad-CAM [43].
As shown in Figure 7, although the target data seem similar,
the 1D-ResNet model focuses on different Raman shift
regions. For the tumor tissue spectra, the model has a wide
range from 450cm™ to 1200cm™, while it has a narrower
range from 800cm™' to 1000cm™" for the normal tissue spec-
tra. The experimental visualization results can be used to
explain the differences in components from the tumor tissue
data. Table 5 lists the potential components in different
Raman shifts as reported in [44]. This might offer a potential
tool to extract more invariant feature representations and
recognize components in adverse environments.

4. Discussions

Our work demonstrated that Raman spectroscopy is a
potential technique for the detection of CRC tissues during
colorectal cancer surgeries. As a popular spectral technology,
Raman spectroscopy is nondestructive to the sample, and it
does not need a complex procedure of sample preparation.
The Raman spectra can be acquired quickly within seconds.
Besides, Raman spectra are sensitive to organic composition
changes yet not to water and air. These advantages of Raman
spectra make it possibly useful for examining the target tis-
sues directly in surgeries. Before deep learning methods
showed their capability to analyze big data, Raman spectra
relied on experienced chemists to outline the characteristic
peaks. Previous studies are aimed at enhancing the peak
intensity through designing and injecting proper nanoparti-
cles into the targets [16-18]. However, such nanoparticles
are considered a kind of drug and are hard to apply in clin-
ical surgeries. Some previous work analyzed Raman spectra
data with machine learning methods [24-26] and reported
over 90% accuracy in classifying tumors and normal tissues,
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FIGURE 7: Visualization of activated parts in spectra data using Grad-CAM. (a) is for tumor tissue spectra and (b) is for normal tissue data.

TaBLE 5: Raman peak assignment.

Raman shift/cm”
1

Intensity Vibrational mode = Component
497 Weak s (S-S) DNA
599 Mid v (N-H) Cytosine
725 Mid bv (N-H) Adenine
810 Mid v (C,-O-P-O-C,) Phosphodiester
876 Weak v (0-0) Lactate
890 Weak d (C-O-H) Glucose
936 Strong s(C,-Cy) Polysaccharides
986 Strong v (C, - C, or C-O) Ribose
1014 Mid v (pyr half-ring) Glucose
1125 Weak v (C 8~ methyl) Protein
1130 Mid s (C-N) D-mannose
1156 Weak v (pyr half-ring),,,, Glucose
1210 Weak  bv (N-H), s (C-H) Amide
1328 Strong 7(CH,) DNA/RNA
1447 Strong bv (C-H) Collagen

Abbreviations: v: vibration; bv: bending vibration; 7: twist vibration; s:
stretching vibration; §: scissoring vibration.

but the data amounts in such studies were limited. For
example, in [41], it achieved a 100% SVM classification
accuracy with only 20 Raman spectrum data collected from
one patient.

In this work, we collected over 20000 Raman spectrum
data from 26 CRC patients, covering the most common
types of colorectal cancer patients. We developed the 1D-
ResNet method in this work with three strategies to enhance
the CRC classification performance. The results indicated
that our deep learning method is competent for detecting
colorectal tumors in Raman spectra data. Since interpreting
deep learning algorithm results is always a problem, we used
Grad-CAM to visualize the activated parts in Raman spectra
data. From the highlighted Raman peak assignment, the cor-
responding components in tissues can be examined in
experiments to verify that our proposed deep learning
method can capture correct feature peaks.

5. Conclusions

In conclusion, we applied deep learning techniques to detect
colorectal cancer via Raman spectra data. An ensemble 1D-
ResNet model was proposed that achieves accurate and
automatic decoding of Raman spectra-encoded data. This
method could address the issues of low efficiency and poor
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stability of data analyses using traditional machine learning
methods. Our 1D-ResNet can accurately and stably classify
all the test data with good convergence in our comparison
experiments. The decoding performance of 1D-ResNet was
far superior to that of common traditional machine learning
models. Visualization results highlighted the component dif-
ferences in colorectal tumor tissues. Our proposed method
could enable the applications of Raman spectra in clinical
CRC diagnoses. Future work will concentrate on the detec-
tion and analyses of actual colorectal tumor samples.
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