Table 2.
The performances of different models for the prediction of ER of HCC.
Development cohort | Validation cohort | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
AUC (95% CI) | ACC | SEN | SPEC | value | AUC (95% CI) | ACC | SEN | SPEC | value | |
DSFR | 0.740 (0.652, 0.816) | 0.733 | 0.750 | 0.708 | Ref | 0.717 (0.516, 0.869) | 0.750 | 0.778 | 0.700 | Ref |
DSFR-C | 0.782 (0.698, 0.853) | 0.725 | 0.667 | 0.812 | 0.042 | 0.744 (0.545, 0.889) | 0.750 | 0.722 | 0.800 | 0.028 |
Model with visual features | 0.657 (0.565, 0.742) | 0.617 | 0.486 | 0.813 | 0.149 | 0.583 (0.383, 0.765) | 0.572 | 0.389 | 0.900 | 0.287 |
DeLong’s test. ER: early recurrence; HCC: hepatocellular carcinoma; AUC: area under the curve; ACC: accuracy; SEN: sensitivity; SPEC: specificity; DSFR: deep semantic segmentation feature-based radiomics; Ref: reference; DSFR-C: deep semantic segmentation feature-based radiomics with clinical information.