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Objective. Objective of this work is the development and evaluation of a cortical parcellation framework based on tractography-
derived brain structural connectivity. Impact Statement. The proposed framework utilizes novel spatial-graph representation
learning methods for solving the task of cortical parcellation, an important medical image analysis and neuroscientific
problem. Introduction. The concept of “connectional fingerprint” has motivated many investigations on the connectivity-based
cortical parcellation, especially with the technical advancement of diffusion imaging. Previous studies on multiple brain regions
have been conducted with promising results. However, performance and applicability of these models are limited by the
relatively simple computational scheme and the lack of effective representation of brain imaging data. Methods. We propose
the Spatial-graph Convolution Parcellation (SGCP) framework, a two-stage deep learning-based modeling for the graph
representation brain imaging. In the first stage, SGCP learns an effective embedding of the input data through a self-supervised
contrastive learning scheme with the backbone encoder of a spatial-graph convolution network. In the second stage, SGCP
learns a supervised classifier to perform voxel-wise classification for parcellating the desired brain region. Results. SGCP is
evaluated on the parcellation task for 5 brain regions in a 15-subject DWI dataset. Performance comparisons between SGCP,
traditional parcellation methods, and other deep learning-based methods show that SGCP can achieve superior performance in
all the cases. Conclusion. Consistent good performance of the proposed SGCP framework indicates its potential to be used as a
general solution for investigating the regional/subregional composition of human brain based on one or more connectivity
measurements.

1. Introduction

Cortical parcellation of human brain aims to identify spatially
contiguous area in cortical region, which can be characterized
by distinct functional, structural, anatomical, cytoarchitec-
tural, or genetic patterns [1]. Accurate parcellation of the cor-
tical surface provides an essential basis for investigating brain
cognitive process (e.g., in functional localization study), mor-
phology (e.g., in developmental neuroscience study), and
brain connectomics. In the works by Passingham et al. [2], it
was proposed that each cortical area can be characterized by
a unique pattern of inputs and outputs (“connectional finger-
print”), together with the local infrastructure characterized by
the microstructural properties; these patterns can be major
determinant for the function of that area. Based on the pre-
mise of the connectional fingerprint, it has been reported that

voxels belonging to the same brain region usually share similar
structural connectivity patterns. For example, Johansen-Berg
et al. identified the border between the supplementary motor
area (SMA) and pre-SMA by locating an abrupt change in
their connectivity patterns [3].

Recent advancement in the imaging technology such as
the diffusion-weighted magnetic resonance imaging (DWI)
has enabled us for high-resolution high-quality tractography
for the white matter tracts and the corresponding structural
connectivity [4]. Many studies have been conducted on the
feasibility for computer-assisted cortical parcellation based
on structural connectivity derived from DWI images, includ-
ing the parcellation for inferior parietal cortex complex [5],
the lateral parietal cortex [6], and the temporoparietal junction
area [7]. Most of these studies utilized unsupervised approach,
such as K-means and hierarchical clustering methods, for
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discriminating voxels with different structural connectivity
patterns. Thus, their results rely on human interpretation for
identifying the desired brain region(s), usually focused on a
specific area. For the supervised learning scheme, there is gen-
erally a lack of brain imaging data with detailed voxel-wise
labeling. Further, direct mapping from the connectivity pat-
tern to the voxel label can only be trained on a specific region,
which limits the applicability of the trained model [8, 9]. In
addition, rather than representing brain imaging data in the
volumetric Euclidean space or as independent feature vectors,
increasing number of studies has recognized the importance of
utilizing graph theory [10] or performing the image analysis
on the graph [11].

To address the above challenges, we have developed the
Spatial-graph Convolution Parcellation (SGCP) framework
for learning the spatial-graph representation from the input
structural connectivity data and performing cortical parcella-
tion via a two-stage contrastive learning scheme. SCGP over-
comes the need for extensive and accurate voxel labels by a
self-supervised contrastive learning scheme and the graph
augmentation techniques, which have been widely used in
various computer vision tasks includingmedical image analy-
sis [12–14]. It employs a graph convolution network- (GCN-)
based method for encoding the structural connectivity pat-
terns. GCN leverages the powerful representation learning
capability of layered convolution filtering as used in convolu-
tion neural network (CNN) [15], while performing the convo-
lution analysis on a graph rather than on the Euclidean space
[16]. Thus, GCN is more feasible and effective for analyzing
data intrinsically reside on a graph-defined manifold such as
social network data for recommendation system [17], medic-
inal chemistry data for drug discovery [18], as well as brain
imaging data where voxels are governed by the underlying
brain network (s) [19, 20]. SGCP also features a spatial-
graph convolution network (SGCN) filter design, so that both
geometric and topological information of the voxels can be
used together, which will lead to more spatially consistent
parcellation results. Performance comparison of SGCP with
traditional machine learning-based methods and other
graph-based deep learning methods on the public Human
Connectome Project (HCP) data shows that the proposed
framework can achieve superior parcellation accuracy with
consistent spatial and connectivity patterns of the parcellated
results. Source code of thiswork can be found in https://github
.com/rachelyou/CL-SGCN.

2. Results and Discussion

2.1. Performance of the Region Parcellation Task. Based on
the binary voxel-wise classification results, we use the Dice
score to measure the similarity between the regions defined
by parcellation results and the regions defined in the DK
atlas (regarded as ground truth), which are listed in
Table 1. A higher Dice score indicates that the two regions
are spatially more similar to each other, ranging from 0~1.

Following the similar methodology designs in the previ-
ous works of connectivity-based parcellation [6, 7, 21, 22],
we have implemented support vector machine (SVM) and
K-means algorithm to perform the same task of parcellating

the five brain regions as listed above. For the K-means algo-
rithm, the individual cross-correlation matrix is used as the
input to group voxels with similar connectivity profiles
together. For the SVM algorithm, connectivity profiles are
used as input to perform voxel-wise classification. Perfor-
mance comparison between SGCP and two baseline
methods (SVM and K-means) on the task of parcellating
precentral gyrus (PC) for all the subjects is shown in
Figure 1 as an example, and the averaged Dice scores for
parcellating all five regions are listed in Table 2.

2.2. Performance Comparison with Baseline Methods and
Ablation Study. To evaluate the effectiveness of different
components in the SGCP framework, including SGCN and
the contrastive learning scheme, we have implemented vari-
ous baseline methods by (1) node2vec [23], which learns the
feature representation of nodes in a graph based on graph
characteristics and node neighborhoods. After embedding
node features by node2vec, a 2-layer MLP is then trained
to predict the node labels. Parameters of node2vec are set
as follows: walk steps: 80, walk length:10, window size:5,
and random walk probability: 0.25/4; (2) struc2vec [24],
which learns the node feature representation based on graph
structural similarity. Similar to node2vec, we also employ
struct2vec to embed node features and train a 2-layer MLP
for node label prediction. Parameters of struct2vec are set
as follows: random walk length:10, the number of random
walk steps:100, and window size:5; (3) substituting the core
SGCN with traditional GCN, to investigate how geometric
information can assist the graph feature embedding; and
(4) formulating the whole framework as an end-to-end,
supervised approach based on SGCN, which takes the input
of the same graph representation and directly infers the
voxel-level labels. In addition, we have investigated the effect
of different network structures (number of layers in SGCN
and the MLP classifier) on model performance. Performance
comparisons are listed in Table 3, each row corresponding to
a specific method or model component setting.

2.3. Spatial Distribution and Structural Connectivity Patterns
of the Parcellated Regions. In addition to the Dice score for
quantitively evaluating the performance of the proposed SGCP
framework, we have also overlayed the parcellated regions with
the ground truth (defined by DK atlas) onto 2D slices of the 3D
volumetric brain T1w image, in order to visually check whether
the parcellated brain regions are neuroscientifically meaningful.
Visualizations of the overlay are shown in Figure 2.

We have also visualized the structural connectivity pat-
terns of the parcellated regions, as well as voxels around the
parcellation results. A sample illustration of the precentral
gyrus is shown in Figure 3. These visualizations represent fiber
bundles connecting voxels in the voxels within(green)/outsid-
e(red) the parcellated regions to the whole brain, illustrating
the differences in their connectivity patterns.

3. Materials and Methods

3.1. Study Population and Image Acquisition. We used imag-
ing data from 15 healthy adults in the Human Connectome
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Project (HCP) database [37]. The HCP MRI data were
acquired with a high-quality image acquisition protocol
using a customized Connectome Siemens Skyra scanner.
Acquisition parameters for the T1 weighted imaging (T1w)
data were TE = 2:14ms, TR = 2400ms, and voxel size = 0:7
× 0:7 × 0:7mm. Acquisition parameters used for the HCP
DWI data were TE = 89:5ms, TR = 5520ms, phase partial
Fourier = 6/8, and voxel size = 1:25 × 1:25 × 1:25mm. A total
of 288 volumes were acquired for each subject, including 18
baseline volumes with a low diffusion weighting b = 5 s/mm
and 270 volumes evenly distributed at three shells of b =
1000/2000/3000 s/mm.

3.2. Data Preprocessing. The DWI data used in this work was
processed with the well-designed HCP minimum processing

pipeline [38], which includes brain masking, motion correc-
tion, eddy current correction, EPI distortion correction, and
coregistration with the anatomical T1w data. Each subject’s
T1w image was parcellated into 34 cortical regions of inter-
est (ROIs) per hemisphere based on the Desikan-Killiany
(DK) Atlas [39, 40]. The ROIs investigated in this study
are listed in Table 4. We used the FSL tools FDT and PROB-
TRACTX [41] to perform probabilistic tractography based
on each subject’s DWI data. For the tractography analysis,
we restricted seed mask for streamline tracking in FSL to
white matter voxels in a specifically predefined region
(named as the “target region”). The target region covers all
the voxels in the DK atlas-defined ROI to be analyzed and
parcellated (e.g., the precentral gyrus), as well as voxels
around this ROI to the extent of 1.5 times larger of the
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Figure 1: Performance comparison between SGCP, SVM, and K-means based on the Dice score for parcellating the precentral gyrus region.
Indices of the 15 subjects are listed in the x-axis, and the Dice scores are shown in the y-axis. (a) left hemisphere and (b) right hemisphere.

Table 1: Performance measured by Dice score between the parcellated regions and DK Atlas regions (regarded as ground truth). Top:
results from left hemisphere; Bottom: results from right hemisphere.

(a)

Subjects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PC.L 0.82 0.87 0.84 0.88 0.81 0.84 0.87 0.87 0.87 0.88 0.86 0.88 0.84 0.83 0.85

LO.L 0.89 0.89 0.88 0.90 0.90 0.87 0.89 0.92 0.92 0.88 0.87 0.91 0.83 0.84 0.82

InP.L 0.90 0.86 0.91 0.88 0.88 0.88 0.89 0.91 0.89 0.89 0.86 0.88 0.86 0.90 0.85

EC.L 0.84 0.86 0.81 0.83 0.85 0.82 0.81 0.86 0.80 0.85 0.80 0.87 0.83 0.83 0.83

RMF.L 0.91 0.89 0.89 0.90 0.89 0.86 0.92 0.90 0.89 0.86 0.91 0.87 0.88 0.90 0.88

(b)

Subjects 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

PC.R 0.83 0.89 0.82 0.84 0.83 0.88 0.87 0.88 0.88 0.89 0.90 0.90 0.86 0.80 0.88

LO.R 0.88 0.91 0.85 0.89 0.88 0.90 0.90 0.83 0.84 0.86 0.87 0.88 0.80 0.87 0.90

InP.R 0.89 0.86 0.89 0.90 0.89 0.92 0.92 0.90 0.91 0.91 0.88 0.91 0.87 0.86 0.87

EC.R 0.83 0.88 0.87 0.80 0.86 0.86 0.86 0.87 0.87 0.84 0.83 0.83 0.85 0.85 0.84

RMF.R 0.90 0.89 0.82 0.90 0.91 0.89 0.91 0.91 0.90 0.87 0.91 0.87 0.89 0.88 0.85
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original ROI. We designed this “target region” scheme to test
the feasibility of using structural connectivity to segment out
the morphology-derived ROI from its surrounding voxels.
We then set the target of the tracking to voxels in all ROIs

in the DK atlas, covering the whole brain. Outputs from
the tractography are two connectivity matrices, the intrare-
gion connectivity matrix A and the interregion connectivity
matrix X. Matrix A contains the voxel-voxel connection only
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Figure 2: Overlay of the SGCP parcellation results combined with ground truth regions defined in DK atlas on T1w images from a random
subject. Selected slices are visualized for maximized region visibility. green: overlapped voxels between the two regions; red: voxels that are
presented only in the parcellated regions but not the ground truth; yellow: voxels that are presented only in the ground truth region. 1a-5a:
visualizations of the PC.L, LO.L, InP.L, EC.L, and RMF.Lregions. 1b-5b: visualizations of the PC.R, LO.R, InP.R, EC.R, and RMF.R regions.

Table 3: Comparison of parcellation performance as measured by Dice score on the 5 brain regions analyzed in this work.

PC.L LO.L InP.L EC.L RMF.L PC.R LO.R InP.R EC.R RMF.R Average

node2vec 0.65 0.67 0.63 0.68 0.65 0.67 0.67 0.66 0.68 0.67 0.66

struc2vec 0.64 0.65 0.60 0.65 0.66 0.65 0.66 0.64 0.65 0.66 0.64

GCN 0.65 0.70 0.67 0.71 0.67 0.70 0.69 0.69 0.73 0.68 0.69

SGCN, Supervised non-CL 0.72 0.71 0.71 0.79 0.72 0.74 0.72 0.73 0.78 0.73 0.73

SGCN (2 layers) +CL+MLP (2 layers) 0.86 0.89 0.88 0.83 0.89 0.88 0.88 0.89 0.85 0.89 0.87

SGCN (3 layers)+ CL+MLP (2 layers) 0.88 0.87 0.84 0.80 0.85 0.85 0.86 0.89 0.87 0.89 0.86

SGCN (2 layers) +CL+MLP (3 layers) 0.89 0.86 0.87 0.84 0.86 0.89 0.88 0.88 0.87 0.87 0.87

node2vec: unsupervised node feature embedding by node2vec, followed by a 2-layer MLP. struct2vec: unsupervised node feature embedding by strct2vec,
followed by a 2-layer MLP. GCN: substituting SGCN with traditional GCN, keeping all other components as the same. SGCN, supervised non-CL: the
single stage, end-to-end, supervised framework for parcellation based on SGCN. SGCN (2 layers) + CL +MLP (2 layers): the current setting used by SGCP.
SGCN (3 layers) + CL +MLP (2 layers) and SGCN (2 layers) + CL +MLP (3 layers): settings where the layers in SGCN, and stage 2 MLP are increased to
3 layers, all other components are kept the same. Best parcellation performance for each region among all methods is highlighted in bold text.

Table 2: Performance comparison between SGCP, SVM, and K-means based on the averaged dice score across 15 subjects, on the
parcellation of five regions (left and right) in this study.

PC.L LO.L InP.L EC.L RMF.L PC.R LO.R InP.R EC.R RMF.R

SVM 0.59 0.64 0.65 0.64 0.57 0.58 0.65 0.65 0.65 0.56

K-means 0.65 0.62 0.60 0.62 0.67 0.66 0.59 0.60 0.62 0.66

SGCP 0.85 0.88 0.88 0.83 0.89 0.86 0.87 0.89 0.85 0.89
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within the target region. Aij = 1 if there is at least one tracked
fiber connecting voxel i and voxel j in the target region, and
Aij = 0 otherwise. Matrix X contains the voxel-region con-
nection from each voxel within the target region to all ROIs
in the DK atlas by counting the number of tracked fibers
connecting each voxel to each ROI. This voxel-region con-
nectivity density can potentially reveal the connectivity pat-
tern difference within the target region.

Based on the tractography results, the connectivity pro-
file of a given voxel could be then defined as the fiber density
vector ðx1, x2,⋯, xnÞT , where xi is the number of white mat-
ter fibers connecting from the given voxel to the ith ROI
derived from the interregion connectivity matrix X and n
is the number of regions in the DK atlas. At the same time,
the topology (i.e., edges) among voxels in the target region

is modeled by the graph defined by the intraregion connec-
tivity matrix A (Figure 4).

3.3. Architecture Overview. Our proposed SGCP model
learns latent representations of the given graph representa-
tion from the input brain imaging data and performs
voxel-wise classification for brain region parcellation, where
in this study we use the DWI image and the derived struc-
tural connectivity as an example. An undirected graph G =
ðV ,EÞ is defined to represent the input target region, where
V = fv1, v2,⋯, vNg contains the N nodes representing N
voxels in the target region and E is the edge set representing
the connectivity between two nodes vi and vj. G has an asso-
ciated node feature set X = fx1, x2,⋯, xNg, where xi is the
feature vector of the node vi. As illustrated in Figure 5, SGCP

Figure 3: Patterns of fiber bundles connecting the parcellated regions (green) and voxels outside (red), on the PC.L (Precentral Gyrus left)
region (top) and PC.R (Precentral Gyrus right) region (bottom), from the 15 subjects analysed in this study.

5BME Frontiers



is composed of two stages: the label-free, self-supervised
contrastive graph feature embedding stage with geometric
GCN, where positive augmented molecule graph pairs are
contrasted with representations from negative pairs; and
the down streamed supervised learning-based classification
stage, where voxel labels (i.e., parcellated brain region) are
inferred by a multilayer perceptron (MLP) based on the
extracted features. In the following section, we will describe
the technical components in the proposed SGCP model:
the Self-Supervised Graph Contrastive Learning scheme in
Section 3.4, the Graph Augmentation techniques in Section
3.5, the Spatial-graph Convolution Network in Section 3.6,
and the Voxel Classification and Region Parcellation model
in Section 3.7.

3.4. Self-Supervised Graph Contrastive Learning. Motivated
by the recent development of contrastive learning in the field
of machine learning and the increasing adaptation of it in
computer vision, we employ a graph contrastive learning
framework similar with works in [14] for self-supervised
graph embedding of the input data. The framework follows
the common graph contrastive learning paradigm, which
aims to learn an effective representation that can maximize
the interaction between different views of the data. As shown
in Figure 5, graph augmentations are performed on the
input data (i.e., graph representation of the target region G
) to generate different views of G. Detailed specifications of
the augmentation technique will be provided in the section
3.5. Then, a contrastive objective is used to enforce the
embedding of each node in the two views to be consistent
with each other and at the same time can be distinguished
from the embedding of other nodes [42]. Specifically, denote
T as the set of arbitrary augmentation functions. Without
loss of generality, here, we use two augmentation functions,
where t, t ′ ~T are two different augmentation functions

independently sampled from T . These two graph views are
then generated by applying the different augmentation func-
tions on the same graph, denoted as ~G1 = tð~GÞ and ~G2 = t ′
ð~GÞ. An encoder function f ð∙Þ, which can be implemented
by any transform function, then embeds features on the
nodes with attributes from all the augmented graph samples:
h1 = f ð~X1, ~A1Þ and h2 = f ð~X2, ~A2Þ, where ~X∗ and ~A∗ are the
feature matrix and adjacency matrix of the generated graphs
~G1 and ~G2, respectively, and h∗ is the embedded output of
the encoder. While most of the recent works employed
GCN-like networks [14] as the encoder function f ð∙Þ, in this
work in order to leverage the spatial relationship among the
graph nodes (which are voxels in Euclidean space), we will
use the spatial-graph convolution network (SGCN) as the
encoder, which will be described in section 3.6. After obtaining
all the graph feature embeddings of h∗, they will be fed into a
projection head gð∙Þ implemented by a small multilayer per-
ceptron (MLP) to obtain a metric embedding z1 = gðh1Þ, z2
= gðh2Þ, where z1, z2 ∈ℝd′ with d′ < d, which is in a lower
dimensional space compared with the dimension of h∗.

After the setting up of graph feature and metric embed-
ding, parameters of the encoder f ð∙Þ and nonlinear projec-
tion head gð∙Þ will be optimized by the contrastive
objective, which encourages the distance between the metric
embedding of the same node in the two different views to be
small, and the distance between the metric embeddings with
other nodes to be large. Specifically, for a given node vi, its
embedding generated in one view z i1 and in the other view
z i2 will form the positive pairs. Embeddings of the other node
v∗ in the two views are naturally regarded as the negative
pairs. Based on the nonparametric classification loss
InfoNCE [43], multiview graph contrastive learning loss
[42] can be defined for each positive pair ðz i1, z i2Þ as

l z i1, z
i
2

� �
= log eθ z i1,z

i
2ð Þ/τ

eθ z i1,z
i
2ð Þ/τ +∑k≠ie

θ z i1,z
k
2ð Þ/τ +∑k≠ie

θ z i1,z
k
1ð Þ/τ :

ð1Þ

τ is the hyperparameter that controls the sensitivity of
the embedding. θð∙Þ measures the similarity between two
embeddings, here, we use the cosine similarity function sð∙
, ∙Þ to define θðz1, z2Þ = sðgðz1Þ, gðz2ÞÞ. In Equation (1),
the second and the third term in the denominator calculates
similarities between negative pairs from interview and intra-
view nodes, respectively. The overall objective L to be opti-
mized is then defined as the average over all positive pairs

L =
1
2N

〠
N

i=1
l z i1, z

i
2

� �
+ l z i2, z

i
1

� �� �
: ð2Þ

3.5. Graph Augmentation. In machine learning, data aug-
mentation is the commonly-used method for creating a
comprehensive set of possible data points, thus enhancing
the model generalizability and robustness [44]. In the con-
text of self-supervised learning, such as contrastive learning,
the data augmentation is even more important for

Table 4: Name and abbreviation of the five brain regions analysed
in this study, as well as the number of nodes and edges in their
corresponding graph representations.

(a)

Brain region Abbv. # of nodes # of edges

Precentral gyrus left PC.L 2890 34896

Lateral occipital left LO.L 3471 43260

Inferiorparietal left InP.L 3815 49309

Entorhinal cortex left EC.L 1403 26724

Rostral middle frontal left RMF.L 3582 46977

(b)

Brain region Abbv. # of nodes # of edges

Precentral gyrus right PC.R 2538 31340

Lateral occipital right LO.R 3293 41391

Inferiorparietal right InP.R 4366 58779

Entorhinal cortex right EC.R 1183 20342

Rostral middle frontal right RMF.R 3387 42881
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generating data needed for training the model without rely-
ing on data labels. In the works of [14, 42], various graph-
based augmentation techniques have been proposed, such
as node dropping, edge deletion, subgraph, and feature
masking. In this work, we will employ the techniques of edge
deletion and feature masking to constitute the augmentation
functions set T . Graph views ~G1, ~G2 can then be generated

by jointly performing the two graph augmentation tech-
niques on the given graph G.

Edge deletion: in this augmentation process, we will ran-
domly remove edges in the graph based on a predefined edge
importance to generate semantic-consistent views of the
graph. Given a node degree centrality measure: φcð∙Þ: V
⟶ℝ+, we can define edge centrality as the average of the
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Figure 5: Analysis pipeline of the SGCP model. Contrastive learning-based graph feature embedding for the input image is performed at stage I
(left). With the embedded features, brain region parcellation can be achieved by voxel-wise classification via supervised learning at stage II (right).
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inter-region connectivity matrix X
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intra-region connectivity matrix A
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+
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Figure 4: Overview of the processing pipeline. Voxels in the target region of the input DWI image are transformed into its graph
representation with node features defined by the interregion connectivity matrix and graph topology defined by the intraregion
connectivity matrix.
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centrality score of the two nodes connected, w2
uv = ðφcðuÞ +

φcðvÞÞ/2. Based on the edge centrality, importance of the
edge connecting node u, v can defined as follows, following
the same method as introduced in [42]:

peuv = 1 −min
semax − seuv
semax − μes

∙pe, pτ
� �

, ð3Þ

where seuv = log we
uv to alleviate the impact from densely con-

nected nodes, pe is the hyperparameter controlling the over-
all probability of removing edges, semax and μes is the
maximum and average of the centrality of all edges, and pτ
is a cut-off probability to avoid overly-corrupting the graph.
Then, we will delete edges from the given graph with a prob-
ability of peuv, with the premise that more important edge (as
characterized by peuv) shall be less likely to be deleted in order
to preserve the graph semantics.

Feature masking: in this augmentation process, we will
randomly mask-out node features based on feature impor-
tance. Specifically, for node u in the graph, importance of
its ith feature [42] can be calculated as

wf
i = 〠

u∈V
xuij j∙φc uð Þ, ð4Þ

where φcð∙Þ is the node degree centrality which reflects the
node importance, and xui ∈ f0, 1g measures the occurrence
of the ith feature in node u. Similar to the edge deletion pro-
cess, the probably of masking-out the ith feature in node u is

pfi = 1 −min
sfmax − sfi
sfmax − μf

s

∙pf , pτ

 !
, ð5Þ

where sfi = log wf
i following the similar purpose of alleviating

the impact from densely connected nodes, sfmax and μf
s is the

maximum and average value of sfi , respectively, and pf is a
hyperparameter that controls the overall level of feature
masking probability.

3.6. Spatial-Graph Convolution Network. Graph representa-
tion of nonEuclidean data has been widely investigated in
various fields, with the adoption of graph convolution
network-based frameworks [16]. In the brain imaging anal-
ysis, we have seen increasing studies utilizing GCNs for per-
forming the functional [45], pathological [20], and
multimodal modeling of the brain [46]. Most of the current
GCN frameworks utilize a neighborhood node aggregation
operation, conceptually similar to the pooling operation in
CNNs, which iteratively updates the node features [16]. Var-
ious node aggregation strategies have been proposed to
improve the performance of GCNs, including the introduc-
tion of attention mechanism [47] and the structured aggre-
gation [48]. One unique characteristics of the volumetric
brain imaging analysis as in this work is that nodes are
defined both on the graph (i.e., underlying brain networks)
and the Euclidean space (as nodes are essentially voxels in
the 3D image). Thus, we will utilize spatial-GCN (SGCN)

[49] as the core graph encoder function f ð∙Þ for the pro-
posed SGCP framework, as traditional GCNs do not use
the spatial (geometric) information of the nodes. Unlike
other node aggregation schemes, SGCN performs node
aggregation based on both graph topology and the spatial
position among the nodes, to leverage information over the
geometric structure of the image. For a given graph G = ð
V ,EÞ, let H = ½h1, h2,⋯, hn� denote the matrix of node fea-
tures to be filtered by the convolution layer. hi ∈ℝdin are the
column vectors, where the dimension din is determined by
the number of filters in the previous layer. In addition, we
have coordinate pi ∈ℝ

t for node vi, which is constant across
layers as they are the intrinsic property of the nodes. The
spatial-graph aggregation operation can then be defined on
node vi, based on both the coordinate information pi and
the graph neighborhood information Ni = fj : eij = 1g:

�hi U , bð Þ = 〠
j∈Ni

ReLU UT pj − pi
� 	

+ b
� 	

⨀hj, ð6Þ

where U ∈ℝt×d , b ∈ℝd are trainable parameters, d is the
dimension of hj, ⨀ is element-wise multiplication, and �hi
is the feature representation of node vi after the convolution
operation. It can be seen that spatial positions of node vi and
its adjacent nodes are transformed using a linear operation
combined with nonlinear ReLU function. Convolution oper-
ations with spatial-graph aggregation can be easily extended
to multiple filters with a set of spatial aggregation parameter
U and b for each filter:

�hi U , Bð Þ = �hi U 1ð Þ, b 1ð Þ
� 	

⊕⋯⊕ �hi U kð Þ, b kð Þ
� 	

, ð7Þ

where ⨁ denotes the vector concatenation.

3.7. Voxel Classification and Region Parcellation. As the con-
trastive learning-based graph embedding scheme in Stage I
of the SGCP model is label-free, in order to perform cortical
parcellation of the given target region, we will train a super-
vised classification model implemented by a 3-layer MLP for
voxel classification, using the embedded graph features on
each node/voxel as input. Recalling that the “target region”
in this work is defined by the region containing both voxels
within the brain region defined by the DK atlas (e.g., the pre-
central gyrus) and the voxels outside extending to 1.5 times
larger of that region; thus, for each target region, we will
have the voxel label of “1” if it belongs to the part of the par-
cellated brain region or label of “0” if it is outside the parcel-
lated brain region. In this way, we can parcellate the desired
brain region from the target region based on the predicted
voxel labels. As totally five regions are analyzed in this work
(EC, PC, RMF, InP, and LO), we design the cross-validation
scheme of training the classifier with voxels belonging to
four regions and then test the classifier on the left-out
region. For example, to evaluate the parcellation perfor-
mance of SGCP on EC, we will train the classifier on voxels
and their corresponding graph feature embeddings in the
four target regions defined on PC, RMF, InP, and LO and
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then test it on the voxels in target region defined on EC. It
should be noted that the graph feature embeddings which
are derived from the contrastive learning framework in Stage
I are kept constant in Stage II; thus, in each folds of cross-
validation, only a new MLP needs to be retrained.

4. Conclusion and Discussion

In this study, we design and implement the spatial-graph con-
volution parcellation (SGCP) framework based on a contrastive
learning scheme and spatial-graph representation modeling.
The proposed framework is evaluated on 5 brain regions from
15 subjects based on the Dice score between the parcellation
results and the ground truth regions defined by the DK atlas.
As SGCP has shown consistent performance of Dice score >
0:8 over all the 15 subjects and all the 5 regions (Table 1), it
has the potential to be used as a tool for analyzing the structural
and functional delineations of the brain regions and their subre-
gions. Comparison with traditional methods for connectivity-
based cortical parcellation shows that SGCP can achieve much
superior performance (Figure 1 and Table 2).

From the ablation study (Table 3), we can observe that
(1) substituting SGCN used in the proposed SGCP frame-
work with traditional GCN, which causes the node feature
aggregation no longer leveraging spatial information, will
severely decrease the parcellation performance. Geometric
relationship among nodes (voxels) is particularly important
for the task of parcellation, as the ground truth brain region
is generally defined as a congregated 3D shape that is spa-
tially continuous. (2) Contrastive learning scheme is also
very important for the parcellation task, as directly perform-
ing parcellation (second row in Table 3) results in much
lowered accuracy. This could be caused by the fact that
structural connectivity patterns in the 5 regions studied in
this work are not the same, thus cannot be characterized
by a simple supervised scheme. (3) Performance of the
SGCP framework is not sensitive to the configuration of net-
work structure for both the encoder network (SGCN) and
the classification network.

Examination on the spatial distribution of the parcel-
lated brain regions (Figure 2) confirms that SGCP results
are spatially consistent with the ground truth regions, as
most of the voxels are overlapping (colored in green). We
have observed slightly missing voxels near the cortical sur-
face in the parcellated results (colored in red, indicating
these voxels are only presented in the ground truth regions),
which can be due to the increasing fiber crossings near the
cortical surface [25], also cognized as the “superficial white
matter systems” where the complex arrangement of white
matter fibers residing just under the cortical sheet [26],
and consequently the difficulty in performing the correct
fiber tracking. Fiber bundles connecting the parcellated
regions (visualized as green polylines in Figure 3) show very
consistent connectivity pattern, with distinct connectivity
patterns of the voxels outside the parcellated regions (visual-
ized as red polylines in Figure 3).

While the proposed two-phase SGCP framework outper-
formed direct supervised learning-based GCN as shown in
Table 3, there exists improved supervised contrastive learn-

ing frameworks such as the SupCon method proposed in
[27]. By formulating the contrastive loss with considerations
both from augmented graph (self-supervised) and nodes
with the same class labels (supervised), SupCon can achieve
superior performance compared with traditional contrastive
learning models such as SimCLR [28]. In our future works,
we will also explore the feasibility of utilizing a similar strat-
egy to merge the node feature embedding phase with the
node classification phase to achieve end-to-end parcellation.

In addition to the volumetric parcellation (i.e., each
graph node is a 3D voxel) as proposed in this work, there
exists other studies performing parcellation based on differ-
ent representations of the brain. For example, works of Ge
et al. [29] parcellated brain region of interests (ROIs) based
on predefined atlas into multiscale subnetworks. Works by
Cucurull et al. [30] reconstructed the cortical surface into
its graph representation where each node represents a vertex
of the surface mesh then utilized GCN to parcellate the cor-
tical surface into different brain areas. Works by Liu et al.
[31] utilized GCN to parcellate fiber bundles, where graph
nodes were uniformly-sampled points along the fiber tracts,
and the graph edges were the geometric relationships among
sampling points. As the SGCP is a general graph analytics
framework and not limited to a specific type of data (vol-
ume, ROI, mesh surface, or fiber bundle), we can potentially
applied SGCP to these data types as well.

Currently, SGCP performs parcellation on a predefined
“target region” which is a spatial extension of the ground
truth region. In practice, without the knowledge of the
ground truth region definition, we can apply SGCP on a
manually defined region of interest with arbitrary shapes
(e.g., a rectangular box or a sphere). We are also exploring
the individualized, whole-brain, voxel-wise parcellation by
SGCP with the assistance of a global brain atlas, while tack-
ling the technical challenge of memory limitation and com-
putational cost. Alternatively, we can also try the iteratively,
hierarchical parcellation of the brain, inspired by the works
of [29]. More importantly, as the major modeling of SGCP
is formulated in a self-supervised scheme, we are testing
its capability to perform subregion parcellation, investigat-
ing the unique structural-functional characteristics of the
fine-grained compositions in certain brain regions, such as
the entorhinal cortex, where preliminary studies have
shown the presence of subregion with distinguished con-
nectivity patterns in different cortical pathways [32, 33].
Finally, while in this study SGCP is used to analyze struc-
tural connectivity patterns derived from DWI images, it
can be applied to functional connectivity derived from fMRI
or MEG/EEG data [34, 35], formulating a structural-
functional parcellation framework [36]. Further, rich infor-
mation can be encoded in the node features, including mor-
phological features derived from T1 imaging, pathological
and proteinopathies features derived from PET imaging,
as well as genetic features derived from microarrays.

Data Availability

The DWI and T1w MRI data that support the findings of
this study are available at the Human Connectome Project,

9BME Frontiers



http://www.humanconnectomeproject.org/. IDs of the 15
subjects used in this study are 100307, 100408, 101107,
101309, 101915, 103111, 103414, 103818, 105014, 105115,
106016, 108828, 110411, 111312, and 111716.
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