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The emerging plant synthetic metabolic engineering has been exhibiting great promise to produce either value-added metabolites
or therapeutic proteins. However, promoters for plant pathway engineering are generally selected empirically. The quantitative
characterization of plant-based promoters is essential for optimal control of gene expression in plant chassis. Here, we used N.
benthamiana leaves and BY2 suspension cells to quantitatively characterize a library of plant promoters by transient expression
of firefly/Renilla luciferase. We validated the dual-luciferase reporter system by examining the correlation between reporter
protein and mRNA levels. In addition, we investigated the effects of terminator–promoter combinations on gene expression
and found that the combinations of promoters and terminators resulted in a 326-fold difference between the strongest and
weakest performance, as reflected in reporter gene expression. As a proof of concept, we used the quantitatively characterized
promoters to engineer the betalain pathway in N. benthamiana. Seven selected plant promoters with different expression
strengths were used orthogonally to express CYP76AD1 and DODA, resulting in a final betalain production range of 6.0–
362.4 μg/g fresh weight. Our systematic approach not only demonstrates the various intensities of multiple promoter sequences
in N. benthamiana and BY2 cells but also adds to the toolbox of plant promoters for plant engineering.

1. Introduction

Synthetic biology has become a valuable biotechnological
approach for synthesizing a wide range of pharmaceutical,
nutraceutical, and industrial products in a heterologous
chassis [1–7]. Although notable successes have been
achieved in microbial systems [3–5, 7], synthetic biology in
plants is still an emerging research field with many knowl-
edge and technology gaps that remain to be addressed. It is
widely recognized that plants have the advantages of
photoautotrophic utilization machinery and environmen-
tally sustainable bioproduction [8, 9]. However, their
relatively slow growth, the lack of well-established genetic
parts for genetic manipulation, and their genomic complex-
ity have hindered the widespread adoption of plants as
synthetic biology chassis.

To date, multiple plant systems, such as tomato, lettuce,
rice, and tobacco, have been successfully utilized to produce

either value-added metabolites or therapeutic proteins
[10–13]. For example, a high level of L-DOPA was produced
in tomato fruit through the introduction of BvCYP76AD6
[12]. Unlike whole plants, suspension-cultured plant cells
are regarded as an attractive platform because of their
amenability to industrial-scale batch culture and ease of
compliance with good manufacturing practice (GMP)
[14–16]. For example, Oryza sativa suspension cells have
been used to produce human α1-antitrypsin [15], and cul-
tured BY2 cells have been used to produce the ORF8 protein
from SARS-CoV-2, a potential therapeutic agent against
COVID-19 [16]. All these novel traits have been obtained
by introducing a single gene or set of genes into engineered
plants under the control of appropriate promoters.

The plant promoter is a cis-acting DNA fragment that
initiates the transcription of an associated gene [17]. It is
largely responsible for the specificity (species, spatial, or
temporal) and intensity of gene expression [17]. However,
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to date, plant engineering has relied heavily on the repeated
use of a few well-established constitutive promoters, such as
the Ubi promoter from maize, the CaMV 35S promoter
from cauliflower mosaic virus, and the NOS promoter from
Agrobacterium, to drive gene expression. With the recent
availability of plant genome sequences and the development
of bioinformatics approaches, the number of promoter
sequences has increased significantly over the past few
decades. For example, more than 8,000 promoter sequences
are available at the plant promoter database (PlantProm DB;
http://linux1.softberry.com/berry.phtml). However, only a
small number of promoters have been experimentally char-
acterized in plant chassis. Previous studies on promoter
characterization have focused on specific plant cells or tis-
sues, such as maize protoplasts [18], Arabidopsis protoplasts
[19], N. benthamiana leaves [20], and lima bean cotyledons
[21], yet the performance and the relative usefulness of indi-
vidual promoter sequences across plant species have not
been widely investigated.

Although single-gene engineering has been widely used
for plant genetic improvement, multigene engineering will
become more and more important for plant synthetic biol-
ogy research in the future. Plant synthetic metabolic engi-
neering focuses on the introduction of a complete synthetic
pathway into the plant. For example, a number of synthetic
metabolic pathways for the biosynthesis of natural products
have been successfully reconstructed in N. benthamiana
through transient expression [22–24]. However, the repeated
use of a promoter in a multigene construct can cause gene
silencing in transgenic plants [25]. In addition, each recom-
binant protein is equally expressed at the same level, and this
may lead to a metabolic flux imbalance, causing extremely
low yields [26, 27]. Therefore, for the stable transformation
of multiple genes into plants, each single gene should be
under the control of a different promoter. However, pro-
moters for plant pathway engineering are generally selected
empirically, with no quantitative information on promoter
strength, and this approach is insufficient for the precise
control of gene expression to maximize metabolite yields.
Therefore, the quantitative characterization of plant-based
promoters is essential for the rational design of multigene
pathways to achieve optimal control of gene expression.

By fusing a GUS (β-glucuronidase) or GFP (green fluo-
rescent protein) gene to a promoter sequence, promoter
activity can be monitored based on the activity of the
reporter gene product [28–31]. However, the outputs of
GUS or GFP reporters are unstable and not suitable for
quantitative assays. Recently, a ratiometric dual reporter sys-
tem based on luciferase was developed for the rapid charac-
terization of genetic parts [32–34]. Nonetheless, several
issues remain unresolved: (1) variable performance of
promoters across different plant tissues [21, 28], (2) low cor-
relations between reporter protein expression and the abun-
dance of corresponding mRNAs [35], and (3) effects of
sampling time point on promoter performance [35].

Here, we used N. benthamiana leaves and BY2
suspension cells to quantitatively characterize a library of
plant promoters by transient expression of firefly/Renilla
luciferase. We validated the dual-luciferase reporter system

by examining the correlation between reporter protein and
mRNA levels. In addition, we investigated the effects of
terminator–promoter combinations on gene expression
and found that the combinations of promoters and
terminators resulted in a 326-fold difference between the
strongest and weakest performance, as reflected in reporter
gene expression. Finally, as a proof of concept, we used the
quantitatively characterized promoters to engineer the beta-
lain pathway in N. benthamiana.

2. Materials and Methods

2.1. Plant Materials. N. benthamiana plants were grown in
soil in a greenhouse with a 16h light/8 h dark photoperiod
at 25°C. The BY2 cells were cultured in darkness at 25°C
with a BY2 medium (BY2 medium PM1591 (Coolaber),
3% sucrose, pH 5.7). BY2 cells were maintained in 100mL
Erlenmeyer flasks aerated by shaking at 120 rpm and
subcultured every 7 days by inoculating 5mL of suspension
cells into 25mL of fresh medium.

2.2. Plasmid Construction. To facilitate the large amount of
DNA assembly needed in this work, all basic DNA parts
were cloned into plasmids with standard base ends for
further subcloning into plant expression vectors using
the GoldenBraid methods [34]. We cloned promoters
(Table S1) and terminators (Table S2) from multiple plant
species, including Arabidopsis thaliana, Chrysanthemum
morifolium, Marchantia polymorpha, O. sativa, Solanum
tuberosum, and Zea mays. Total DNA was extracted from
leaves using a Plant Genomic DNA Kit (DP305-02,
Transgen). Sequences were amplified with PrimeSTAR Max
DNA polymerase (R045A, TaKaRa) using the primers listed
in Table S3. Some sequences were synthesized directly with
standard recognized sites (General Biol, Anhui). All
promoters were cloned into pEASY (Transgen) flanked by
GGAG and AATG fusion sites recognized by BsaI/BsmBI,
all terminators were cloned into pEASY flanked by GCTT
and CGCT fusion sites, and all CDS sequences were cloned
into pEASY flanked by AATG and GCTT (Figure S1(a)).
The basic vector pCF001 was modified from pEAQ-HT-
GG, whose restriction sites were replaced with GGAG and
CGCT fusion sites recognized by BsaI. Plasmids with a
single expression cassette were constructed by ligating the
pCF001 vector, promoter, CDS, and terminator fragments
after BsaI/BsmBI digestion with T4 DNA ligase (Thermo).
Dual-luciferase reporter plasmids were constructed based on
the P_CsVMV::R-luc::T_nos reporter plasmid. The vector
pCF43 used to assemble the firefly luciferase expression
cassette with different regulatory elements was obtained by
adding a BsaI recognition site with a standard fusion site by
PCR amplification (Figure S1(b)).

The synthetic genes CYP76AD1 (HQ656023.1), DODA
(HQ656027.1), and DOPA5GT (AB182643.1) were codon-
optimized for N. benthamiana and then synthesized, flanked
by two pairs of BsaI.

2.3. Transient Expression in N. benthamiana. All binary plas-
mids were introduced into Agrobacterium tumefaciens strain
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GV3101. A. tumefaciens was grown overnight at 28°C and
220 rpm in LB with 50mg/L kanamycin, 25mg/L rifampicin,
and 25mg/L gentamycin. The overnight culture was centri-
fuged at 6000 rpm for 6min and then suspended in MMA
buffer containing 10mM MES (2-[N-morpholino]-ethane-
sulfonic acid, Sangon Biotech), 10mM MgCl2, and 100μM
acetosyringone to a final OD600 of 1.0. The strain was
incubated at room temperature for 3 h before infiltration
into 4-month-old N. benthamiana leaves. For co-
infiltration assays, equal volumes of the A. tumefaciens cul-
tures were mixed before infiltration.

2.4. GFP Expression Assays. Forty-eight hours after infiltra-
tion, at least three leaves were placed on slides for direct
observation using an Olympus BX63 microscope equipped
with a DP73 digital camera at an excitation wavelength
of 488 nm. The images were processed with ImageJ [36].

2.5. Dual-Luciferase Expression Assays. Forty-eight hours
after infiltration, at least three leaf samples (ca. 1–2 cm in
diameter) were collected for a dual-luciferase assay using
the commercial Dual-Luciferase Reporter Assay System
(E1910, Promega). Each sample was frozen with liquid
nitrogen and ground into a fine powder with a grinder
(Wonbio-48RS, WONBIO) and then homogenized in
100μL of Passive Lysis Buffer (Promega). The activities of
firefly luciferase and Renilla luciferase were measured with
a luminometer (GloMax 20/20, Promega). The relative pro-
moter activity was defined as the ratio of firefly lumines-
cence intensity to Renilla luminescence intensity.

2.6. Real-Time Quantitative Reverse Transcription PCR.
Total RNA was isolated from leaf samples (150mg) using
the RNA Easy Fast Plant Tissue Kit (DP452, Tiangen), and
1ng total RNA was used for cDNA synthesis with Super-
Script (Invitrogen). Quantitative real-time PCR was per-
formed using SYBR Premix Ex Taq (RR420L, TaKaRa) on
the StepOne Plus system (Applied Biosystems). Primers for
target gene amplification were designed using Primer Pre-
mier 5.0, and all primers are listed in Table S3.

2.7. Transient Expression in BY2 Cells. The constructs were
transformed into BY2 cells via Agrobacterium tumefaciens
GV3101. After washing twice in fresh liquid BY2 medium
with 150μM acetosyringone, a 1mL aliquot of 4-day-old
BY2 cells was cocultured with 1mL of strain GV3101
(OD600 = 1) carrying the target plasmid. After four days of
cocultivation on BY2 solid medium in the dark, the BY2 cells
were washed with double-distilled water and collected for
dual-luciferase assays.

2.8. Betalain Extraction and Quantification. Sixty hours after
infiltration, at least three samples (0.1 g) were collected from
different leaves. Betalain was extracted with extraction
solution (80% ethanol and 0.1% formic acid in double-
distilled water). Samples were ground into powder in liquid
nitrogen and extracted in extraction solution overnight at
4°C after 5min of sonication. The supernatant was obtained
after centrifugation at 12 000 g and filtration through a
0.22μm filter. Each supernatant was adjusted to the appro-

priate concentration and transferred to an individual well
of a 96-well microplate. Betalain content was estimated
spectrophotometrically using a Varioskan Flash multimode
microplate reader (Thermo Scientific, Waltham, USA) as
A540 − 0:33A660, where A540 and A660 are the absorbance
values for betacyanins and chlorophyll at 540 nm and
660 nm. Absorbance values were converted to betalain
equivalents using the molar extinction coefficient ε =
60,000 lmol−1 cm−1 and molecular weight = 550Da [37].

3. Results

3.1. Quantitative Characterization of Diverse Promoters by a
GFP Assay. Promoters have been widely characterized in
various plant cells and have been used in plant biotechnol-
ogy area [38–41]. However, their quantitative information
about the promoter strength has not been fully investigated,
which is helpful in order to introduce novel traits into a
designed plant. To achieve this goal, nineteen promoter
sequences (consisting of the upstream regulatory region, core
promoter region, and 5′ untranslated region) (Table S1),
most of which have been functionally tested [38–45], were
selected for quantitative characterization on promoter
strength. Each individual promoter was assembled with
GFP and the Nos terminator sequence to form an
expression cassette, resulting in a library of Agrobacterium
binary vectors.

Because of the feasibility of transient gene expression in
N. benthamiana via Agrobacterium tumefaciens-mediated
leaf infiltration, plasmids containing each promoter driving
the expression of GFP were transiently transformed into 4-
week-old tobacco leaves. The intensity of GFP fluorescence
from the infiltrated leaves was captured using a previously
described automated image collection system [46]. The con-
stitutive promoter P_CsVMV displayed the highest transient
expression level, followed by P_AtUbq3, P_AtUbq10, P_
AtRBSa1, and P_CaMV35S (Figure 1(a)). Four promoters,
P_AtBch1, P_AtFBA2, P_AtJAL34, and P_At2S3, showed
relatively moderate fluorescence levels, and the remaining
13 promoters, including P_AtHY5, P_CasP1, and P_DAISY,
had very low levels of detectable transient expression
(Figure 1(a)).

To verify the reliability of the single GFP reporter system
for plant promoter strength evaluation, mRNA levels were
also measured to provide additional information on the
expression of the reporter gene (Figure S2a). The mRNA
levels were high under the control of strong promoters and
relatively low under the control of weak promoters, with
a correlation of 0.64 (P < 0:001) between GFP mRNA
abundance and fluorescence intensity (Figure 1(c)). The
discrepancies were clearly observed when weak promoters
were used.

3.2. Evaluation of Promoters Using a Dual-Luciferase
Reporter System. The dual-luciferase reporter system has
been reported to be highly sensitive and able to reduce back-
ground noise interference in plant cells [47]. To minimize
the discrepancy between mRNA and protein expression, a
dual-luciferase assay was developed for determining the
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relative strength of plant promoters. A constitutively
expressed Renilla luciferase (R-luc) reporter gene (driven
by P_CsVMV) was used as an internal normalization
control for transformation efficiency, and each tested
promoter was linked to firely luciferase (F-luc) to provide
a quantitative readout normalized to the expression of P_
CsVMV::R-luc::T_nos.

Consistent with the GFP-based assay above, our dual-
luciferase reporter analysis showed that P_CsVMV, P_
AtUbq3, and P_AtUbq10 produced high ratiometric R-luc/
F-luc activities, indicating their strong transcriptional
activities (Figure 1(b)). However, medium and weak pro-
moters, such as P_CaMV35S_RmBsa, P_AtRbcs1a, P_
AtFBA2, P_AtHY5, and P_ASTF, displayed different
intensity rankings between the GFP and dual-luciferase
assays. The mRNA profiles of firefly luciferase were also
detected to verify the reliability of the dual-luciferase system

(Figure S2(b)). The correlation between mRNA and reporter
signal in the dual-luciferase-based assay (R2 = 0:89, P <
0:001) was much higher than that in the single GFP assay
(Figure 1(d)), indicating that the dual-luciferase reporter
system is highly reliable and accurate for quantitative
characterization of plant promoters.

To systematically evaluate new promoter candidates,
we constructed expression vectors for 25 additional pro-
moters from five plant species, including Arabidopsis, M.
polymorpha, S. tuberosum, Z. mays, and O. sativa, as well
as virus sources (Figure 2; see Table S1 for details,
including references and sequences information). Many of
the most highly active genetic elements originated from
viruses, whereas promoters from M. polymorpha (P_
MpUbiC-4, P_MpUbiC-2, P_MpUbiC-3, and P_MpEFla-
5′UTR) produced extremely low levels of reporter gene
expression (Figure 2). The activity of the P_StUbi promoter
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Figure 1: Comparison of a single GFP reporter system and a dual-luciferase reporter system in N. benthamiana. (a) Schematic diagram of
constructs used for the single GFP reporter system: an individual promoter drives the expression of GFP with the assistance of the
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of GFP mRNA level and GFP protein level. (d) The correlation of firefly/Renilla mRNA level and F/R-luc activity. Data are presented
as the mean ± standard error of at least three independent replicates. P values were calculated using unpaired two-tailed Student’s t-test;
∗P ≤ 0:05, ∗∗P ≤ 0:01, and ∗∗∗P ≤ 0:001; ns = not significant.
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from potato was 10 times higher than that of P_AtUbq10 or
P_AtUbq3 from A. thaliana and even higher than that of the
widely used constitutive promoter P_2×35S-enhancer
(Figure 2).

3.3. Determination of the Best Time Point for Promoter
Activity Measurement. Promoters not only control the inten-
sity of gene expression but also contribute to the timing and
duration of protein accumulation. During promoter character-
ization by transient expression analysis, differences in the tim-
ing and intensity of GFP expression are commonly observed
[21]. The dual-luciferase reporter system permits expression
measurement at only a single time point, and different outputs
are therefore obtained when different time points are selected
for measurement. However, few studies have focused on time
point selection in the context of protein production. The key
time point has always been chosen empirically after 2–5 days
of reporter expression in previous studies [24, 27, 34]. Here,
to better determine a suitable sampling time for promoter
intensity measurement, leaves transiently expressing luciferase
were periodically sampled at 12h intervals. In the beginning,
we selected four promoters (P_AtFBA2, P_AtUbq10, P_
AtUbq3, and P_CsVMV) and seven time points after agroinfil-
tration (24, 36, 48, 60, 72, 84, and 96h) for F-luc and R-luc
activity measurement (Figure S3). The dual-luciferase activity

increased linearly in the first 60h. After that time point, the
dual-luciferase activity varied greatly, especially under the
control of P_AtFBA2 and P_CsVMV. To confirm this
sampling time result, activities driven by P_At3g24240 and
P_CaMV35S_RmBsa were measured (Figure 3). The
luciferase activities were extremely low during the first 24h
after agroinfiltration, probably because of the low protein
dose. At 36h and 48h, there was a significant increase in
activity due to continued protein expression. Based on the
results from different sampling times, the activities of firefly
and Renilla luciferase had a relatively consistent linear
relationship. When linear regression was performed using
data from different time points, the R2 for firefly luciferase
activity driven by P_At3g24240 versus Renilla luciferase
activity driven by P_CsVMV was 0.72, 0.52, and 0.98 at 24,
36, and 48h (Figure 3(a)). The R2 for firefly luciferase activity
driven by P_CaMV35S_RmBsa versus Renilla luciferase
activity driven by P_CsVMV was 0.78, 0.97, and 0.51
(Figure 3(b)). For P_At3g24240 and P_CaMV35S_RmBsa,
the R2 was 0.76 and 0.83 (Figure S3). These results
demonstrated that the F-luc/R-luc activity ratios at 36h and
48h represented the relative strengths of the tested promoters.

3.4. Evaluation of Promoters in Cultured BY2 Cells. Tobacco
Bright Yellow-2 (BY2) cells are considered to be an effective
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Figure 2: Individual promoters from the standard gene library show varying levels of dual-luciferase activity in N. benthamiana. Relative
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chassis for the production of pharmaceutical and nutraceuti-
cal materials [14, 16]. However, there has not previously
been a relevant, full characterization of heterogeneous
plant-derived promoters in BY2 cells.

To expand the promoters available for BY2 cells, Agro-
bacterium harboring individual dual-luciferase constructs
were cocultivated with BY2 cells. After 4 days of incuba-
tion, the transformed BY2 cells were used for the analysis
of firefly/Renilla luciferase activities (Figure 4). Comparing
with the promoter activities tested in N. benthamiana, most
of these promoters performed relatively consistently
between two types of tobacco cells. Only one promoter
P_StPat gave a worse performance on gene expression in
BY2 cells (Figure S4). Eight promoters, including the
seed-specific promoter P_At2S3 and the root-specific
promoter P_At3g24240, showed higher activities in BY2
cells than in tobacco leaves, probably because of
differences in physiological conditions associated with cell
differentiation. The dual-luciferase activity temperature-
sensitive promoters, such as P_AtHsp18, P_AtHsp70, and
P_AtRD29B, were markedly higher in BY2 cells (Figure 4).

3.5. Terminators Affect Gene Expression. Terminators have
been reported to influence the level of transgene expression
in plants [48]. However, for a long time, the most widely
used terminators in plant biotechnology have been limited
to the nopaline synthase and octopine synthase terminators
and the 35S terminator from cauliflower mosaic virus.
Therefore, to expand the available terminators, 13 termina-
tors from plant and viral sources were investigated for their
effects on gene expression (Table S2). The constitutive
promoter P_CsVMV and the terminator T_nos were used
to express R-luc, which was set as the internal

normalization control for transformation efficiency. P_
CsVMV linked to F-luc and individual tested terminators
was used to evaluate the influence of individual terminators
on gene expression (Figure 5(a)).

These constructs were delivered to N. benthamiana
leaves by agroinfiltration, and F-luc/R-luc activities were
evaluated. T_AtHsp18.2 outperformed the frequently used
T_35S and T_nos terminator, producing 1.4- and 2.4-fold
increases in F-luc expression, respectively (Figure 5(a)). To
determine whether the tested terminators performed
similarly in BY2 cells, all constructs were infiltrated with
fresh BY2 cells for 4 days. As in N. benthamiana, the best-
performing terminator T_3′utr-nos produced 1.8- and
2.6-fold higher expression than the constitutive terminators
T_35S and T_nos in BY2, respectively (Figure 5(b)). These
results indicated that the terminators show generally consis-
tent performance in transient expression in two different
plant cell types.

We further evaluated the effects of a library of promoter/
terminator combinations on gene expression. A total of 105
combinations were measured, and the results showed a wide
range of expression levels with over a 326-fold difference
between the best- (P_CsVMV/T_AtHsp18.2) and worst-
performing combinations (P_AtRD29B/T_nos) (Figure S5).
Thus, our research highlights the importance of selecting
an appropriate promoter/terminator combination for optimal
transgenic expression.

3.6. Modulation of the Betalain Biosynthetic Pathway in
Tobacco Cells. An appropriate selection of regulatory ele-
ments can achieve different expression goals in metabolic
regulation. After characterization, regulatory elements were
used for the metabolic synthesis of betalain. Betalains are a
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group of reddish pigments found in some fruits and have
been used to visualize gene expression in plants [49]. Here,
we chose betalain as the target of regulatory elements to
explore the influence of promoters on metabolic regulation
(Figure 6(a)).

Seven promoters with different strengths were used to
modulate the key enzymes of the betalain synthetic path-
way, CYP76AD1 and DODA (DOPA-4,5-dioxygenase), to
various levels (Figure S6). When DOPA5GT (cyclo-DOPA-
5-O-glucosyltransferase) was driven by P_35S-5′UTR, the
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betalain yield was consistent with the strengths of the other
promoters. A high yield of betalain produced a dark red
color after transient expression in leaves, whereas a faint

red color was associated with relatively low yields
(Figure 6(b)). Betalain yield was higher when CYP76AD1
was driven by P_Superpromoter or P_CsVMN and DODA
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was driven by P_35S-5′UTR or P_CsVNV compared with
the weak promoters P_NOS/P_Ocs-1(Figure 6(c)). However,
the best yield performance was not simply obtained when
all of the synthetic genes were expressed at the highest
levels. In fact, the highest yield (362.4μg/g fresh weight
(FW)) was obtained with P_CsVMV::CYP76AD1 and
P_AtUbq10::DODA, almost 60-fold higher than that
obtained with P_Ocs-1::CYP76AD1 and P_Ocs-1::DODA
(6.0μg/g FW).

We next used the diverse constructs to produce betalain
in BY2 cells (Figure 6(d) and Figure S7). The results were
generally consistent with those in N. benthamiana leaves:
higher levels of protein expression resulted in higher yields.
However, the betalain yield was extremely low in BY2 cells,
perhaps because of low levels of precursor accumulation or
low transient transformation efficiency (Figure S7).

4. Discussion

In higher plants, the GUS gene has frequently been used
as a reporter gene for promoter analysis [27, 28]. How-
ever, its available substrates are membrane impermeable,
and it has not generally been accepted as a quantitative
reporter for gene expression in vivo. Nonetheless, the
GFP gene has been used extensively for detecting gene
expression, especially as a tool to visualize spatial and tem-
poral patterns of gene expression in vivo [29] and to study
intracellular protein localization or protein-protein interac-
tions [50]. Many studies have shown that GFP is useful as
a quantitative reporter of gene expression in E. coli [51],
and a few studies have reported its use for quantitative
promoter characterization in plants [20, 52]. We therefore
used GFP for our initial tests. The performance of pro-
moters with strong activity could be clearly distinguished
from that of promoters with medium and weak activities
based on the intensity of the green fluorescence signal
(Figure 1(a)). However, there were no discernible differ-
ences among promoters with weak activity. The correla-
tion of fluorescence intensity with GFP mRNA was
found to be 0.64, underscoring the variability of this
method. One of the main reasons for this variability is
that background fluorescence and chlorophyll interference
with GFP detection are unavoidable [21]. Other disadvan-
tages include the inconsistency in GFP expression among
different plant species [53] and the fact that green fluores-
cence intensity tended to decline after fluorescence emer-
gence (data not shown), which led to variability in
quantitative promoter outputs [21].

The variability commonly observed among samples and
experiments can be reduced by using ratiometric assays with
a second invariable reporter as an internal reference.
Recently, a ratiometric dual-color luciferase reporter assay
with green- and red-emitting luciferases was developed to
quantify the transcription of genetic elements in plants
[30]. Although these assays do not require protein extrac-
tion and their results can be directly detected in vivo, the
interference of chlorophyll still remains. In addition, the
partial signal overlap between green-luc and red-luc makes
it difficult to precisely evaluate the genetic parts. Com-

pared with the dual-color luciferase system, the firefly/
Renilla luciferase assay, based on a chemiluminescence
reaction, is more sensitive and is particularly useful for
monitoring the expression of multiple genes by chemilu-
minescence detection. The chemiluminescence reaction
uses unique substrates for the differentiation of F-luc and
R-luc, and interference in plant cells can thus be markedly
reduced. Here, the correlation of F-luc/R-luc activity with
F-luc mRNA was found to be 0.89, demonstrating the reli-
ability of this dual-luciferase system for precise promoter
characterization.

Fifty-eight genetic parts (45 promoters and 13 termina-
tors) from six plant species (Marchantia, the monocots
maize and rice, and the dicots Arabidopsis, S. tuberosum,
and C. morifolium), viruses, and Agrobacterium were
assessed in the present research. Their abilities to drive tran-
scription were measured in two tobacco systems (N.
benthamiana leaves and BY2 cultured cells). In general, we
can conclude that (1) dicot promoters tended to perform
better than monocot promoters in the dicot tobacco system,
(2) promoters and terminators performed relatively consis-
tently between the two types of tobacco cells, and (3)March-
antia promoters showed extremely low activity in the
tobacco system. These conclusions suggest that it is not a
good choice to use a dicot promoter in a monocot plant sys-
tem or to use a monocot promoter for engineering in a dicot
chassis.

As mentioned above, quantitative characterization of our
promoter library was performed in two chassis with a
transient expression system. DNA containing the promoter
and reporter gene sequences was introduced into the plant
cells, and the observed rapid expression probably resulted
from the extrachromosomal activity of the introduced genes.
As an extrachromosomal entity, the expression of the
introduced cassette is not influenced by hereditary effects
such as chromosome structure or the insertion site of a for-
eign gene, enabling promoter strength to be quantitatively
standardized. However, DNA transfer efficiency may show
variability, depending on the method of DNA transfer and
the recipient plant species, thus leading to inconsistencies
between the results of transient expression and stable trans-
formation. Some inconsistencies were still present between
the two plant chassis selected for measurement. For
example, the activities of P_MpUbi-4, P_AtAct2, P_
AtRD29B, and P_AtHsp70 were much higher in BY2 cells
than in N. benthamiana. Although the dual-luciferase
reporter system uses the constitutive expression of firefly
luciferase as an internal normalization control for transfor-
mation efficiency, variability of the outputs cannot be
completely avoided.

Several limiting factors were present in this study and
should be further considered in the future research. First, the
transient expression system is sensitive to gene silencing of
highly expressed genes [54], and the P19 protein was therefore
coexpressed with the reporter gene to repress gene silencing in
our constructed vectors. However, a number of publications
have demonstrated that P19 can enhance the expression of
several diverse proteins, including GFP [55, 56]. Therefore,
the effect of P19 on reporter gene expression in the present
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evaluation system should be considered further. Second, most
of the tested promoters, especially the tissue-specific and
inducible promoters, contain diverse cis-regulatory elements,
some of which are putative and have not been fully biologically
characterized. The performance of individual promoters can
therefore be regulated by native transcription factors, as well
as abiotic and biotic stress. Hence, the performance of
individual promoters may change in response to plant growth
conditions and developmental stages. Third, the UTR
(untranslated regions) of a promoter or terminator can
enhance gene translation or mRNA stability [57, 58]. It is likely
that the performance of hybrid sequences (different 5′/3′UTR
with a promoter/terminator) varies with the length and source
of the introduced genes.

Plant scientists are currently working to effectively
deliver complex traits into plants, including plant metabolic
pathways, synthetic switches, and regulatory circuits. The
design and characterization of the genetic parts of pro-
moters and terminators are key stages in the design/build/
test/learn cycle. However, the complex genetic makeup
and relatively long-life cycle of plants necessitate the use
of iterative rounds of testing and modification, which are
cumbersome. Thus, design-led rational engineering is par-
ticularly important for developing the best solution. Quan-
titative measurement of genetic parts provides parameters
for the construction of mathematical models that can pre-
dict their behavior before implementation in plants, and
this approach should become mainstream in plant synthetic
biology.

In this work, we used two transient expression plat-
forms (N. benthamiana leaves and BY2 suspension cells)
to rapidly screen the activities of promoters and termina-
tors. We used a dual-luminescence reporter system to
quantitatively evaluate the performance of a library of 58
plant-based genetic parts. As a proof of concept, we engi-
neered the betalain metabolic pathway into N. benthami-
ana using well-established promoters to control the
expression levels of the bottleneck enzymes CYP76AD1
and DOPA, and the final yield reached 362:4 μg/g FW.
Our systematic approach not only demonstrates the differ-
ent intensities of multiple promoter sequences in N.
benthamiana and BY2 cells but also adds to the toolbox
of plant promoters for plant engineering. This work highlights
the potential application of well-established promoters for the
modulation of metabolic pathways through the precise control
of gene expression.
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