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Objective and Impact Statement. There is a need to develop high-performance and low-cost data augmentation strategies for
intelligent skin cancer screening devices that can be deployed in rural or underdeveloped communities. The proposed strategy
can not only improve the classification performance of skin lesions but also highlight the potential regions of interest for
clinicians’ attention. This strategy can also be implemented in a broad range of clinical disciplines for early screening and
automatic diagnosis of many other diseases in low resource settings. Methods. We propose a high-performance data
augmentation strategy of search space 101, which can be combined with any model through a plug-and-play mode and search
for the best argumentation method for a medical database with low resource cost. Results. With EfficientNets as a baseline, the
best BACC of HAM10000 is 0.853, outperforming the other published models of “single-model and no-external-database” for
ISIC 2018 Lesion Diagnosis Challenge (Task 3). The best average AUC performance on ISIC 2017 achieves 0.909 (±0.015),
exceeding most of the ensembling models and those using external datasets. Performance on Derm7pt archives the best BACC
of 0.735 (±0.018) ahead of all other related studies. Moreover, the model-based heatmaps generated by Grad-CAM++ verify
the accurate selection of lesion features in model judgment, further proving the scientific rationality of model-based diagnosis.
Conclusion. The proposed data augmentation strategy greatly reduces the computational cost for clinically intelligent diagnosis
of skin lesions. It may also facilitate further research in low-cost, portable, and AI-based mobile devices for skin cancer
screening and therapeutic guidance.

1. Introduction

Skin diseases represent one of the most common health
problems globally [1] that affect patients’ quality of life,
induce significant socioeconomic burden to society, and
even lead to increased morbidity and mortality [2]. Skin can-
cer is a family of skin diseases caused by the neoplastic
growth of skin cells in the epidermis and can be classified
into two major categories of nonmelanoma and melanoma
[3]. Nonmelanoma skin cancer (NMSC) accounts for 98%
of all skin cancers, and their treatment places a significant
burden on the healthcare systems [4]. Melanoma accounts

for only 2% of all skin cancers but causes the most skin can-
cer deaths [3]. Early detection and prompt treatment of skin
lesions can significantly improve quality of life and reduce
melanoma mortality for patients. The previous study has
revealed an elevated 5-year survival of 99% for early detected
melanoma, in comparison with that of ~18% with late diag-
nosis [5]. The most commonly used criteria for skin cancer
diagnosis is based on visual inspection of lesion size, shape,
color, and location [6]. Although using a dermoscope helps
to improve the diagnostic accuracy [7], visual inspection
represents a subjective method for skin cancer detection,
and its accuracy heavily depends on the examiner’s experi-
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ence. Due to the global shortage in experienced dermatolo-
gists, patients in rural communities and low resource set-
tings have experienced the significant delay in detection
and treatment of skin cancer as well as the higher morbidity
and mortality compared with other areas [1].

To address the shortage of dermatology specialists and
improve the accuracy for skin cancer classification, various
artificial intelligent (AI) diagnostic technologies have been
explored [8]. Since the first report in 1987, traditional
machine learning techniques have been applied to help
dermatologists in faster data process and more reliable diag-
nosis [9]. Machine learning algorithms, such as support vec-
tor machine, have already achieved a classification accuracy
of 80% [10]. However, the performance of these methods in
multiclass classification is limited by many deficiencies such
as excessive adjustment (i.e., overfitting). With recent
advances in computing technology, deep convolutional neu-
ral network (DCNN) has been introduced into the skin dis-
ease diagnosis and has achieved the encouraging diagnostic
accuracies better than 90%, comparable or even superior to
those of dermatologists [11].

Although DCNN has been integrated with several mobile
dermoscopic devices for intelligent classification of skin
lesions [12], rural deployment of DCNN classifiers for skin
cancer screening is hindered by multiple technical challenges
in computational cost, portability, and reliability. It has been
revealed that DCNN classifiers tend to work well when they
are trained on large datasets acquired from actual clinical cases
[13]. However, most of the publically accessible skin lesion
imaging depositories, such as PH2 (160 nevi and 40 melano-
mas), Derm7pt (1011 lesion cases, and the number of SC
and BCC is 45 and 42), ISIC 2017 (13768 images, and the
number of AKIEC is only 2), ViDIR series (<4,000 images
with partial pathologic verification), and HAM10000 (10015
images in seven skin disease categories) [14–16], have either
a relatively small data size or an uneven distribution of disease
types, limiting the achievable performance of the trained clas-
sifiers. Similarly, the lack of a large-scale, reliable, and balanced
clinical dataset presents a common barrier for developing and
deploying high-performance DCNN models in many other
clinical disciplines.

Ensembling multiple deep learning (DL) models and
data augmentation are commonly used methods to over-
come the aforementioned limitations of the available clinical
datasets. Model ensembling is a process that aggregates the
predictions of multiple diverse models in one final predic-
tion, where the various models are trained using different
strategies [17]. This approach improves the prediction per-
formance by reducing the generalization error of the predic-
tion, as evidenced by the observation that the balanced
multiclass accuracy of the ensembling models is generally
higher than that of the single models in the ISIC 2018 chal-
lenge [18]. However, the computational cost of the ensem-
bling models is generally high, and the ceiling effect
prevents their further improvement of diagnostic accuracy.
Therefore, it is necessary to improve the performance of
individual DCNN models. Data augmentation helping
increase both “amount” and “diversity” of the existing data-
set is one of the keys, and conventional data augmentation

strategies include scaling, translation, rotation, random
cropping, image mirroring, and color change which have
been developed [19]. However, those data augmentation
strategies are typically dataset-specific [20]. Recently, the
emerging automatic data augmentation techniques, such as
AutoAugment [20], Fast AutoAugment [21], Population-
Based Augmentation [22], and RandAugment [23], have
shown a certain superiority over conventional data augmen-
tation strategies. Nevertheless, our experiments have found
that these enhancement methods do not perform well on
small medical databases, and a new search is needed. More-
over, the search space sizes of AutoAugment [20], Fast
AutoAugment [21], Population-Based Augmentation [22],
and RandAugment [23] are 1032, 1032, 1061, and 102, respec-
tively. The high computational costs of both the ensembling
models and data augmentation strategy searching are there-
fore preventing the practical implementation of DCNN-
based intelligent diagnosis for skin diseases.

We therefore propose a high-performance data augmen-
tation strategy suitable to be implemented in low resource
settings and the potential to further help developing mobile
devices for AI-based skin lesion detection. In a two consecu-
tive stages of augmentation search and network match, the
best augmentation strategy is first searched in the space of
Low-Cost-Augment (LCA) under the specified criteria with
5-fold cross-validation. Then, the DCNN models adopting
the searched augmentation strategy are fine-tuned using
the full training set, and the one of highest specified criteria
is matched as the best combination. In this paper, the effi-
ciency of such a data augmentation strategy is validated on
the HAM10000, ISIC 2017, and Derm7pt [15, 16] datasets
using the EfficientNet models as a baseline. EfficientNet is
a group of lightweight convolutional network models
achieving state-of-the-art accuracy with an order of magni-
tude fewer parameters and FLOPs over ImageNet [24]. In
the meantime, the Class Activation Mapping (CAM) liked
technology [25], utilizing the gradients of models’ final con-
volutional layer, can generate a visual and explainable heat-
map for the DCNN model. It helps to make the “black box”
nature of deep learning more clear and highlights the posi-
tion and scope of lesions distribution. Therefore, the Grad-
CAM++ [25] is introduced to verify the scientific rationality
of the proposed method and its potential in promoting the
integration of personalized diagnosis and treatment
technology.

Our research contributions can be summarized as
follows:

(1) We propose an argumentation strategy of search
space in 101 magnitudes, which can be combined
with any model through a plug-and-play mode,
and of the ability to search for the best argumenta-
tion method for a medical database with low
resources cost

(2) By training the EfficientNet model using the pro-
posed data augmentation strategy on the
HAM10000 dataset, we have achieved a BACC level
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of 0.853, ranking top of the ISIC 2018 challenge in
the channel of single-model and no-external-
database. The searched method also achieves excel-
lent performance on the ISIC-skin 2017 dataset and
Derm7pt dataset

(3) With the combination of the proposed DL model
and Grad-CAM++, we can not only achieve high
performance on different datasets at a low computa-
tion cost but also verify the scientific rationality of
diagnostic models and diagnostic models’ potential
in promoting the integration of personalized diagno-
sis and treatment technology

The proposed DL strategy can be also expanded to
other clinical disciplines for automatic screening and accu-
rate detection of diseases in areas of limited resources. All
the source code used in this paper is available in our pub-
lic repository (http://github.com/Shuwrood-SSW/Low-cost-
and-high-performance-data-augmentation-for-deep-
learning-based-skin-lesion-classification).

2. Results

2.1. Evaluation of Augmentation Strategies in a 5-Fold Cross-
Validation on HAM10000 Dataset. Totally, 12 subpolicies in
the search space of Low-Cost-Augment are defined. Each
subpolicy

comes with 5 uniformly spaced probabilities ([0.1, 0.3,
0.5, 0.7, and 0.9]) and random magnitudes, leading to a
search space size of 12 ∗ 5 = 60 possibilities. In comparison,
the search space sizes of AutoAugment [20], Fast AutoAug-
ment [21], Population-Based Augmentation [22], and Ran-
dAugment [23] are 1032, 1032, 1061, and 102, respectively.
Notably, the proposed strategy greatly reduces the search
space and thereby decreases the computational costs.

Table 1 shows the BACC performance of the trained
EfficientNets after applying the proposed LCA strategy at
various probabilities on the HAM10000 dataset. According
to the table, the BACC values show a trend of first increasing
and then decreasing from EfficientNets b0-b7, and the devi-
ations fluctuate within ±0.033 in 5-fold cross-validation, no
matter which augmentation strategy is used. These results
imply that the most complex network is not necessarily suit-
able for the HAM10000 dataset of medium capacity. It is
also observed that the data augmentation strategy in the
probability of 0.1 or 0.3 generally performs better than that
of the other probabilities, as five out of the eight models yield
the higher BACC values at the probability of 0.3.

The BACC performance of the LCA strategy at the prob-
ability of 0.3 is compared with other augmentation strate-
gies, as shown in Figure 1. According to the figure, the
performance of the LCA strategy exceeds both the General
Augmentation and the searched AutoAugment strategies.
These results indicate that the LCA strategy at the probabil-
ity of 0.3 effectively reduces the overfitting risk and is more
suitable for the HAM10000 dataset. It is also observed from
the figure that the General Augmentation strategy performs
better than the ImageNet-based AutoAugment strategy,

indicating that the augmentation strategy obtained from
one dataset cannot be effectively transferred to the other
datasets.

2.2. Visual Representations of Searched DL Algorithms on the
HAM10000 Dataset. EfficientNet b0-b7 are finely tuned by
adopting the two-stage data augmentation strategy at the
probability of 0.3 on the HAM10000 full dataset. The pre-
dicted results of the test dataset on the fine-tuned models
at different epochs are uploaded to the official website of
ISIC 2018 Challenge in order to obtain the BACC values
and other performance metrics. Based on our experience,
the BACC value for the models of over 30 epochs only fluc-
tuates within a small range; therefore, we collect the official
test results in the range of 30~90 epochs with 5 epoch
intervals.

Figure 2 shows the best official performance of the Effi-
cientNet models trained by the proposed LCA strategy.
Although no obvious correlation is observed between the
optimal BACC value and the corresponding parameters of
different EfficientNet models, the EfficientNet b2 achieves
the highest BACC value of 0.853, better than any other
models. Similar trends are also observed in other metrics
of the figure, such as the average area under the receiver
operating characteristic curve (AUC), the average accuracy,
the average specificity, and the average precision. Further
analysis of the EfficientNet b2 performance in seven classes
of HAM10000 (Table S4) indicates that the diagnostic
specificity of the model is greater than 0.983 for all the
classes and the diagnostic accuracy is greater than 0.91 for
all the classes except NV.

The performance of our augmentation strategy is also
compared with those on the ISIC 2018 Challenge legacy
leaderboard, as listed in Table 2. According to the table,
using ensembling multiple models or using external data-
sets typically achieve better performance, such as those
by Minjie, MetaOptima Technology Inc. [18], DAISYLab
[26], Amirreza [27], and IPM-HPC. In the case where
only a single model is used without an external database,
the BACC reported on the legacy leaderboard (https://
challenge.isic-archive.com/leaderboards/2018 (Task 3:
Lesion Diagnosis)) typically does not exceed 0.8, and the
latest study on the live leaderboard (https://challenge.isic-
archive.com/leaderboards/live (2018.3: LESION DIAGNO-
SIS)) does not exceed 0.836. Therefore, the BACC perfor-
mance of EfficientNet b2 using our augmentation strategy
ranks the first on the channel of “single-model” and “no-
external-data,” even better than some of the ensembling
models. It is also worth noting that our proposed strategy
achieves the melanoma diagnostic sensitivity superior to
the ensembling models and those using external datasets.

2.3. Generality Verification of the Searched Method on ISIC
2017 and Derm7pt Datasets. To verify the generality of the
searched method, HAM10000-pretrained EfficientNet b0-
b7 of performance in Figure 3 are furthermore fine-tuned
by adopting the LCA augmentation in 0.3 probability on
ISIC 2017 training set for 35 epochs. Moreover, 600 test
images are used for the real-time evaluation of model
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performance at each epoch. The curves in Figure 3 show that
the training loss of each model gradually decreases and then
stabilizes, but the loss of the test set from EfficientNet b4
presents a decrease first and then increases trend. Based on
the research [28], this indicates the growing overfitting prob-
lem for EfficientNet b4-b7 on the ISIC 2017 dataset, so we
subsequently only focus on investigating the performance
of EfficientNet b0-b3 on this dataset.

Further analysis indicates that EfficientNet b0-b3 help to
obtain the best Avg. AUC of 0.904 (±0.017), 0.909 (±0.015),
0.903 (±0.021), and 0.902 (±0.013), respectively, and Table 3
also lists performances of other researches. According to the
table, using ensembling multiple models or using external
datasets also helps to achieve better performance, such as
those by Xie et al. [29], Zhang et al. [30], and Matsunaga
et al. [31]. Despite the negligible gap between best Díaz
[32] using both “single-model” and “no-external-data,” the
Avg. AUC achieved by EfficientNet b1 exceeds most ensem-
bling models and those using external datasets. Obviously,

the sensitivity for MEL of our approach (EfficientNet b1) is
ahead of all the others, especially Díaz [32], and sensitivity
for SK is second only to Matsunaga et al. [31].

The same training strategy was adopted in the generality
verification on a smaller Derm7pt dataset consisting of both
clinical and dermoscopic images. For the growing overfitting
phenomenon of EfficientNet b4-b7 on a dataset of ISIC-skin
2017 scale, we just investigate the performance of Efficient-
Net b0-b3 on Derm7pt dataset. The best BACC of Efficient-
Net b0-b3 obtained is 0.735 (±0.018), 0.722 (±0.013), 0.721
(±0.019), and 0710 (±0.026), respectively, and all exceed
the performance of the reports (Table 3) using ensembling
models and external datasets.

As introduced previously, Grad-CAM++ is introduced
to generate visual explanation heatmaps to highlight features
affecting the prediction of models. We apply Grad-CAM++
to the best-performing models on HAM10000, ISIC 2017,
and Derm7pt datasets, respectively. As shown in Figure 4,
the heatmaps of typical lesions in each dataset highlight their

Table 1: BACC of EfficientNet b0-b7 trained adopting the LCA strategy in different probabilities (P).

DCNNs P = 0:1 P = 0:3 P = 0:5 P = 0:7 P = 0:9
EfficientNet b0 0:881 ± 0:025 0:883 ± 0:014 0:881 ± 0:015 0:874 ± 0:021 0:875 ± 0:024
EfficientNet b1 0:881 ± 0:033 0:882 ± 0:016 0:873 ± 0:020 0:880 ± 0:027 0:873 ± 0:027
EfficientNet b2 0:879 ± 0:019 0:883 ± 0:013 0:881 ± 0:016 0:876 ± 0:024 0:880 ± 0:029
EfficientNet b3 0:873 ± 0:027 0:870 ± 0:016 0:867 ± 0:018 0:868 ± 0:015 0:859 ± 0:019
EfficientNet b4 0:878 ± 0:021 0:876 ± 0:013 0:874 ± 0:019 0:871 ± 0:020 0:873 ± 0:014
EfficientNet b5 0:859 ± 0:032 0:868 ± 0:018 0:858 ± 0:024 0:858 ± 0:023 0:845 ± 0:017
EfficientNet b6 0:871 ± 0:016 0:866 ± 0:012 0:857 ± 0:033 0:862 ± 0:033 0:856 ± 0:033
EfficientNet b7 0:864 ± 0:028 0:865 ± 0:01 0:865 ± 0:014 0:851 ± 0:032 0:848 ± 0:019
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Figure 1: BACC performance of EfficientNets trained adopting the best LCA strategy (n = 5), ImageNet-based AutoAugment strategy (n = 5
), and General Augmentation strategy (n = 5). The DCNNs from left to right on the x-axis correspond to EfficientNet b0-b7.
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related features very well, indicating that the model has
indeed learned the ability to distinguish disease based on
the corresponding lesion characteristics. In addition, this
intuitive mark will be of high value in the presystemic
screening of skin diseases. By obtaining whole-body skin
pictures, completing the examination and positioning of sus-
pected malignant lesions, the method will greatly reduce the
workload of doctors and help them to perform more efficient
diagnosis.

3. Discussion

AI-based diagnostic techniques can be potentially used to
not only relieve dermatologists and dermatopathologists
from time-consuming or repetitive tasks but also provide

expert dermatologic care to rural populations, underserved
communities, and regions of limited resources [8, 11].
Inspired by recent advances in computing technology and
DCNN, various AI-based skin disease classifiers have been
developed [12]. Although some of these classifiers have
reported remarkable diagnostic accuracies equal or even
superior to that of dermatology specialists, the outstanding
performance is limited to the specific datasets and can
hardly be replicated in general clinical data with consistent
accuracy. Moreover, the outperformed DCNNs typically
assemble multiple models that require significant computa-
tional resources or use external training sets inaccessible in
the public domain, hindering their deployment in rural
communities and regions of limited resources.
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Figure 2: Performance of (a) BACC, (b) average AUC (n = 7), (c) average specificity (n = 7), (d) average accuracy (n = 7), and (e) average
precision (n = 7) of EfficientNets trained adopting the searched augmentation strategy. The DCNNs from left to right on the x-axis
correspond to EfficientNet b0-b7.

Table 2: The performance of models on ISIC 2018 challenge legacy leaderboard (rows 1–3), live leaderboard (rows 4–11), and our proposed
approach.

Team/authors Use external data Use ensemble models BACC Sensitivity for melanoma Avg. AUC Avg. specificity

Nozdryn et al. [18] Yes Yes 0.885 0.760 0.983 0.833

Gessert et al. [26] Yes Yes 0.856 0.801 0.987 0.984

Zhuang et al. No Yes 0.845 0.702 0.978 0.980

Minjie Yes Yes 0.895 0.778 0.982 0.981

Amirreza et al. Yes Yes 0.874 0.585 0.979 0.992

IPM_HPC. Yes Yes 0.866 0.830 0.976 0.976

Amirreza et al. [27] Yes Yes 0.862 — 0.981 —

Mahbod et al. No No 0.836 0.719 0.975 0.982

ND Reddy et al. No No 0.735 0.544 0.945 0.968

Our approach No No 0.853 0.789 0.975 0.973
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This project aims at developing a low-cost and high-
performance data augmentation strategy that can be imple-
mented in a low-complexity DCNNmodel for automatic skin
cancer screening in rural communities. The proposed data
augmentation strategy includes two consecutive stages of aug-
mentation search and network search in a novel LCA search
space. Compared with commonly used augmentation strate-
gies such as AutoAugment [20], Fast AutoAugment [21],
Population-Based Augmentation [22], and RandAugment,
the size of LCA search space is only 60, representing a signif-
icant reduction of the search space and the computational

costs. The performance of the proposed augmentation strategy
is verified on the HAM10000 dataset using EfficientNet
models. The best combination of the augmentation strategy
and the DCNN model yields a BACC value of 0.853, ranking
the first in the channel of “single-model and no-external-
data” for task 3 of ISIC 2018 challenge. This result is even bet-
ter than those of many ensemble models reported on the lead-
erboard. The generality of searched method is further verified
on ISIC 2017 andDerm7pt datasets, in which the HAM10000-
pretrained EfficientNets are fine-tuned based on both datasets.
The EfficientNet b1 on ISIC 2017 helps to obtain the best Avg.

0

0.2

0.4

0.6Lo
ss

0.8

1.0

1.2

5 10 15 20
Step

25 30 35

Efficientnet b0
Efficientnet b1

Efficientnet b3

Efficientnet b5

Efficientnet b7
Efficientnet b2

Efficientnet b4

Efficientnet b6

0.6

0.7

0.8

0.9

1.0

1.1

Lo
ss

0 5 10 15 20
Step

(a) (b)

25 30 35

Efficientnet b0
Efficientnet b1

Efficientnet b3

Efficientnet b5

Efficientnet b7
Efficientnet b2

Efficientnet b4

Efficientnet b6

Figure 3: Loss curve of (a) train data and (b) test data on ISIC 2017 dataset. Here, the DCNNs from left to right on the x-axis correspond to
EfficientNet b0-b7.

Table 3: The performance of searched method on ISIC 2017 dataset (refer to https://challenge.isic-archive.com/leaderboards/2017 (Task 3:
Lesion Diagnosis)) and derm_7pt dataset.

Team/authors
Use external

data
Use ensemble

models
Avg. AUC BACC

Sensitivity (MEL,
SK)

Specificity (MEL,
SK)

Dataset

Xie et al. [29] Yes Yes 0.938 — 0.727, 0.844 0.915, 0.945

ISIC
2017

Zhang et al. [30] Yes No 0.917 — 0.878 (mean) 0.867 (mean)

Matsunaga et al. [31] Yes Yes 0.911 0.831 0.735, 0.978 0.851, 0.773

González et al. [32] No Yes 0.910 0.883 0.103, 0.178 0.998, 0.998

Menegola et al. [33] Yes Yes 0.908 0.844 0.547, 0.356 0.950, 0.990

Yu et al. [34] Yes Yes 0.897 — — —

Yang et al. [35] No No 0.886 0.809 0.350,0.556 0.96, 0.976

Our approach
(EfficientNet b1)

No No 0:909 ± 0:015 0:821 ± 0:025 0:743 ± 0:016,
0:922 ± 0:019

0:830 ± 0:022,
0:856 ± 0:019

Kawahara et al. [16] Yes Yes 0.896 0.604 0.604 (mean) 0.91 (mean)

Derm7pt

Tudor et al. [36] Yes Yes — 0.638 0.638 (mean) 0.926 (mean)

Rodrigues et al. [37] Yes Yes 0.62 0.408 0.408 (mean) 0.710 (mean)

Alzahrani et al. [38] No No — 0.638 0.638 (mean) 0.702 (mean)

Our approach
(EfficientNet b0)

No No 0:913 ± 0:021 0:735 ± 0:018 0:735 ± 0:018
(mean)

0:92 ± 0:020
(mean)
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AUC of 0.909 (±0.015), exceeding most ensembling models
and those using external datasets. Meanwhile, EfficientNet
b0 on smaller Derm7pt archives the best BACC of 0.735
(±0.018) ahead of all other related studies. Moreover, Grad-
CAM++ is introduced to generate visual explanation heat-
maps to validate and interpret the scientificity in the DCNN-
based diagnosis. In addition to skin cancer classification, the
proposed data augmentation strategy can be applied to other
medical datasets in order to facilitate the development and
deployment of low-cost, high-performance, and AI-based
mobile devices for potentially automatic screening and poten-
tial medication guide of many diseases in rural communities
and regions of limited resources.

Although the proposed augmentation strategy has a
superior performance in the channel of “single-model and
no-external-data,” its BACC is still behind the best perfor-
mance on the ISIC 2018 challenge leaderboards by 0.4, and
it also shows similar problems on the ISIC 2017 dataset. This
gap is possibly due to insufficient representation of data aug-
mentation or the possible overfitting of a single DCNN on
the dataset. Future efforts will be made to update the aug-
mentation search space in order to incorporate more invari-
ances, add more data augmentation methods, and alleviate
the issue of underrepresented patients in the medical image
dataset [39]. In spite of the fact that our strategy only
adopted EfficientNets as the baseline, we also test Regnets
in other works and have achieved outstanding results too
[40]. We also plan to test the proposed data enhancement
method in combing with the self-attention-based networks
such as Swin Transformer [41] or T2T-ViT [42]. In addi-
tion, data augmentation methods that have been validated
in terms of fully supervised strategies will theoretically also
work in self-supervised strategies and unsupervised strate-
gies for the same kind of classification tasks [43], and we
thereby plan to expand our proposed augmentation strategy
in self-supervised and semi-supervised learning.

In addition, as shown in Figure 4, except for the function
of highlighting features, the Grad-CAM++-based heatmaps
also basically cover the scope of the lesion, which verifies
the effectiveness and rationality of the network we trained.
Moreover, the technology of Grad-cam++ has proved that
it not only can be used in simple scenarios but also well
localize category-related areas in complex scenes [25].
Although its ability to locate multiple lesions has not yet
been verified, the resultant heatmaps are expected to be used
to guide medical training.

4. Materials and Methods

4.1. Training and Search Strategies. Figure 5 illustrates the
two-stage approach in search for the best combination of
the augmentation and the network strategies for a specific
clinical dataset. Prior to the search tasks, a novel data aug-
mentation search space is defined, and the original dataset
is divided into a training set and a test set. The training set
is further divided into training and validation subsets. At
stage one, the best augmentation strategy for the original
dataset in the proposed data augmentation space is searched
using 5-fold cross-validation. The search is based on the
training set and the candidate DCNN models, where train-
ing and validation subset are randomly updated in different
folds and the average of five best BACCs in the validation
subsets is adopted as the screening criterion. At stage two,
the DCNNs are refined by applying the best augmentation
strategy using the full training set. After these two stages,
the DCNN model with the best BACC on the test dataset
and the best augmentation strategy will be preferentially rec-
ommended for subsequent clinical classification tasks.

In terms of computing cost to develop an intelligent
diagnosis algorithm, it includes not only network training
time and testing time but also the time to develop data
enhancement strategies. While there is no obvious efficiency
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Figure 4: Heatmaps of lesions in different types in (a) HAM10000, (b) ISIC 2017, and (c) Derm7pt dataset.
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gap on the training and testing of similar networks with the
premise of the same computing configuration, therefore the
efficiency of developing diagnostic algorithms primarily
depends on the computing cost of augmentation searching.
Although the substantial search space of AutoAugment
[20], Fast AutoAugment [21], Population-Based Augmenta-
tion [22], and RandAugment [23] will take an enormous
amount of resources in researching for a clinical dataset,
the transformations adopted have proven their effectiveness.
Based on the above method, we propose a novel LCA aug-
mentation search space that can be used extensively across
different datasets for significant reduction of the search
space. The proposed transformations (refer to Table S1)
include not only the flip and scale changes and the
AutoAugment liked strategies but also the randomly added
Gaussian noise and the color tone shift [19, 20].

We believe that the synchronous application of color and
shape policies will enhance the diversity of image and then
improve the training outcome. Considering that there is a
total of 12 different color strategies, the LCA search space
is defined as an unordered set of 12 subpolicies. On the other
hand, there are only 6 kinds of geometric change operations,
and to ensure the same select probability of geometric oper-
ations, each of the geometric change operations is twice
selected in the random match of subpolicies. Finally, one
of the subpolicies shown in Table S2 will be randomly
executed for each image in network training, and the
execution probability of two different types of operations
in the selected subpolicy is the same. Meanwhile, since the
strategy ensures the same execute probability of color
change operations and geometric change operations, we
believe that the effects of recombination of substrategies
are the same. We treat the augmentation search process as
a discrete optimization problem [20]. In detail, the
probability for executing each selected subpolicy is set as a
ladder parameter in augmentation searching, and the
corresponding execution magnitude is randomly
determined within the specified range (refer to Table S1).
Therefore, the only hyperparameter of the search space is
the execution probability, and this greatly reduces the
requirements for computational resources and thereby
shortens the search time. Noticeably, the execution
probability of two transformations in the selected subpolicy

is the same, and the introduced notion of stochasticity into
the augmentation policy enhances the robustness of the
augmentation strategy.

4.2. Datasets and DCNNs. The efficiency of the LCA-based
data augmentation strategy is validated on a publicly acces-
sible HAM10000 dataset and representative DCNNs.
HAM10000 dataset contains 10015 skin lesion images. Out
of them, 6705 are melanocytic nevi (NV); 1113 are mela-
noma (MEL); 1099 are benign keratosis-like lesion (BKL);
514 are basal cell carcinoma (BCC); 327 are actinic kerato-
sis/Bowen’s diseases (AKIEC); 142 are vascular (VASC);
and 115 are dermatofibroma (DF) [15]. Most of the
HAM10000 images have the target lesions located at the
center, and 53.30% of them are pathologically verified.
HAM10000 is a publicly accessible dataset for the 2018 skin
lesion analysis challenge organized by the International Skin
Imaging Collaboration (ISIC) (https://www.isic-archive
.com).Figure 6 shows a representative image from this data-
set and a variety of images after applying different enhance-
ment substrategies. The HAM10000 dataset is selected for
testing our data augmentation strategy since its performance
outcome can be easily compared with those of many other
strategies published on the leaderboard.

Furthermore, the ISIC 2017 and Derm7pt are applied to
evaluate the generality of the searched method. The ISIC
2017 dataset is a publicly available skin dermoscopy image
dataset, consisting of 2000 training, 150 validations, and
600 test images screened for both privacy and quality assur-
ance. Lesions in dermoscopy images are all paired with a
gold standard (definitive) diagnosis, i.e., melanoma, nevus,
and seborrheic keratosis. There are two binary classification
subtasks for ISIC-skin 2017: melanoma classification (mela-
noma vs. others) and seborrheic keratosis classification (seb-
orrheic keratosis vs. others). In addition, the Derm7pt
dataset consists of 1011 images for each image modality (a
total of 2022 images). The diagnosis consists of BCC, NV
(blue, clark, combined, congenital, dermal, recurrent, and
reed nevus), MEL (in situ, less than 0.76mm, between 0.76
and1.5mm, metastasis), miscellaneous (MISC) (dermatofi-
broma, lentigo, melanosis, miscellaneous, and vascular
lesion), and SK. Alongside the images, relevant information
as patient metadata and the 7-point checklist is provided.
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Figure 5: Work flow for the two-stage approach to search for the best combination of network and augmentation strategy.
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Here, just image data is used and 413, 203, and 395 cases are
used to train, validate, and test data in the model finetune.

In terms of the DCNN models, we have evaluated the
pretrained architectures and found that finely tuning a
model trained on ImageNet performed significantly better
than that trained from scratch. Previous studies also show
better performance by using more recent architectures
[26]. After comparing with several classic models such as
Inception, ResNet, PolyNet, and DenseNet, we finally select
the state-of-the-art EfficientNet model due to its better Ima-
geNet accuracy that requires fewer parameters and FLOPs
[24]. Another reason why we did not choose more networks
is the lack of computing resources, and this is our original
intention to develop low-cost data enhancement. Besides,
since the lack of HAM10000 test data label and the modified
limitation of maximum upload number for the official test, it
is difficult to evaluate the performance, and this also hinders
the test of more DCNN models.

4.3. Optimization and Verification of the Searching Strategy.
Considering the important role that a training strategy plays
in the final performance of DCNNs, we optimize the train-
ing strategy by implementing a 5-fold cross-validation pro-
cedure where the training set (HAM10000) is split into the
training and the validation subsets following a ratio of 4 : 1
in each fold. The subset separation procedure ensures that
the same lesion does not occur in both the training and
the validation subsets and that the compositions of subsets
vary randomly from different folds [26]. Especially, the strat-
egy is finely tuned on the full HAM10000 dataset by apply-
ing the previously identified augmentation strategy at the
stage of network searching, and the predicted classification
results on the validation dataset have been uploaded to the
ISIC challenge website for verification. Each image in the
training set has an initial size of 600 × 450, and a randomly
selected substrategy is executed following the defined proba-
bility. In this regard, the ladder probabilities are set as 0.1,
0.3, 0.5, 0.7, and 0.9. The image of 224 × 224 is randomly
cropped from the augmented images and subsequently plug

into the pretrained DCNNs with the modified output
dimension of 7.

In the generality verification of the searched method on
ISIC-skin 2017 dataset, HAM10000-pretrained EfficientNets
combing the searched augmentation strategy are fine-tuned
using training images and then evaluated using test images.
Similarly, 413 images going through the searched augmenta-
tion strategy in the Derm7pt training group are applied to
finetune the HAM10000-pretrained EfficientNets, and 395
test images are used to verify their performance. In the gen-
erality evaluation stage, images are equally cropped as 224
× 224 in random before plugging into the DCNNs with
the modified output dimension.

In terms of the loss function, the following standard
cross-entropy loss is used as a basis:

p̂i =
eZi

∑C
i=1 e

Zi

, ð1Þ

L = −〠
C

i=1
pi ∗ log p̂i, ð2Þ

where pi is the ground-truth label of class i, Zi is the pre-
dicted score for class i, and C is the number of classes.

Since the seven classes in the original HAM10000 dataset
are highly imbalanced, the multiclass weighted loss is imple-
mented by adding an enhanced weight on the underrepre-
sented classes, such as the highly underrepresented DF and
VASC, to improve the overall performance of the trained
DCNNs [26]. The multiclass weighted loss is updated by
multiplying class-equilibrium matrix with the standard
cross-entropy loss function, where the enhanced weight wi
for class i corresponds to the inverse normalized class fre-
quencies (equation (2)). The multiclass weighted loss is
therefore updated as in equation (3):

wi =N/ni, ð3Þ
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L = −〠
C

i=1
wi ∗ pi ∗ log p̂i, ð4Þ

where N is the total number of samples and ni is the number
of samples for class i.

The selection of other hyperparameters is more straight-
forward. First, we choose a starting learning rate of lr = 0:001
and reduce it with a factor of λ = 1/10 after 20 epochs. Then,
we continue reducing the learning rate with the same factor
at every 10 epochs and stop the optimization after 70 epochs.
Finally, we select the best performing Adam as the optimizer
for all the models. Considering that the same number of
Graphics Processing Unit (GPU) carded is located for paral-
lel searching tasks and that the feature map size of DCNNs
increases proportionally with their parameters, using a uni-
form batch size may result in insufficient or waste of the
computational resources. Therefore, we set the batch sizes
for different models as model-specific values of 2n (refer to
Table S3 in Supplementary materials, where n is
determined by the GPU capacity.

For the visual explanation stage, the gradient weights of
the last convolutional layer feature maps for class i are first
calculated [25]:

αkimn =
∂2Zi

� �
/ ∂Ak

mn

� �2

2 ∂2Zi

� �
/ ∂Ak

mn

� �2� �
+∑M

m=1∑
N
n=1A

k
mn ∂3Zi

� �
/ ∂Ak

mn

� �3n o� � ,

ð5Þ

where Zi is the predicted score for class i, Ak is the k-th fea-
ture map of the last convolution layer, (m, n) and (M,N) are
position and corresponding dimensions of the feature map
Ak. Then, the weights wi

k for the feature map Ak and pre-
dicted class i is calculated as follows:

wi
k = 〠

M

m=1
〠
N

n=1
αkimn∙relu

∂Zi

∂Ak
mn

, ð6Þ

where relu function is used to get positive gradients. Finally,
the visual explanation heatmap is generated by integrating
the gradient weights and all K feature maps:

Limn = relu 〠
K

k=1
wi

k∙A
k
mn

 !

: ð7Þ

All the training and testing tasks are performed on NVI-
DIA GeForce GTX 2080Ti graphics cards using the popular
frameworks PyTorch [44] and the PyTorch pretrained
models library. In comparison, the EfficientNet models are
also trained by applying the identified AutoAugment strat-
egy on ImageNet [20] and by applying the General Augmen-
tation strategy that composes only random flip and color
jitter.

4.4. Metrics for Cost and Performance Evaluation. The com-
putational cost of the proposed strategy is evaluated by the
search space size, defined as the order of magnitude for the

number of possible transformations [23]. The diagnostic
performance of the proposed strategy is evaluated by the bal-
anced accuracy (BACC) across the seven classes, equivalent
to the average recall or sensitivity [26]. A multicrop evalua-
tion strategy is used for the generation of the final predic-
tions, and the performance is generally better after
averaging is applied [26]. Specifically, 16 regions of interests
(ROIs) with the size of 224 × 224 were equidistantly cropped
from the upper left corner to the lower right corner of each
unscaled image, and an average across all the predictions is
used as a benchmark for final prediction.

The following metrics are used to evaluate the prediction
performance on class i:

Precisioni =
TPi

TPi + FPi
,

Sensitivityi =
TPi

FNi + TPi
,

Specificityi =
TNi

TNi + FPi
,

Accuracyi =
TNi + TPi

TNi + FPi + FNi + TPi
,

ð8Þ

where TPi is the number of true positive cases in class i, FNi
is the number of false negative cases in class i, TNi is the
number of true negative cases, and FPi is number of false
positive cases, all in class i.

The key metric of BACC for ISIC 2018 challenge (C = 7)
and Derm7pt (C = 5) is defined in equation (9), which is also
used as the metric for our preliminary performance evalua-
tion and hyperparameter tuning.

BACC = 1
C
〠
C

i=1

TPi

TPi + FNi

� �
= 1
C
〠
C

i=1
Sensitivityi ð9Þ

The key metric for ISIC-skin 2017 is AUC defined as the
entire two-dimensional area underneath the entire receiver
operating characteristic curve from (0,0) to (1,1).

Data Availability

The datasets of HAM10000 and ISIC 2017 used to support
the findings of this study are publicly accessible on the Inter-
national Skin Imaging Collaboration (ISIC) (https://www
.isic-archive.com); the Derm7pt data used to support this
study is available at doi:10.1109/JBHI.2018.2824327.
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