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Revolutionary breakthroughs in artificial intelligence (AI) and machine learning (ML) have had a profound impact on a wide
range of scientific disciplines, including the development of artificial cell factories for biomanufacturing. In this paper, we
review the latest studies on the application of data-driven methods for the design of new proteins, pathways, and strains. We
first briefly introduce the various types of data and databases relevant to industrial biomanufacturing, which are the basis for
data-driven research. Different types of algorithms, including traditional ML and more recent deep learning methods, are also
presented. We then demonstrate how these data-based approaches can be applied to address various issues in cell factory
development using examples from recent studies, including the prediction of protein function, improvement of metabolic
models, and estimation of missing kinetic parameters, design of non-natural biosynthesis pathways, and pathway optimization.
In the last section, we discuss the current limitations of these data-driven approaches and propose that data-driven methods
should be integrated with mechanistic models to complement each other and facilitate the development of synthetic strains for

industrial biomanufacturing.

1. Introduction

In the last two decades, high-throughput omics technologies
enabled by sequencing have revolutionized the way we study
biological systems [1]. These technologies enable the system-
atic experimental measurement at various molecule levels, at
different time scales, and from single cells to a community of
organisms. The vast amounts of data obtained from these
measurements are turning biosciences into a data-centric
science subject [2, 3]. A big challenge is how to effectively
convert the big data into useful knowledge to help us better
understand the genotype-phenotype relationship, the orga-
nizing principles of complex biosystems, and subsequently
design/engineer new biosystems for medical, agricultural,
and industrial applications [3].

Design and engineering of biosystems with new abilities
is the key objective of synthetic biology, an emerging multi-
disciplinary research area that integrates a broad range of
methodologies from various disciplines such as mathematics,

chemistry, and computer science. Synthetic biology makes
use of advanced new technologies to modify or create new
biological parts, multienzyme bioconversion pathways, and
artificial cell factories [4-7]. One important application of
synthetic biology is to produce various biochemicals, bio-
fuels, and biomaterials from renewable bioresources as well
as CO, and low-cost one carbon compounds through more
sustainable bioprocesses using synthesized biosystems
[8-10]. From an application point of view, this research
belongs to industrial biotechnology, which is often referred
to as the third wave of biotechnology after medical and agri-
cultural biotechnology. As one of the most promising tech-
nologies, industrial biotechnology has the potential to
address today’s great challenges such as climate change, envi-
ronmental pollution, and food and resource shortage [11].
One of the key foundational technologies supporting
synthetic biology studies is computing. The latest technolog-
ical developments in computational hardware and software
not only make it possible to store, manage, and share large
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amounts of biological data but also provide new and power-
ful algorithms for processing and analyzing the data for
knowledge discovery, model creation, and computational
design. In recent years, artificial intelligence (AI) reemerged
as a hot topic not only in computer science but also in the
general public domain, which was attributed to the develop-
ment of AlphaGO by Google [12]. Al, or more generally
including conventional machine learning (ML), is particu-
larly suitable for detecting complex relationships within a
large amount of data. AI algorithms, combined with the
wealth of biological data, hold great potential for data-
driven new biological discoveries and applications.

Recently, AI was adopted for many powerful applica-
tions in bioscience such as disease diagnosis, drug devel-
opment, and protein structure prediction [13-16]. In
this review, we will focus on the application of data-
driven methods in industrial biotechnology for the design
and construction of novel enzymes and artificial cell fac-
tories [17-21]. In this review, we will first give a brief
introduction to the available data related to industrial bio-
technology and ML and AI algorithms. The emphasis will
be on how the data-driven approaches have been applied
to address various biological problems such as prediction
of function and physiochemical properties of proteins,
design of nonnatural enzymes and biosynthesis pathways,
or the optimization of metabolic engineering strategies.
We will also discuss how the data-driven approaches
should be integrated with approaches based on mechanis-
tic insights to help us better understand and interpret the
predictions.

2. Biological Data and Databases Related to
Industrial Biotechnology

2.1. Data on Enzymes/Proteins. The key parameters affecting
the industrial application of enzymes are the specific activity,
substrate affinity, selectivity, and stability. All these func-
tional parameters are ultimately determined by protein
sequences that form complex 3D protein structures. Various
genome sequencing projects have produced sequence data
for a huge number of enzymes which can be easily searched
and downloaded from various resources such as NCBI and
EBL In addition to sequences, protein structure data is
extremely important for the design and engineering of pro-
teins to achieve target properties. Although homology
modeling algorithms are available to predict protein struc-
ture from sequences, the prediction accuracy is still far from
perfect. Labor-intensive and costly experimental methods
remain the standard way to determine protein structure.
Currently, less than twenty thousand of the enzymes in Uni-
Prot [22] have structural data available in PDB [23], the pro-
tein structure database. For the quantitative functional
parameters more relevant to industrial application, there
are even fewer data available. Only about 7000 enzymes have
kinetic information available in UniProt, and most of them
are from a small number of well-studied model organisms
such as humans and E. coli. For experimentally measured
quantitative parameters, BRENDA (BRaunschweig ENzyme
DAtabase) [24] is a very useful database with manually col-
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lected and curated data from published papers. For example,
562 enzymes from E. coli have reported specific activity
values in BRENDA (578 have turnover numbers and 861
have Km values). In addition, the BRENDA database con-
tains many other important data relevant for industrial
applications such as enzyme stability, optimal pH, and tem-
perature. A list of useful databases and the types of data
available can be seen in Table 1.

2.2. Data on Metabolic Pathways and Networks. The conver-
sion of a substrate into a valuable product often requires a
series of reactions catalyzed by a number of enzymes. These
successive reactions form a metabolic pathway. The meta-
bolic network of an organism usually contains hundreds or
thousands of enzyme-catalyzed reactions, which utilize dif-
ferent substrates to produce the cellular building blocks
and many other metabolic products. The wide availability
of genome sequences makes it possible to reconstruct
genome-scale metabolic network models (GEMs) for a great
number of organisms [31]. In the last two decades, hundreds
of high-quality GEMs have been reconstructed and applied
to simulate growth rates, determine minimal media and sub-
strate usage profiles, predict essential genes, calculate opti-
mal pathways, and design metabolic engineering strategies
[32]. In addition to the data on genes and enzymes, data
on metabolites and reactions are also required for metabolic
network analysis. Table 1 lists a number of databases
(KEGG, BioCyc, and BiGG) with information on metabo-
lites/compounds and biochemical reactions, containing var-
ious types of data such as compound formulae, structures,
and reaction thermodynamics.

2.3. Condition-Specific Data. The above-discussed data such
as sequences, structures, and kinetic parameters are all static,
i.e., they are fixed properties of a protein or reaction. As liv-
ing systems, cells use complex regulatory networks to con-
trol the levels of proteins/metabolites at different growth
stages and under different conditions. Dynamic omics data
such as transcriptomics (mRNA levels), proteomics (protein
levels), metabolomics (metabolite levels), and fluxomics
(reaction rates) are also very important for the investigation
of mechanisms behind cellular behaviors. In industrial bio-
technology, it is also becoming very common to carry out
dynamic omics analysis to study the time-course changes
in a fermentation process or compare the expression pat-
terns between a production strain and its wild-type parent.
Unfortunately, these valuable data are often not deposited
in databases. Moreover, a lack of standardized metadata
describing the conditions relevant for the omics data makes
it difficult to compare data produced by different research
groups. Nevertheless, a few databases on transcriptomics
(including those measured by microarray technology) and
proteomics that mainly collect information from the litera-
ture are available [28-30] and listed in Table 1 (GEO,
ArrayExpress, and PAXdb).

2.4. General Problems with Biological Data and Data
Preprocessing. For quality data-driven studies, the data
needs to be abundant, high quality, and well organized.
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TaBLE 1: Databases with data relevant to industrial biotechnology.

Database Web address Data types
. ) . A comprehensive, high-quality, and freely accessible resource of
UniProt [22] htp:// uniprot.org protein sequence and various functional and structural data
PDB [23] http://www.rcsb.org Biological macromolecular structures
) . A comprehensive database on genes, genomes,
KEGG [25] https://www.genome.jp/kegg metabolic reactions, and pathways
BRENDA [24] http:// brenda-enzymes.info A comprehensn{e enzyme d.af[abase Wlth quantitative information on
enzyme kinetics, stability, optimal pH, temperature, etc.
BioCyc [26] http://biocyc.org Data on metabolic reactions and pathways in various organisms
BiGG [27] http://Bigg.org A collection of high-quality genome-scale metabolic models
GEO [28] https://www.ncbi.nlm.nih.gov/geo Database of publicly available gene expression datasets
ArrayExpress [29] https://www.ebi.ac.uk/arrayexpress Gene expression database
PAXdD [30] http://pax-db.org Protein abundance data for various organisms

Although a large amount of data available in databases
makes it possible to carry out data-driven studies, great
efforts still need to be made to further improve the quan-
tity and quality of data to make them more accessible to
analysis. Major problems and ways to address them are
briefly discussed below.

(a) Data organization: By data organization, we mean if
the data in one database are organized in a good way
to capture all related information unambiguously.
For example, BRENDA is the most important data-
base of manually curated enzyme kinetic parameters
from the literature [24]. However, the data is orga-
nized based on EC numbers, and in case that there
are two enzymes with the same EC number (isoen-
zymes), it is difficult to know which specific enzyme
was used to measure the kinetic parameters

(b) Data integration: Individual databases are often
focused on certain specific topics and not comprehen-
sive enough to answer a real biological question. It is
quite common that integration of data from different
databases is required, but the databases are not fully
interlinked. Even though major databases provide
cross-links to other databases, these cross-links are
often not complete or are broken due to a lack of
updates. A proper entity ID is the key for cross-
linking. Unfortunately, different databases (and publi-
cations) tend to use different IDs for the same entity.
For example, the same argA gene of E. coli has several
IDs (e.g., b2818, EG10063, ECK2814) used in different
databases as well as various synonyms (used more
often in published papers). The situation is even worse
for mapping compounds and reactions due to their
hierarchical relationships. For example, glucose, D-
glucose, alpha-D-glucose, and beta-D-glucose may
be mixed up in different databases. ID mapping tools
such as that provided by UniProt (https://www
.uniprot.org/uploadlists/) for gene mapping and
MetanetX [33] for compound mapping partially
address this problem, but data integration remains a
headache for data-driven studies

(c)

Data quality/inconsistency: The data in databases
may be generated/collected in different ways or
through different curation and quality control pro-
cesses. For example, in the UniProt database, the
manually annotated and reviewed data (less than
1%) are saved in SwissProt, while the computation-
ally annotated data are in TTEMBL [22]. For enzyme
kinetics, different values might be reported by differ-
ent researchers due to the variety of measurement
protocols for the same enzyme, leading to data
inconsistencies. Certain inconsistencies are caused
by low biological repeatability due to the complexity
of biosystems, especially high-throughput measure-
ment data for living cells. Noise reduction to
improve data quality is an important step in data-
driven studies. Typically, the denoising approaches
consist of two major steps: noise identification and
noise handling. There exist three main categories of
techniques for noise identification: ensemble tech-
niques, distance-based algorithms, and learning-
based techniques [34]. For noise handling, the sim-
plest way is ignoring the noisy data, but it comes at
the cost of loss of data precision. To enclose more
information, the commonly used ways are data
cleaning techniques, and lots of methods are devel-
oped for data cleanings, such as data filtering and
multiscale denoising [35]

Data standardization: Automatic data preprocessing
and analysis by programming are essential for data-
intensive studies. To this end, all data should be rep-
resented and stored in standard formats so that they
can be easily shared and read by various software
tools. Scientists have developed certain standard for-
mats to represent biological data, such as SBML for
kinetic and metabolic models [36], or SBGN for
the graphical representation of biological networks.
Another aspect of data standardization is the use of
metadata to attach information related to the data,
such as the strain information, sampling time, and
method for a set of transcriptomic data. This is par-
ticularly important for condition-specific data, as
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these can only be correctly interpreted together with
the metadata. To this end, the scientific community
proposed standard guidelines such as MIAME (Min-
imum Information About a Microarray Experiment)
[37] to ensure that necessary metadata is submitted
together with the main datasets

(e) Uneven distribution of data: As discussed in previ-
ous sections, there are different types of biological
data, and certain technologies such as sequencing-
based genomics, metagenomics, and transcriptomics
generate big data. However, most small-scale exper-
iments, such as those related to cellular phenotypes
and macromolecular structures, generate compara-
bly small datasets. The data availability for various
organisms is also very different. Most of our biolog-
ical knowledge and data are actually obtained by
studying a small number of model organisms such
as humans, yeast, and E. coli. In addition, our
expertise on different subsystems is also unevenly
distributed. For example, kinetic and structural
information is often available for enzymes in the
central pathways, while it is patchy for other path-
ways. Using existing data to computationally predict
the missing data is another important application of
data-driven studies. We will show a few such exam-
ples in Section 4

3. Data-Driven Algorithms

The main objective of data-driven studies is to use available
data as inputs to predict functions/properties of new systems
or under new conditions. Various computational algorithms
have been developed to learn the input-output relationships
from available data. ML usually refers to the traditional
machine learning algorithms, while the recently developed
deep learning (DL) methods are often classified as Al algo-
rithms. However, these terms are often used in similar con-
texts, and ML is also regarded as a form of Al. A general
representation of the principle and the algorithms can be
seen in Figure 1. In the following section, we will briefly
introduce the concepts and algorithms.

3.1. Brief Introduction of ML Algorithms. ML is often used to
recognize patterns in data and make predictions once new
data arrives. ML algorithms are organized into a taxonomy
based on the desired inputs and outputs of the algorithms
[38]. There are many ways to categorize these algorithms,
but conventionally, the ML approaches can be broadly cate-
gorized into supervised learning, unsupervised learning, and
reinforcement learning [39].

In supervised learning, an algorithm is presented with
labeled data, which means that each item of the input data
is associated with a correct response, such as numeric values
or string labels. The goal is to approximate the mapping
function to predict the output from new input data. Super-
vised learning problems include classification (determining
what group a given input belongs to) and regression (pre-
dicting a quantitative production). For example, the predic-
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tion of the metabolic pathway associated with a metabolite is
a classification problem. At the same time, the prediction of
the specific activity of an enzyme from its sequence and
structure features is a regression problem. Routinely used
supervised methods include Artificial Neural Networks
(ANNSs) and their variants, Multi-Layer Perceptron (MLP),
Linear Regression (LR), Support Vector Machine (SVM),
K-Nearest Neighbor (KNN), Decision Tree (DT), Random
Forest (RF), Hidden Markov Model (HMM), and Bayesian
model-based methods [40].

Unsupervised learning resembles the methods humans
use to deduce that certain objects or events are from the
same class, such as observing the degree of similarity
between objects (no data label is required). Unsupervised
learning algorithms include clustering and dimensionality
reduction. Clustering is similar to classification but groups
the objects based on some similarity in input features rather
than learning from prior knowledge on classification. There
are different clustering methods, such as partitional, hierar-
chical, grid, and density-based. Dimensionality reduction
transforms data from a high-dimensional space into a low-
dimensional space so that the low dimension variables retain
some meaningful properties of the original data, ideally close
to its intrinsic size. Dimensionality reduction is prevalent in
fields that deal with large numbers of observations (vari-
ables) and a small number of instances (samples) [41].
Omics data analysis is a typical case where we have data
for thousands of genes but only a few data points. General
unsupervised algorithms include Principal Component
Analysis (PCA), Singular Value Decomposition (SVD),
Markov Chain Monte Carlo (MCMC), Linear Discriminant
Analysis (LDA), and Non-negative Matrix Factorization
(NMF) [40].

Reinforcement learning is relatively distinct from super-
vised and unsupervised learning. Reinforcement learning
differs from supervised learning in not requiring labeled
data. Instead, the focus is on balancing exploration (of
uncharted territory) and exploitation (of current knowledge)
[42]. In reinforcement learning, the algorithm learns a policy
of how to act based on observation of the world. Every
action impacts the environment, and the environment pro-
vides feedback that guides the learning algorithm.

3.2. Recent Development of DL Approaches. DL is a specific
type of ML that has been particularly successful in the past
decade. The most important difference between DL and tra-
ditional ML is its performance as the scale of data increases.
With small datasets, DL algorithms do not perform that well
because they need a large amount of data to understand
them. The core concept of DL is to learn data representa-
tions through increasing abstraction levels, and its success
lies in the careful design of the neural network architecture.
It enables a neuronal system to learn complex representa-
tions directly from the raw data, making it a powerful
method for dealing with problems in many disciplines
[43]. A large number of explicitly designed new network
structures are proposed in a high-frequency manner. These
networks are mainly based on Artificial Neural Network
(ANN), Deep Neural Network (DNN), Convolutional
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FIGURE 1: Representation of the AI, ML, and DL frameworks for application in data-driven studies. Al (a) is the broad science of mimicking
human abilities, and ML (b) is a specific subset of AI. ML can generally be grouped into supervised (c), unsupervised (d), and reinforcement
learning (e) according to learning tasks. Based on learning techniques, ML can be categorized into traditional ML (representative methods as
shown in (f)), deep learning (representative methods as shown in (g)), and transfer learning (h).

Neural Network (CNN), Recurrent Neural Network (RNN),
or Generative Adversarial Network (GAN) architectures,
and their variants [14, 44].

ANNs are computational processing systems that mimic
the way biological nervous systems operate. ANNs usually
load a multidimensional vector into the input layer and
map it to the hidden layers. The hidden layers will then
make decisions based on the previous layer and weigh how
a stochastic change within itself degrades or improves the
final output, and this change is referred to as the process
of learning. DNN is an ANN with multiple layers between
the input and output layers. DNN is typically a Feed-
Forward Network where data flows from the input layer
toward the output layer without flowing backward. The net-
work weights are obtained by supervised learning through
backpropagation with hidden information datasets.

CNN is a type of DL model for processing data with grid
patterns, such as images, which is inspired by the organization
of the visual cortex of animals and designed to automatically
and adaptively learn spatial hierarchies of features, from low-
to high-level patterns. CNN is a mathematical construct typi-
cally composed of convolution, pooling, and fully connected
layers. The convolution and pooling layers perform feature
extraction, whereas the fully connected layer maps the
extracted features into the final output [45]. RNN considers
that what has happened in the past is likely to impact what
happens in the future, which is typically suitable for modeling
sequential data. GAN provides a way to learn deep representa-
tions without extensively annotated training data. They

achieve this by deriving backpropagation signals through a
competitive process involving a pair of networks. This tech-
nique learns to generate new data with the same statistics as
a given training set. For example, a GAN trained on photo-
graphs can generate new pictures that look superficially
authentic to human observers. The core idea is based on “indi-
rect” training through the discriminator, which itself is also
being updated dynamically. This basically means that the gen-
erator is not trained to minimize the distance to a specific tar-
get but rather to fool the discriminator. This enables the model
to learn in an unsupervised manner [46].

4. Application of Data-Driven
Approaches in Biomanufacturing

4.1. Data-Driven Approaches in Enzyme/Protein Design.
Natural enzymes have long been used to catalyze a wide
variety of chemical reactions, but their properties and cat-
alytic capacity are often inadequate to meet the needs of
industry. Therefore, scientists have been developing new
techniques to engineer and build enzymes with properties
that meet industrial production requirements [47]. On the
other hand, they are also building enzymes that do not
exist in nature by further enhancing the development of
protein folding control techniques [48, 49]. In addition
to classical rational design and directed evolution
approaches, ML and DL methods have been increasingly
applied to help scientists predict protein structures and
improve protein functions [20, 50-52].



Traditionally, quantum mechanics, molecular mechanics,
and QSAR have been the main calculation tools used to study
proteins’ structural and functional properties. However, the
huge potential conformational space makes it almost impossi-
ble to find the overall lowest energy conformation of a protein
by space traversing using quantum mechanics or molecular
mechanics. Rational enzyme design efforts have been mainly
limited to the localization of the reaction center of the enzyme.
In contrast, structural modification of the broader regions of
the enzyme could only be achieved by random mutation or
directed evolution techniques using extensive experimental
protocols that exploit the powerful natural ability of the organ-
ism to evolve. However, with the accelerated accumulation of
protein sequence and structural information in recent years,
data-driven enzyme design based on ML and DL techniques
is showing strong potential, and four main directions are dis-
cussed below.

The first research direction is to analyze the relationship
between the sequence and properties of an enzyme. ML
techniques are applied to guide the selection of initial evolu-
tionary routes for directed evolution [53, 54]. DL techniques
are widely used to analyze and annotate the function and
properties of enzymes, such as the prediction of enzyme
EC number [55], enzyme activity [56], substrate selectivity
[57], thermal stability [58], and solubility [59, 60]. Moreover,
ML has been gradually applied to guide enzyme modifica-
tion [61-63]. For example, Ryu et al. developed DeepEC, a
deep learning tool that can predict enzyme EC numbers
from protein sequences [55]. They compiled a dataset con-
taining 1,388,606 expert-curated reference protein sequences
and 4669 EC numbers from the UniProt database to train
the deep neural networks. The prediction accuracy and
speed were improved compared with other computational
prediction tools. DeepEC was also shown to be more sensi-
tive in predicting the effects of binding site mutations and
could improve the accuracy of homology-based annotation
[55]. The improved EC number prediction can also help
refine the reconstructed metabolic network by gap filling
with new enzyme functions. Thermal stability is an impor-
tant protein property that greatly impacts the cost of bioma-
nufacturing. Chen et al. developed the ML method iStable
2.0 for stability prediction by integrating 11 sequence- and
structure-based prediction tools and adding protein
sequence information as features. The integrated ML model
had a higher Matthews correlation coefficient than individ-
ual prediction tools [64].

The second area of research, protein structure predic-
tion, is a key basic science problem that researchers have
been working on for a long time [65]. Recently, the develop-
ment of AlphaFold and AlphaFold2 by Google scientists has
led to a new era of accurate protein structure prediction,
allowing scientists to use protein sequences to predict
enzyme structures for accurate rational design [66, 67]. This
has ameliorated the problem that structure analysis lags
behind the application needs.

The third research direction is to enhance the computa-
tional accuracy and extend the sampling space of traditional
algorithms to compensate for the deficiencies of physical
rule-based evaluation systems. Several studies have used ML
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and DL in conjunction with traditional rational design
methods to improve the accuracy of traditional algorithms in
protein structure optimization [67]and protein-small mole-
cule and protein-protein binding energy calculations, as well
as the sampling range of binding conformations [68, 69].

The fourth research direction is to design enzymes with
novel functions [70]. The ab initio design of new enzymes
can be seen as a reverse operation of protein structure pre-
diction [71]. The design process can be divided into two
parts: finding or constructing a protein backbone that meets
the reaction requirements and selecting the proper sequence
to achieve the protein function based on the backbone. The
Rosetta software developed by David Baker’s research team
has been widely used for the construction of protein back-
bones [72]. A series of sequence design algorithms recently
developed based on DL have also demonstrated their appli-
cation potential [52, 73]. An effective combination of the
two approaches will greatly promote new enzyme design
technologies.

4.2. Application of ML in Cell Engineering. Data related to
living cells are more complex than those related to isolated
proteins. From the aspect of input data, the abundant
sequence data is far from enough to predict cellular behav-
iors. Many other factors are important, but data quality is
also poor with fewer data available. From the aspect of out-
put, an engineered cell factory needs to possess multiple
desirable properties to make the bioconversion process eco-
nomically viable, such as high product titer, rate, and yield
(TRY). Therefore, unlike data-driven protein design, which
often has one clearly defined output as its goal, data-driven
cell studies are multiple-input multiple-output (MIMO)
problems by nature. Due to the complex nonlinear relation-
ships between the inputs and outputs, it is not straightfor-
ward to train multiple individual models for different
outputs and then combine them together for reliable collec-
tive prediction. Despite these challenges, scientists have
made great efforts in recent years to use data-driven
approaches in cell engineering by focusing on particular
problems where clearly defined inputs and objectives are
available.

4.2.1. ML for Metabolic Network Model Reconstruction.
Genome-based metabolic network models (GEMs) are
important tools in the study of cellular phenomena and the
design of metabolic engineering targets for creating artificial
cell factories. Many efforts have been made to reconstruct
high-quality GEMs to improve model prediction accuracy.
Recently, ML methods were also applied to address various
issues in GEM reconstruction, such as determining the met-
abolic function of new genes, filling gaps in pathways, or
adding new constraints [21, 74, 75]. A draft GEM computa-
tional reconstructed from genome often contains many gaps
due to incomplete and inaccurate enzyme gene annotation
mainly based on sequence similarity. Gap filling to add the
missing reactions and their corresponding genes is a neces-
sary step to obtain a reliable GEM. Though several gap-
filling algorithms have been developed, most of them only
find the candidate reactions from reaction databases but fail
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to identify the possible enzyme genes for the gap-filling reac-
tion. The AI methods used for the prediction of the EC
number of a protein discussed in Section 4.1 can be used
to predict more enzyme genes and thereby possibly link
new enzyme genes with the gap-filling reactions. Recently,
Luo et al. adopted DeepEC to obtain more EC numbers in
reconstructing a GEM of Shewanella oneidensis MR-1 and
the resulted model has much more reactions and genes than
previously published models [76]. It should be noted that the
relationships between EC numbers and reactions are multi-
ple to multiple, namely, multiple reactions can be catalyzed
by enzymes with the same EC number, and the same reac-
tion can be catalyzed by enzymes with different EC numbers.
Particularly for those EC numbers with broad substrate
specificity, such as 1.1.1.1 (alcohol: NAD+oxidoreductase),
the exact alcohol substrate for a specific enzyme protein can-
not be determined explicitly by the EC number. In one
organism, a protein annotated with this EC number may
catalyze the oxidation of 1-propanol, while in another
organism, a protein with the same EC number may catalyze
a reaction using 2,3-butanediol. Therefore, it is desirable to
directly predict the responses rather than via the EC num-
bers to reconstruct a more reliable metabolic network. How-
ever, this requires a comprehensive ontological classification
of reactions based on mechanisms. Although databases like
Rhea [77] tried to include information on reaction relation-
ships, a more helpful gene ontology-like classification of
responses is still missing. Researchers therefore still must
rely on EC number predictions first and use an extra step
to add reactions into the network based on reaction-EC rela-
tionships. An alternative approach is to focus on specific
enzymes rather than all EC numbers. For example, Cai
et al. used reaction fingerprints and ML methods to predict
enzymatic reactions of oxidoreductases and hydrolases
[78]. Such approaches have the potential to predict the exact
substrate of an enzyme, but a prescreening step (that can
often be solved as a 0-1 binary classification problem) is
required to ensure that the protein belongs to a specific class
of enzymes. There are also several ML applications in pre-
dicting the pathways of a protein instead of the exact reac-
tion [79, 80]. This pathway prediction can help find
candidate enzymes for gap filling in a pathway, but it is still
necessary to determine the exact reaction if multiple gaps are
present.

4.2.2. Design of Non-Natural Metabolic Pathways. Although
the major metabolic reaction databases contain tens of thou-
sands of known reactions, there are still many compounds
(in particular, many valuable natural products) whose syn-
thetic pathway is unknown or even nonexist. Even for the
compounds with known biosynthetic pathways, it is desir-
able to design novel non-natural pathways which may have
a higher yield or fewer steps than the natural pathways. Ret-
rosynthetic methods that start with the desired chemical and
suggest a set of chemical reactions that could produce it
from specific precursors have been developed to design
novel pathways [81, 82]. One main problem in retrosyn-
thetic pathway design is the huge number of possible reac-
tion combinations generated by high-level reaction rules.

One critical task is to use the optimization or heuristic
methods to choose the right combination of reactions, which
are more likely to be successfully constructed. Recently,
Koch et al. [81] proposed a new method called RetroPath
RL, which explores the retro-biosynthetic space using an
artificial intelligence-based approach relying on the Monte
Carlo Tree Search reinforcement learning method. They val-
idated the method using a dataset of 20 manually curated
experimental pathways as well as a larger dataset of 152 suc-
cessful metabolic engineering projects. This proves the use-
fulness of data-driven methods in the design of non-
natural pathways. Instead of predicting the exact reactions
for the synthesis of a compound, Baranwal et al. [83] aimed
to predict the metabolic pathway with which a given com-
pound is likely to be associated since the metabolites in that
pathway could be suitable substrates for the synthesis of the
new compound. They used a hybrid ML approach consisting
of graph convolutional networks to solve the task as a classi-
fication problem. They extracted relevant shape features
directly from SMILES representations of molecular struc-
tures. The trained model correctly predicted the respective
metabolic pathway class for 95.16% of tested compounds.

Prediction of possible biosynthesis pathways is just the
first step in designing a non-natural pathway, and it is also
necessary to identify promiscuous enzymes that can catalyze
the novel biochemical reactions in the pathway. Protein
engineering to improve the selectivity/activity of the new
reactions is also necessary to optimize the novel pathway
beyond the capabilities of natural pathways. In addition to
the bioinformatic methods used for enzyme screening and
protein structure analysis, ML methods can also be used to
design proteins with desired substrate activities as discussed
in 4.1.

4.2.3. Prediction of Kinetic Parameters. As discussed in Sec-
tion 2, the coverage of data related to enzyme kinetics is very
low and often focused on a small set of pathways or a few
important enzymes for a limited number of well-studied
model organisms. This is ok for developing a kinetic model
of a metabolic pathway but far from enough for whole cell
model. In recent years, enzyme-constrained models (ECM:s),
which integrate enzymatic constraints into GEMs, have been
shown to be more powerful and reliable in simulating/pre-
dicting cellular phenotype [84-86]. ECMs require a whole
network level coverage of enzyme kinetic parameter values
for accurate prediction. Unfortunately, even in model organ-
isms like E. coli, there is no measured kinetic data for more
than half of the enzymes. As there is no high-throughput
method for enzyme kinetics and the traditional methods
are costly and time-consuming, it is desirable to use data-
driven strategies to computationally predict the kinetic data.
Mellor et al. used a semi-supervised Gaussian process regres-
sion model to predict the substrate affinity of proteins (Km
values) [87]. Input signatures for the model were defined
based on chemical transformation rules using extended con-
nectivity fingerprint descriptors. Their model prediction was
validated experimentally by correctly finding the enzymes
catalyzing the reactions associated with a newly identified
metabolite in E. coli. In a recent study, Heckmann et al.



applied ML methods to successfully predict catalytic turn-
over numbers (kcat) for E. coli enzymes based on integrated
data on enzyme biochemistry, protein structure, and net-
work context [88]. Using this approach, they obtained kcat
values for all enzymes that catalyze reactions in the E. coli
GEM and developed an enzyme-constrained model showing
significantly higher accuracy in predicting quantitative pro-
teome data than previous approaches.

Scientists have also developed data-driven approaches to
directly simulate metabolic behaviors without using a kinetic
model. Costello et al. showed that supervised ML can
directly deduce the relationship between metabolites and
enzymes from time series of protein and metabolite concen-
tration data [19]. The inputs were the exogenous pathway
proteins and metabolite concentrations, and the response
was the rate of change of the metabolite. This approach is
beneficial when only limited time-course data are available
due to the high cost of performing multi-omics experiments.
They used data augmentation to increase the amount of
available data for model training, and the final model out-
performed the kinetic model.

4.2.4. Pathway/Strain Optimization. It is difficult to predict
the optimal engineering strategies for constructing an indus-
trial strain using data-driven approaches due to a large num-
ber of possible targets and genetic operations. However,
these approaches can still be helpful if we focus the engineer-
ing targets on particular pathways/modules. For example,
Karim et al. used deep neural networks to optimize a six-
step pathway for cell-free butanol production [89]. Six
enzyme homologs at three different concentrations for each
step resulted in over 34 million pathway combinations, and
data-driven approaches can be applied to predict the optimal
combination from a small experimental dataset. They used
the enzyme homologs and their corresponding concentra-
tions as the input for the neural network, with a defined
TREE score combining the titer, rate, and enzyme expres-
sion as the output. The predicted combination from the neu-
ral network model improved TREE scores over fourfold
compared to the initial pathway.

In cellular systems, it is not possible to directly change
the enzyme concentrations as is possible in cell-free systems.
The enzyme (gene) expression level is often regulated using
different promoters or RBSs. Choosing the optimal pro-
moter/RBS combinations in a pathway by ML has also been
used in strain optimization. Zhou et al. used neural networks
to improve a 5-step pathway for violacein production by
selecting promoter combinations using an initial training
set of only 24 strains [90]. The predicted strain improved
the violacein titer 2.4-fold after only 1 DBTL iteration. Sim-
ilarly, Opgenorth et al. used an ensemble of four different
models (Random Forest, Polynomial, Multi-Layer Percep-
tron, TPOT Meta-Learner) to optimize a 3-step pathway
for dodecanol production by predicting the optimal RBS
combinations [91]. By combining RBS and a promoter
library, Hamedi et al. were able to regulate the gene expres-
sion at 24 distinct levels with a ~1000-fold dynamic range.
Using initial data generated by a fully automated robotic
platform, they quickly improved lycopene synthesis in E.
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coli using ML models [92]. Various ML models were also
used to guide the improvement of limonene production in
E. coli [93] and tryptophan production in S. cerevisiae
[94]. These studies highlight the potential of ML in pathway
optimization. To enable broader use of data-driven pathway
optimization, Radivojevic et al. developed the Automated
Recommendation Tool (ART) [95], which is specifically tai-
lored to the needs of metabolic engineering.

5. Discussion

Data-driven approaches have promising application pros-
pects in various research fields related to biomanufacturing,
ranging from enzymes to whole cells. With the availability of
more standardized biological data and the development of
new specifically tailored algorithms, these data-driven
approaches will play important roles in future studies. How-
ever, to realize the full potential of these approaches in
addressing real-world problems, several obstacles still need
to be overcome. One fundamental problem of data-driven
methods is the lack of interpretability. By nature, ML and
particularly DL algorithms are based on black-box models.
The algorithm generates a predicted output but it remains
unknown why the model produces this output from a given
set of input values. This is in great contrast with mechanistic
models, yet understanding the mechanisms underlying com-
plex and fascinating behaviors of biosystems is a major moti-
vation for most scientists. Therefore, even though data-
driven methods may have strong predictive power to solve
real-world problems, they cannot satisty the desire to pursue
new knowledge. Consequently, people are also unlikely to be
very confident of the predictions of a black-box model.
Moreover, it is very difficult to troubleshoot the data-
driven model if the model prediction is inconsistent with
the experimental test. The only options are to retrain the
model with added new data or adjust the parameters of the
models (e.g., add more layers or nodes in a DL model).
However, like other data-fitting methods, there is a risk of
overfitting. Especially DL algorithms are so powerful in cap-
turing the nonlinear input-output relationships that they can
practically always deliver good fitting for existing data [96,
97], but do not represent the true cause-effect relationships
in the biosystem. For the optimization of biomanufacturing
processes, the expected output of an enzyme property or cell
property is highly likely to be beyond the boundary of the
existing data. The power of the model is therefore more
likely to lie in choosing a small set of inputs (rather than a
huge number of combinations) for experimental verification
instead of making precise quantitative predictions.
Researchers must therefore be very careful in interpreting
the results of data-driven models to avoid overfitting or mis-
interpretation akin to the misuse of p-values in statistical
analysis of biological data by many researchers [98].

One possible way to address the noninterpretability
problem is to combine data-driven approaches with mecha-
nistic models. For example, scientists may focus on a small
set of engineering targets for strain optimization in data-
driven studies to avoid combinatorial explosion, and a
mechanistic model can help in choosing a proper set of
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targets that are more likely to be effective. This can be
achieved using methods such as metabolic control analysis
[99] and various target identification methods based on
genome-scale metabolic network analysis [100, 101]. In a
recent study, Zhang et al. used a genome-scale model to pin-
point five genes as engineering targets for improving trypto-
phan production in S. cerevisiae [94]. Each gene was
expressed at six different levels using separate promoters,
after which they trained ML models using data points
derived from >500 different strain designs and used model
predictions to guide the strain design process. The trypto-
phan titer and productivity of the best strain were improved
by up to 74 and 43%, respectively. Notably, all five gene tar-
gets were in central metabolic pathways rather than the tryp-
tophan synthesis pathway. Without prior target selection
based on a mechanistic model and biochemical knowledge,
there would be too many possible modification targets
requiring large amounts of experimental data to train the
model, significantly increasing the time and cost for strain
optimization. In a recent study, Czajka et al. proposed a
new platform to integrate knowledge mining, feature extrac-
tion, genome-scale modeling, and ML for more realistic
engineering target prediction and applied it in the design
of an engineered Yarrowia lipolytica strain with improved
product titers [102].

Another major problem of data-driven methods is the
so-called “curse” of dimensionality, caused by the exponen-
tial increase in the amount of data needed to support results
with the dimensionality of the input. Unfortunately, most
biological data, especially omics data, suffers from this prob-
lem. There are many measured variables (genes, metabolites,
etc.) but few instances (sometimes only at two different con-
ditions or for two genotypes). Even after integrating data
from databases, the number of instances can reach only
about a thousand for model organisms, and much less for
other organisms, while reliable ML models normally require
around 100 instances per 5-10 variables [19]. Therefore,
there is a severe lack of data for system-level analysis with
thousands of genes. Due to the still high cost of omics data
generation, it is essential to reduce the dimensionality of
the problem for data-driven studies. Most studies described
above focused on particular problems considering a small
set of input variables. Choosing a small number of important
inputs from thousands of available ones is key to the success
of ML models using limited data. This requires experience
and rich knowledge of the biological system, which is where
mechanistic models can help. Data-driven approaches
should be combined with prior knowledge of the studied
biosystem to realize its full potential in developing novel
enzymes and strains for biomanufacturing.

6. Conclusion

Data-driven methods offer an opportunity to make reliable
predictions without the need of building mechanistic
models. This is particularly useful for complex biosystems
of which our knowledge is very patchy. This review summa-
rized the application of data-driven methods for the devel-
opment of synthetic cell factories. We show examples on

protein function prediction, metabolic model reconstruc-
tion, kinetic data estimation, nonnatural pathway design,
and strain optimization. We propose the integration of
data-driven approaches with mechanistic model approaches
to speed up the development of synthetic cell factories while
at the same time improve our knowledge on the cells.

Conflicts of Interest

The authors declare that they have no conflicts of interest
related to the publication of this manuscript.

Authors’ Contributions

Yanhe Ma and Hongwu Ma conceived of the presented idea.
Hongwu Ma, Zhenkun Shi, Pi Liu, Xiaoping Liao, Zhitao
Mao, and Qijian Zhang wrote the manuscript. Qinhong
Wang, Jibin Sun, Hongwu Ma, and Yanhe Ma were involved
in planning and supervised the work. All authors discussed
the results and contributed to the final manuscript. Zhenkun
Shi and Pi Liu contributed equally to this work.

Acknowledgments

This work was supported by the National Key Research and
Development Program of China (grant number
2018YFA0900300), the International Partnership Program
of Chinese Academy of Sciences (grant number
153D31KYSB20170121), Youth Innovation Promotion
Association CAS, and the Tianjin Synthetic Biotechnology
Innovation Capacity Improvement Project (grant numbers
TSBICIP-PTJS-001 and TSBICIP-CXRC-018).

References

[1] S. C. Schuster, “Next-generation sequencing transforms
today’s biology,” Nature Methods, vol. 5, no. 1, pp. 16-18,
2008.

[2] L. Chen, “Data-driven systems biology approaches,” Journal
of Molecular Cell Biology, vol. 9, no. 6, p. 435, 2017.

[3] P. S. Freemont, “Synthetic biology industry: data-driven
design is creating new opportunities in biotechnology,”
Emerging Topics in Life Sciences, vol. 3, no. 5, pp. 651-657,
2019.

[4] N.Xu,Y.Liu, H. Jiang, J. Liu, and Y. Ma, “Combining protein
and metabolic engineering to construct efficient microbial
cell factories,” Current Opinion in Biotechnology, vol. 66,
pp. 27-35, 2020.

[5] D. Zhao, J. Li, S. Li et al., “Glycosylase base editors enable C-
to-A and C-to-G base changes,” Nature Biotechnology,
vol. 39, no. 1, pp. 35-40, 2021.

[6] Y. Wang, Y. Liu, P. Zheng, J. Sun, and M. Wang, “Microbial
base editing: a powerful emerging technology for microbial
genome engineering,” Trends in Biotechnology, vol. 39,
no. 2, pp. 165-180, 2021.

[7] J. Yang, T. Zhang, C. Tian et al., “Multi-enzyme systems and
recombinant cells for synthesis of valuable saccharides:
advances and perspectives,” Biotechnology Advances, vol. 37,
no. 7, p. 107406, 2019.



10

(8]

(9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

W. Wang, P. He, D. Zhao et al., “Construction of Escherichia
coli cell factories for crocin biosynthesis,” Microbial Cell Fac-
tories, vol. 18, no. 1, p. 120, 2019.

H. Fang, D. Li, J. Kang, P. Jiang, J. Sun, and D. Zhang, “Met-
abolic engineering of _Escherichia coli_ for de novo biosyn-
thesis of vitamin B,,,” Nature Communications, vol. 9,
no. 1, p. 4917, 2018.

X. Yang, Q. Yuan, H. Luo et al,, “Systematic design and
in vitro validation of novel one-carbon assimilation path-
ways,” Metabolic Engineering, vol. 56, pp. 142-153, 2019.

C. A. Voigt, “Synthetic biology 2020-2030: six commercially-
available products that are changing our world,” Nature
Communications, vol. 11, no. 1, p. 6379, 2020.

D. Silver, J. Schrittwieser, K. Simonyan et al., “Mastering the
game of Go without human knowledge,” Nature, vol. 550,
no. 7676, pp. 354-359, 2017.

C. Angermueller, T. Parnamaa, L. Parts, and O. Stegle, “Deep
learning for computational biology,” Molecular Systems Biol-
ogy, vol. 12, no. 7, p. 878, 2016.

S. Min, B. Lee, and S. Yoon, “Deep learning in bioinformat-
ics,” Briefings in Bioinformatics, vol. 18, no. 5, pp. 851-869,
2017.

G. Eraslan, Z. Avsec, J. Gagneur, and F. J. Theis, “Deep learn-
ing: new computational modelling techniques for genomics,”
Nature Reviews. Genetics, vol. 20, no. 7, pp- 389-403, 2019.

J. Martorell-Marugan, S. Tabik, Y. Benhammou et al., Deep
Learning in Omics Data Analysis and Precision Medicine,
Exon Publications, 2019.

G. B. Kim, W. J. Kim, H. U. Kim, and S. Y. Lee, “Machine
learning applications in systems metabolic engineering,” Cur-
rent Opinion in Biotechnology, vol. 64, pp. 1-9, 2020.

K. V. Presnell and H. S. Alper, “Systems metabolic engineer-
ing meets machine learning: a new era for data-driven meta-
bolic engineering,” Biotechnology Journal, vol. 14, no. 9,
article e1800416, 2019.

C. E. Lawson, J. M. Marti, T. Radivojevic et al., “Machine
learning for metabolic engineering: a review,” Metabolic
Engineering, vol. 63, pp. 34-60, 2021.

S. Mazurenko, Z. Prokop, and J. Damborsky, “Machine learn-
ing in enzyme engineering,” ACS Catalysis, vol. 10, no. 2,
pp. 1210-1223, 2020.

P. Rana, C. Berry, P. Ghosh, and S. S. Fong, “Recent advances
on constraint-based models by integrating machine learn-
ing,” Current Opinion in Biotechnology, vol. 64, pp. 85-91,
2020.

UniProt Consortium T, “UniProt: the universal protein
knowledgebase,” Nucleic Acids Research, vol. 46, no. 5,
p- 2699, 2018.

S. K. Burley, C. Bhikadiya, C. Bi et al., “RCSB Protein Data
Bank: powerful new tools for exploring 3D structures of bio-
logical macromolecules for basic and applied research and
education in fundamental biology, biomedicine, biotechnol-
ogy, bioengineering and energy sciences,” Nucleic Acids
Research, vol. 49, no. D1, pp. D437-D451, 2021.

A. Chang, L. Jeske, S. Ulbrich et al., “BRENDA, the ELIXIR
core data resource in 2021: new developments and updates,”
Nucleic Acids Research, vol. 49, no. D1, pp. D498-d508, 2021.
M. Kanehisa and S. Goto, “KEGG: Kyoto encyclopedia of
genes and genomes,” Nucleic Acids Research, vol. 28, no. 1,
pp. 27-30, 2000.

(26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

BioDesign Research

R. Caspi, R. Billington, I. M. Keseler et al., “The MetaCyc
database of metabolic pathways and enzymes - a 2019
update,” Nucleic Acids Research, vol. 48, no. D1, pp. D445-
d453, 2020.

C.]J. Norsigian, N. Pusarla, J. L. McConn et al., “BiGG Models
2020: multi-strain genome-scale models and expansion
across the phylogenetic tree,” Nucleic Acids Research,
vol. 48, no. D1, pp. D402-d406, 2020.

T. Barrett, S. E. Wilhite, P. Ledoux et al., “NCBI GEOQ: archive
for functional genomics data sets—update,” Nucleic Acids
Research, vol. 41, no. Database issue, pp. D991-D995, 2013.

A. Athar, A. Filllgrabe, N. George et al., “ArrayExpress update
- from bulk to single-cell expression data,” Nucleic Acids
Research, vol. 47, no. D1, pp. D711-d715, 2019.

M. Wang, C. J. Herrmann, M. Simonovic, D. Szklarczyk, and
C. von Mering, “Version 4.0 of PaxDb: protein abundance
data, integrated across model organisms, tissues, and cell-
lines,” Proteomics, vol. 15, no. 18, pp. 3163-3168, 2015.

J. Monk, J. Nogales, and B. O. Palsson, “Optimizing genome-
scale network reconstructions,” Nature Biotechnology, vol. 32,
no. 5, pp. 447-452, 2014.

C. Gu, G. B. Kim, W. J. Kim, H. U. Kim, and S. Y. Lee, “Cur-
rent status and applications of genome-scale metabolic
models,” Genome Biology, vol. 20, no. 1, p. 121, 2019.

S. Moretti, V. D. T. Tran, F. Mehl, M. Ibberson, and M. Pagni,
“MetaNetX/MNXref: unified namespace for metabolites and
biochemical reactions in the context of metabolic models,”
Nucleic Acids Research, vol. 49, no. D1, pp. D570-d574, 2021.

S. Gupta and A. Gupta, “Dealing with noise problem in
machine learning data-sets: a systematic review,” Procedia
Computer Science, vol. 161, pp. 466-474, 2019.

X. Chu, I. F. Ilyas, S. Krishnan, and J. Wang, “Data cleaning:
overview and emerging challenges,” in Proceedings of the
2016 international conference on management of data,
pp- 2201-2206, San Francisco California USA, 2016.

M. Hucka, A. Finney, H. M. Sauro et al., “The systems biology
markup language (SBML): a medium for representation and
exchange of biochemical network models,” Bioinformatics,
vol. 19, no. 4, pp- 524-531, 2003.

A. Brazma, P. Hingamp, J. Quackenbush et al., “Minimum
information about a microarray experiment (MIAME)-
toward standards for microarray data,” Nature Genetics,
vol. 29, no. 4, pp. 365-371, 2001.

T. O. Ayodele, “Types of machine learning algorithms,” New
Advances in Machine Learning, vol. 3, pp. 19-48, 2010.

J. Cremer, T. Honda, Y. Tang, ]. Wong-Ng, M. Vergassola,
and T. Hwa, “Chemotaxis as a navigation strategy to boost
range expansion,” Nature, vol. 575, no. 7784, pp. 658-663,
2019.

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Sta-
tistical Learning, Springer, New York, NY, USA, 2009.

Y. Wang, Y. Liu, J. Li et al., “Expanding targeting scope, edit-
ing window, and base transition capability of base editing in
Corynebacterium glutamicum,” Biotechnology and Bioengi-
neering, vol. 116, no. 11, pp. 3016-3029, 2019.

M. Wiering and M. Van Otterlo, “Reinforcement learning
and Markov Decision Processes,” Adaptation, Learning, and
Optimization, vol. 12, no. 3, 2012.

M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli,
“Applications of deep learning and reinforcement learning



BioDesign Research

[44]

[45]

[46]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

(55]

(56]

(57]

(58]

(59]

to biological data,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 6, pp. 2063-2079, 2018.
A. Creswell, T. White, V. Dumoulin, K. Arulkumaran,
B. Sengupta, and A. A. Bharath, “Generative adversarial net-
works: an overview,” IEEE Signal Processing Magazine,
vol. 35, no. 1, pp. 53-65, 2018.

R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Con-
volutional neural networks: an overview and application in
radiology,” Insights Into Imaging, vol. 9, no. 4, pp. 611-629,
2018.

T. Pacini, W. Fu, S. Gudmundsson et al., “Multidimensional
analytical approach based on UHPLC-UV-ion mobility-MS
for the screening of natural pigments,” Analytical Chemistry,
vol. 87, no. 5, pp- 2593-2599, 2015.

R. Chowdhury and C. D. Maranas, “From directed evolution
to computational enzyme engineering—a review,” AICHE
Journal, vol. 66, no. 3, pp. 1-17, 2020.

L. Jiang, E. A. Althoff, F. R. Clemente et al., “De novo compu-
tational design of retro-aldol enzymes,” Science, vol. 319,
no. 5868, pp. 1387-1391, 2008.

F. Yu, V. M. Cangelosi, M. L. Zastrow et al., “Protein design:
toward functional metalloenzymes,” Chemical Reviews,
vol. 114, no. 7, pp. 3495-3578, 2014.

A. L. Ferguson and R. Ranganathan, “100th anniversary of
macromolecular science viewpoint: data-driven protein
design,” ACS Macro Letters, vol. 10, no. 3, pp. 327-340, 2021.
B. Kuhlman and P. Bradley, “Advances in protein structure
prediction and design,” Nature Reviews Molecular Cell Biol-
ogy, vol. 20, no. 11, pp. 681-697, 2019.

W. Gao, S. P. Mahajan, J. Sulam, and J. J. Gray, “Deep learn-
ing in protein structural modeling and design,” Patterns,
vol. 1, no. 9, pp. 100142-100142, 2020.

K. K. Yang, Z. Wu, and F. H. Arnold, “Machine-learning-
guided directed evolution for protein engineering,” Nature
Methods, vol. 16, no. 8, pp. 687-694, 2019.

Z. Wu, S. B. J. Kan, R. D. Lewis, B. J. Wittmann, and F. H.
Arnold, “Machine learning-assisted directed protein evolu-
tion with combinatorial libraries,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 116,
no. 18, pp. 8852-8858, 2019.

J. Y. Ryu, H. U. Kim, and S. Y. Lee, “Deep learning enables
high-quality and high-throughput prediction of enzyme
commission numbers,” Proceedings of the National Academy
of Sciences of the United States of America, vol. 116, no. 28,
pp. 13996-14001, 2019.

M. Yang, C. Fehl, K. V. Lees et al., “Functional and informat-
ics analysis enables glycosyltransferase activity prediction,”
Nature Chemical Biology, vol. 14, no. 12, pp. 1109-1117,
2018.

S. Galati, D. Yonchev, R. Rodriguez-Pérez, M. Vogt,
T. Tuccinardi, and J. Bajorath, “Predicting isoform-selective
carbonic anhydrase inhibitors via machine learning and
rationalizing structural features important for selectivity,”
ACS Omega, vol. 6, no. 5, pp. 4080-4089, 2021.

J. Hong, Y. Luo, Y. Zhang et al., “Protein functional annota-
tion of simultaneously improved stability, accuracy and false
discovery rate achieved by a sequence-based deep learning,”
Briefings in Bioinformatics, vol. 21, no. 4, pp. 1437-1447,
2020.

S. Khurana, R. Rawi, K. Kunji, G. Y. Chuang, H. Bensmail,
and R. Mall, “DeepSol: a deep learning framework for

(60]

[61]

[62]

(63]

[64]

[65]

[66]

(67]

(68]

[69]

(70]

(71]

(72]

(73]

(74]

11

sequence-based protein solubility prediction,” Bioinformat-
ics, vol. 34, no. 15, pp. 2605-2613, 2018.

X. Han, L. Zhang, K. Zhou, and X. Wang, “ProGAN: protein
solubility generative adversarial nets for data augmentation
in DNN framework,” Computers and Chemical Engineering,
vol. 131, pp. 106533-106533, 2019.

A.J. Riesselman, J. B. Ingraham, and D. S. Marks, “Deep gen-
erative models of genetic variation capture the effects of
mutations,” Nature Methods, vol. 15, no. 10, pp. 816-822,
2018.

E. E. Wrenbeck, M. S. Faber, and T. A. Whitehead, “Deep
sequencing methods for protein engineering and design,”
Current Opinion in Structural Biology, vol. 45, pp. 36-44,
2017.

E. C. Alley, G. Khimulya, S. Biswas, M. AlQuraishi, and G. M.
Church, “Unified rational protein engineering with
sequence-based deep representation learning,” Nature
Methods, vol. 16, no. 12, pp. 1315-1322, 2019.

C. W. Chen, M. H. Lin, C. C. Liao, H. P. Chang, and Y. W.
Chu, “iStable 2.0: predicting protein thermal stability changes
by integrating various characteristic modules,” Computa-
tional and Structural Biotechnology Journal, vol. 18,
pp. 622-630, 2020.

S. M. Kandathil, J. G. Greener, and D. T. Jones, “Recent devel-
opments in deep learning applied to protein structure predic-
tion,” Proteins: Structure, Function and Bioinformatics,
vol. 87, no. 12, pp. 1179-1189, 2019.

A. N. Lupas, J. Pereira, V. Alva, F. Merino, M. Coles, and
M. D. Hartmann, “The breakthrough in protein structure
prediction,” Biochemical Journal, vol. 478, no. 10, pp. 1885-
1890, 2021.

A. W. Senior, R. Evans, J. Jumper et al., “Improved protein
structure prediction using potentials from deep learning,”
Nature, vol. 577, no. 7792, pp. 706-710, 2020.

C. Shen, J. Ding, Z. Wang, D. Cao, X. Ding, and T. Hou,
“From machine learning to deep learning: advances in scor-
ing functions for protein-ligand docking,” Wiley Interdisci-
plinary Reviews: Computational Molecular Science, vol. 10,
no. 1, pp. 1-23, 2020.

S. R. Shringari, S. Giannakoulias, J. J. Ferrie, and E. J. Peters-
son, “Correction: Rosetta custom score functions accurately
predict AAGof mutations at protein-protein interfaces using
machine learning,” Chemical Communications, vol. 56,
no. 71, pp. 10377-10377, 2020.

I. V. Korendovych and W. F. DeGrado, “De novo protein
design, a retrospective,” Quarterly Reviews of Biophysics,
vol. 53, p. €3, 2020.

R. Pearce and Y. Zhang, “Deep learning techniques have sig-
nificantly impacted protein structure prediction and protein
design,” Current Opinion in Structural Biology, vol. 68,
pp. 194-207, 2021.

F. Richter, A. Leaver-Fay, S. D. Khare, S. Bjelic, and D. Baker,
“De novo enzyme design using Rosetta3,” PLoS One, vol. 6,
no. 5, article e19230, 2011.

I. Anishchenko, T. Chidyausiku, S. Ovchinnikov, S. Pellock,
and D. Baker, “De novo protein design by deep network hal-
lucination,” Nature, vol. 600, no. 7889, pp. 547-552, 2021.
G. Zampieri, S. Vijayakumar, E. Yaneske, and C. Angione,
“Machine and deep learning meet genome-scale metabolic
modeling,” PLoS Computational Biology, vol. 15, no. 7, article
€1007084, 2019.



12

(75]

(76]

(77]

(78]

(79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

[90]

A. Antonakoudis, R. Barbosa, P. Kotidis, and C. Kontoravdi,
“The era of big data: genome-scale modelling meets machine
learning,” Computational and Structural Biotechnology Jour-
nal, vol. 18, pp. 3287-3300, 2020.

J. Luo, Q. Yuan, Y. Mao et al,, “Reconstruction of a genome-
scale metabolic network for Shewanella oneidensis MR-1 and
analysis of its metabolic potential for bioelectrochemical sys-
tems,” Frontiers in Bioengineering and Biotechnology, vol. 10,
2022.

T. Lombardot, A. Morgat, K. B. Axelsen et al., “Updates in
Rhea: SPARQLing biochemical reaction data,” Nucleic Acids
Research, vol. 47, no. D1, pp. D596-d600, 2019.

Y. Cai, H. Yang, W. Li, G. Liu, P. W. Lee, and Y. Tang, “Multi-
classification prediction of enzymatic reactions for oxidore-
ductases and hydrolases using reaction fingerprints and
machine learning methods,” Journal of Chemical Information
and Modeling, vol. 58, no. 6, pp. 1169-1181, 2018.

J. M. Dale, L. Popescu, and P. D. Karp, “Machine learning
methods for metabolic pathway prediction,” BMC Bioinfor-
matics, vol. 11, no. 1, p. 15, 2010.

I. Boudellioua, R. Saidi, R. Hoehndorf, M. J. Martin, and
V. Solovyev, “Prediction of metabolic pathway involvement
in prokaryotic UniProtKB data by association rule mining,”
PLoS One, vol. 11, no. 7, article e0158896, 2016.

M. Koch, T. Duigou, and J. L. Faulon, “Reinforcement learn-
ing for bioretrosynthesis,” ACS Synthetic Biology, vol. 9, no. 1,
pp. 157-168, 2020.

B. Delepine, T. Duigou, P. Carbonell, and J. Faulon, “Retro-
Path2.0: a retrosynthesis workflow for metabolic engineers,”
Metabolic Engineering, vol. 45, pp. 158-170, 2018.

M. Baranwal, A. Magner, P. Elvati, J. Saldinger, A. Violi, and
A. O. Hero, “A deep learning architecture for metabolic path-
way prediction,” Bioinformatics, vol. 36, no. 8, pp. 2547-
2553, 2020.

Z. Mao, X. Zhao, X. Yang et al., “ECMpy, a simplified work-
flow for constructing enzymatic constrained metabolic net-
work model,” Biomolecules, vol. 12, no. 1, p. 65, 2022.

P. S. Bekiaris and S. Klamt, “Automatic construction of met-
abolic models with enzyme constraints,” BMC Bioinformat-
ics, vol. 21, no. 1, p. 19, 2020.

H. Lu, F. Li, B. J. Sdnchez et al., “A consensus S. cerevisiae
metabolic model Yeast8 and its ecosystem for comprehen-
sively probing cellular metabolism,” Nature Communica-
tions, vol. 10, no. 1, p. 3586, 2019.

J. Mellor, I. Grigoras, P. Carbonell, and J. L. Faulon, “Semisu-
pervised Gaussian process for automated enzyme search,”
ACS Synthetic Biology, vol. 5, no. 6, pp. 518-528, 2016.

D. Heckmann, C. J. Lloyd, N. Mih et al., “Machine learning
applied to enzyme turnover numbers reveals protein struc-
tural correlates and improves metabolic models,” Nature
Communications, vol. 9, no. 1, p. 5252, 2018.

A. S. Karim, Q. M. Dudley, A. Juminaga et al., “In vitro pro-
totyping and rapid optimization of biosynthetic enzymes for
cell design,” Nature Chemical Biology, vol. 16, no. 8, pp. 912
919, 2020.

Y. Zhou, G. Li, J. Dong, X. H. Xing, J. Dai, and C. Zhang,
“MiYA, an efficient machine-learning workflow in conjunc-
tion with the YeastFab assembly strategy for combinatorial
optimization of heterologous metabolic pathways in Saccha-
romyces cerevisiae,” Metabolic Engineering, vol. 47,
pp. 294-302, 2018.

[91]

[92]

(93]

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

BioDesign Research

P. Opgenorth, Z. Costello, T. Okada et al., “Lessons from two
design-build-test-learn cycles of dodecanol production in
Escherichia coli aided by machine learning,” ACS Synthetic
Biology, vol. 8, no. 6, pp. 1337-1351, 2019.

M. HamediRad, R. Chao, S. Weisberg, J. Lian, S. Sinha, and
H. Zhao, “Towards a fully automated algorithm driven plat-
form for biosystems design,” Nature Communications,
vol. 10, no. 1, p. 5150, 2019.

A.7J.Jervis, P. Carbonell, M. Vinaixa et al., “Machine learning
of designed translational control allows predictive pathway
optimization in Escherichia coli,” ACS Synthetic Biology,
vol. 8, no. 1, pp. 127-136, 2019.

J. Zhang, S. D. Petersen, T. Radivojevic et al., “Combining
mechanistic and machine learning models for predictive
engineering and optimization of tryptophan metabolism,”
Nature Communications, vol. 11, no. 1, p. 4880, 2020.

T. Radivojevic, Z. Costello, K. Workman, and H. Garcia Mar-
tin, “A machine learning automated recommendation tool
for synthetic biology,” Nature Communications, vol. 11,
no. 1, p. 4879, 2020.

C. Aaron, B. L. Daniel, and S. Roberta, “Data-driven predic-
tions in the science of science,” Science, vol. 355, no. 6324,
pp. 477-480, 2017.

J. Li, L. Liu, T. D. Le, and J. Liu, “Accurate data-driven predic-
tion does not mean high reproducibility,” Nature Machine
Intelligence, vol. 2, no. 1, pp. 13-15, 2020.

M. Baker, “Statisticians issue warning over misuse of _P_
values,” Nature, vol. 531, no. 7593, p. 151, 2016.

S. Tsouka, M. Ataman, T. Hameri, L. Miskovic, and
V. Hatzimanikatis, “Constraint-based metabolic control
analysis for rational strain engineering,” Metabolic Engineer-
ing, vol. 66, pp. 191-203, 2021.

S. Ranganathan, P. F. Suthers, and C. D. Maranas, “OptForce:
an optimization procedure for identifying all genetic manip-
ulations leading to targeted overproductions,” PLoS Compu-
tational Biology, vol. 6, no. 4, article e1000744, 2010.

J. M. Park, H. M. Park, W. J. Kim, H. U. Kim, T. Y. Kim,
and S. Y. Lee, “Flux variability scanning based on enforced
objective flux for identifying gene amplification targets,”
BMC Systems Biology, vol. 6, no. 1, p. 106, 2012.

J. J. Czajka, T. Oyetunde, and Y. J. Tang, “Integrated knowl-
edge mining, genome-scale modeling, and machine learning

for predicting Yarrowia lipolytica bioproduction,” Metabolic
Engineering, vol. 67, pp. 227-236, 2021.



	Data-Driven Synthetic Cell Factories Development for Industrial Biomanufacturing
	1. Introduction
	2. Biological Data and Databases Related to Industrial Biotechnology
	2.1. Data on Enzymes/Proteins
	2.2. Data on Metabolic Pathways and Networks
	2.3. Condition-Specific Data
	2.4. General Problems with Biological Data and Data Preprocessing

	3. Data-Driven Algorithms
	3.1. Brief Introduction of ML Algorithms
	3.2. Recent Development of DL Approaches

	4. Application of Data-Driven Approaches in Biomanufacturing
	4.1. Data-Driven Approaches in Enzyme/Protein Design
	4.2. Application of ML in Cell Engineering
	4.2.1. ML for Metabolic Network Model Reconstruction
	4.2.2. Design of Non-Natural Metabolic Pathways
	4.2.3. Prediction of Kinetic Parameters
	4.2.4. Pathway/Strain Optimization


	5. Discussion
	6. Conclusion
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments

