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Microbial cell factories (MCFs) are typical and widely used platforms in biomanufacturing for designing and constructing
synthesis pathways of target compounds in microorganisms. In MCFs, transporter engineering is especially significant for
improving the biomanufacturing efficiency and capacity through enhancing substrate absorption, promoting intracellular mass
transfer of intermediate metabolites, and improving transmembrane export of target products. This review discusses the
current methods and strategies of mining and characterizing suitable transporters and presents the cases of transporter

engineering in the production of various chemicals in MCFs.

1. Introduction

Biomanufacturing uses renewable biomass to produce bioe-
nergy, biomaterials, natural products, and bulk chemicals,
which has important significance for carbon emission
reduction and sustainable development [1, 2]. Microbial cell
factories (MCFs), as the core of biomanufacturing, are gen-
erally manipulated via metabolic engineering and synthetic
biology techniques for producing diverse compounds. At
present, many strategies have been used to improve the effi-
ciency and capacity of MCFs, including enhancing pathway
flux [3], inhibiting competitive pathways [4], cofactor engi-
neering [5], and enzyme engineering [6]. In particular,
since MCFs are regarded as “production workshops,” the
mass transfer efficiency among the “production units (cells
or organelles)” was usually insufficient, especially for
eukaryotes, which extremely limits the further improve-
ment of MCFs.

To solve this problem, transporter engineering was pro-
vided as an alternative strategy that can enhance substrate
absorption, promote the intracellular mass transfer of inter-
mediate metabolites, and improve the transmembrane
export of target products. Generally, several strategies have

been used for mass transfer intensification in MCFs. Sub-
cellular compartmentalization strategy have been adopted
to strengthen metabolic mass transfer by introducing a
series of reactions into one compartment/organelle, which
improved local concentrations in space for increasing prod-
uct concentration [7-20]. Membrane engineering was also
an effective strategy in the export of hydrophobic products
by modifying the cell membrane structure genetically
[21-23] or adding exogenous reagents such as cyclodextrins
[24, 25], dodecane [26], and olive oil [27], which signifi-
cantly released intracellular storage space and released
product inhibition. Mining, expressing, and remolding
transporters of target compounds (ie., transporter engi-
neering) is the most direct way to import or export a spe-
cific substrate. Transporter engineering has received more
and more attention due to its specificity, efficiency, and
simplicity.

Herein, we summarized the current methods and strat-
egies for mining and characterizing suitable transporters
and introduced cases for improving the manufacturing
efficiency of MCFs through transporter engineering. The
understanding of cellular transport process and the appli-
cation of transporter engineering would provide novel
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insights into the construction of MCFs for the biomanu-
facturing process.

2. Mining and Characterizing
Suitable Transporters

At present, the reported information about transporters is
still inadequate, which causes tremendous challenge for
engineering molecular transport in MCFs. Therefore, it
has become exceptionally crucial for mining and charac-
terizing more specific transporters for the target com-
pounds (Table 1).

Bioinformatic tools are becoming popular due to their
ability to analyze huge amounts of biological data [28].
AntiSMASH is a powerful tool for identifying gene clusters,
which can annotate information about transporters [29].
Transporter classification database (TCDB; http://www
.tcdb.org) is a common and freely accessible reference data-
base [30]. Generally, the same transporter family can recog-
nize similar substrate structures. Therefore, researchers
have identified 88 ABC transporters from Dendrobium offi-
cinale via sequence alignment from TCDB [31], and four
transporters were predicted for the transportation of absci-
sic acid and auxin by transcriptomic comparison [32]
(Figure 1(a)).

The function of natural transporters can be identified by
gene knockout. However, the efficiency of this method was
usually not obvious due to the redundancy of intracellular
transporters and the complex network of their interactions.
For instance, after knocking out the aqua (glycero) porin
family and all known carboxylic acid transporters using
CRISPR-Cas9 in Saccharomyces cerevisiae, the extracellular
lactate production rate remained unchanged, indicating
there existed some unknown transporters or mechanisms
to export lactate (Figure 1(b)) [33]. Alternatively, construct-
ing the mutation library of transporters was shown to be
effective for high-throughput mining and characterizing
the desired transporter. To export caffeine and relieve its
toxicity to yeast, a mutation library of endogenous ABC-
transporter brfl was constructed, from which a mutant
was screened out to increase caffeine resistance [34]. To find
an efficient L-lysine export system, a metagenomic library of
cow dung samples was constructed. After plating recombi-
nants on high L-lysine concentration media, a novel lysine
efflux transporter mglE was screened out, which improved
the L-lysine tolerance of Escherichia coli by 40% and
increased the L-lysine productivity of Corynebacterium glu-
tamicum by 12% (Figure 1(c)) [35].

System biology and machine learning provided new
approaches for mining transporter genes. For example,
through analyzing transcriptomic data of Penicillium chry-
sogenum in D-glucose and L-arabinose restricted culture,
respectively, the fungal transporter PcAraT specifically
transporting L-arabinose instead of xylose and glucose
was identified [36]. The transcriptomic data of Atropa bel-
ladonna were analyzed through binary classifier supervised
learning models (logical regression, random forest, and
feedforward neural network). The supervised classifier
models based on tissue description showed greater efficacy
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in predicting transporters than traditional regression- and
clustering-based methods. As a result, two identified trans-
porters, AbPUP1 and AbLP1, were found to increase the
production of target alkaloids in the engineered yeast
(Figure 1(d)) [37].

Genetically encoded biosensors [38] are another power-
tul tool for high-throughput screening of strains producing
or transporting target compounds. Researchers constructed
a knockout library of 361 nonessential native transporters
in S. cerevisiae via CRISPR/Cas9 followed by fluorescence-
activated cell sorting (FACS) based on the biosensor of the
target organic acid compounds cis, cis-muconic (CCM)
and protocatechuic acids (PCA) [39]. As a result, Tpo2
was validated as an importer of CCM and PCA through
Xenopus expression assays (Figure 1(e)) [39].

3. Enhancement of Substrate Absorption by
Importer in MCFs

Low substrate uptake rates would hamper the productivity
of MCFs, especially in engineered strains that use unnatural
substrates (Table 1). Therefore, it is particularly important to
improve substrate absorption and enhance transfer effi-
ciency through targeted importer expression in MCFs.

Lignocellulose-derived pentose sugars (mainly D-xylose
and L-arabinose) are not natural substrates of baker’s
yeast. The utilization of pentose can substantially improve
bioresource utilization. An artificial complex consisting of
endogenous sugar transporter Gal2 and heterologous
xylose isomerase (XI) was constructed in S. cerevisiae,
which significantly improved the substrate uptake rate
and simultaneously reduced the production of byproduct
xylitol (Figure 2(a)) [40]. The galactose transporter Gal2
and the low-activity hexose transporter Hxt9 could trans-
port L-arabinose with low affinity (K, =57 ~371 mM)
[41, 42]. Therefore, a high-aflinity (K, =0.13mM) and
high-specificity L-arabinose transporter PcAraT from Peni-
cillium chrysogenum was identified by characterizing sugar
uptake kinetics in S. cerevisiae, which contributed to rapid
and efficient conversion of L-arabinose [36]. In another
study, the absorptivity of oligosaccharides and pentose
was reinforced in Pseudomonas putida when the native
ABC transporter complex PP1015~PP1018 was overex-
pressed [43]. D-galacturonic acid and D-glucose were
coutilized by identifying and expressing a heterologous
transporter GatA from Aspergillus niger, which realized
the production of galactonic acid directly from industrial
orange peel waste [44].

4. Promotion of the Intracellular Mass
Transfer of Intermediate Metabolites

Strengthening the reuptake of intermediate metabolites or
the mass transfer between cells and extracellular media or
subcellular compartments could significantly improve the
flux of metabolic pathways, which is essential for the
manufacturing efficiency and capacity of the MCFs. In
the cis, cis-muconic acid production strain, the crucial
intermediate 3-dehydroshikimic acid (DHS) can diffuse to
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TaBLE 1: Transporter applications in microbial cell factories.
Transporter Species Compound Function Reference
Substrates
Gal2p S. cerevisiae Xylose Improved the transport rate and accelerated (40]
utilization of xylose.
AraT S, cerevisiae L-arabinose Transported L—aralﬁnose w1th high specificity and [36]
igh affinity.
XylE P. putida Xylose Broadened metabolic capacity towards new [43]
substrates.
GatA S. cerevisiae D-galacturonic acid Achieved coutilization of D-galUA and D-glucose. [44]
Lacl12 S. cerevisiae Lactose Increased uptake of the lactose. [66-68]
Intermediate metabolites
ShiA E coli 3-Dehydroshikimate Enhanced reuptake of intermediate metabolite from [45]
extracellular to cytoplasm.
FadL E coli Palmitate Achieved reuptake of ex?reted intermediate [69]
metabolite.
Apxal S, cerevisiae Fatty acyl-CoA Increased production of fatty acyl-CoA in the (46]
cytoplasm.
NUJAT1, NtMATE2 S, cerevisiae Tropine Alleviated vacuolar 1n.ter.me<.11ate metabolite transport [47]
limitations.
Target products
. . . . Increased extracellular MCFA concentration by
AcrE, MdtE, MdtC E. coli Medium-chain fatty acid 59.7%, 43.2%, and 83.1%. [55]
FATP1 S, cerevisiae Fatty alcohol Enabled an increased cell ﬁtness for fatty alcohol [56]
production.
FATP1 S. cerevisiae 1-Alkenes Improved the extracellule}r and total 1-alkene (57]
production.
MacA, TolC, MacB E. coli 6-Deoxyerythronolide B Increased the 6dEB titers. [60]
) . Raised the ratio of extracellular to intracellular
Orf14, Orf3 Burkholderia Epothilones accumulation from 9.3: 1 to 13.7: 1. [62]
TolC, AcrB E. coli amorphadiene Increased yield by 46%. [59]
AcrA, TolC AcrB, E. coli Kaurene Increased yield by 82%. [59]
Snq2p S. cerevisiae B-Carotene Improved f-carotene secretion level by 4.04-fold. [64]
AcrAB E. coli Limonene Reduced limonene toxicity. [70]
Bfrl S. cerevisiae Caffeine Enhanced cellular resistance to caffeine. [34]
AbPUPL, ABLP1 S, cerevisiae Littorine a.nd Exported vacuolar littorine and hyoscyamine to the [37]
hyoscyamine yeast cytosol.
AtDTX1 E. coli Reticuline Achieved the secretion of high levels of reticuline. [65]
MttA A. niger cis-aconitic acid Secreted 9.8 g/L aconitic acid after 240 h of (71]
cultivation.
Spmaex S. cerevisiae L-malic acid Increased the accumulation. [50]
AtABCG29 S. cerevisiae Coumaryl alcohol Increased cellular tolerance to p-coumaryl alcohol. [72]
PtPTP Phqeodacty bum Pyruvate Enhanced biomass, lipid contents, and growth. [73]
tricornutum
DCT1 A. niger Malic acid Improved malic acid production by 36.8%. [74]
MTT Y. lipolytica Itaconic acid Enhanced itaconic acid titer by 10.5-folds. [75]
RibM B. subtilis Riboflavin .and Increased the productlog of riboflavin and [76]
roseoflavin roseoflavin.
PP_1271 P. putida Propionic acid Improved cellular tolerance to PA. (48]
YbiE Synechococcus sp Lysine Generated a large pool of lysme in the extracellular (7]
media.
Qdr3 S, cerevisiae Muconic acid Increased cellul'ar tolerance to gluta.rlc, adipic, (78]
muconic, and glutaconic acid.
CexA A. niger Citric acid Enhanced the secretion of citric acid. [79]
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TasLE 1: Continued.

Transporter Species Compound Function Reference

M2 E. coli Proton Increased acid tolerance. [80]

SerE C. glutamicum L-serine Increased L-serine efflux. [51]

Tpo2p S. cerevisiae cis,cis-muconic acid, Improved the production of target compound. [39]

protocatechuic acid
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FiGure 1: Methods for mining and characterizing suitable
transporters: (a) predicting transporter via bioinformatics
database; (b) screening natural transporters by establishing
knock-out library; (c) identifying exporters by constructing and
screening a metagenomic library; (d) mining transporters from
the transcriptome by training, optimizing, and testing binary
classifier models; and (e) high-throughput screening of transporters
based on biosensors.

the outside of the cell along the concentration gradient,
resulting in the draining of precursor. By expressing a
membrane-bound transporter ShiA to import DHS into
the cytosol, the production of cis, cis-muconic acid was sig-
nificantly improved [45] (Figure 2(b)). Acyl-CoA degrades
to acetyl-CoA through the peroxisomal B-oxidation path-
way in S. cerevisiae, which limits the production of cyto-
solic acyl-CoA. Therefore, the fatty acyl-CoA peroxisomal
transporter Pxal was knocked out to prevent oxidation,
which improved the production of acyl-CoA-derived triac-

ylglycerols [46]. Researchers introduced the tobacco-
derived multidrug and toxic compound efflux proteins
NtJAT1 and NtMATE2 with nicotine transport ability into
yeast, which alleviated vacuolar intermediate metabolite
transport limitations, eventually increasing the titers of
the target alkaloids hyoscyamine and scopolamine by
74% and 18%, respectively [47].

5. Improvement of the Transmembrane
Export of Target Products in MCFs

Export of target products in MCFs has many benefits,
including releasing intracellular space, eliminating product
inhibition, and reducing potential product toxicity. Propio-
nic acid is a valuable C3 platform chemical, but it is toxic
to microorganisms. Propionic acid tolerance and production
in P. putida were increased by overexpressing the major
facilitator superfamily (MFS) transporter gene cluster PP_
1271 [48]. However, the production did not fluctuate greatly
after deleting the cluster PP_1271, which showed more than
one transporter regulating propionic acid tolerance and con-
firmed the complexity of the transport mechanism. A C4-
dicarboxylate transporter Spmae from Schizosaccharomyces
pombe was found to export L-malic acid effectively [49].
Researchers found that Spmae can be modified by ubiquitin,
which might result in significant degradation. By employing
a deubiquitination strategy, the accumulation of L-malic
acid was improved in S. cerevisiae [50]. In another case, to
export L-serine from the cell, a novel exporter SerE was
overexpressed, and the titer of L-serine reached 43.9¢g/L in
C. glutamicum combining with the strengthening of L-
serine synthetic pathway, which further enhanced its indus-
trial application [51].

The export of many fuel chemicals was conducive to
their bioproduction, such as fatty acids [52], fatty alcohols
[53, 54], and alkanes [52]. The coexpression of efflux trans-
porters mdtE, acrE, and mdtC in combination with the dele-
tion of the influx transporter cmr increased extracellular
medium-chain fatty acids (C6-C10, MCFAs) titer and
endowed host strains with more adaptability to harsh envi-
ronments [55]. In order to alleviate growth inhibition and
reduce extraction cost, the export of fatty alcohols was pro-
moted by about fivefold after expressing human fatty acid
transporter FATP1 in yeast [56]. FATPI also facilitated the
production and secretion of alkenes according to the similar
hydrophobic properties between long-chain fatty acids and
alkenes. As a result, more than 80% of alkene was exported,
which immensely reduced the cost of downstream extraction
and separation and further improved the economics of the
process (Figure 2(c)) [57].
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Polyketides are a large class of natural products with great
therapeutic value. Resistance-nodulation-cell division (RND)
family efflux pumps play major roles in the resistance of
gram-negative bacteria to a wide range of compounds, such
as polyketides [58]. An RND efflux pump typically consists
of three different components, an inner membrane protein
(e.g., MacB), an outer membrane protein (e.g., TolC), and a
periplasmic membrane adapter protein (e.g., MacA), which
are organized in a complex structure with a specific ratio
[59]. The highest titer of 6-deoxygibberellin B (6dEB, erythro-
mycin precursor) was achieved with the combination of
MacA, MacB, and TolC in E. coli [60]. It is noteworthy that
the improvement was significantly higher than those of
expressing all single components of pumps alone. Therefore,
the coordinative interaction between pump components is
indeed important for transporter engineering. Generally, the
expression of RND eftflux pumps is often tightly controlled
by the relevant regulatory proteins. For example, five tran-
scriptional activators YdeO, MarA, RpoH, EvgA, and Fnr,
which are responsible for activating the multidrug efflux
pumps, were tested for improving polyketide production
[60]. In the treatment of cancer, epothilone is a polyketide
compound with a better curative effect and milder side
effects than taxane [61]. The ratio of extracellular to intra-
cellular accumulation of epothilone was boosted from
9.3:1 to 13.7:1 by applying two multidrug efflux pumps,
Orfl4 and Orf3 in Burkholderia, thereby promoting the for-
ward biosynthesis of the heterologous polyketide compound
epothilone [62].

Terpenoids are the largest family of secondary metabo-
lites of plants, and they are widely distributed in archaea,
bacteria, and eukaryotes [63]. The RND efflux pump was
also efficient for the cellular exportation of the sesquiterpene
amorphadiene and the diterpene kaurene [59]. Interestingly,
the three components of tripartite efflux pumps played

varied effect on different compounds. For amorphadiene
production, the highest yield was achieved with the combi-
nation of TolC and AcrB; the three-component combination
AcrA-TolC-AcrB achieved the highest yield of kaurene in E.
coli [59]. The coordinative interaction between pump com-
ponents was vital for transporter engineering. The extracel-
lular production of hydrophobic f-carotene was enhanced
by 4.04-fold through adopting an inducible GAL promoter
to overexpress the endogenous plasma membrane ABC
transporter Snq2p in S. cerevisiae [64] (Figure 2(d)). As an
important intermediate compound in the alkaloid synthesis
pathway, the yield of reticuline increased by 11-fold in E. coli
by introducing the multidrug and toxic compound efflux
family transporter AtDTX1 from Arabidopsis thaliana [65].

6. Conclusion and Perspectives

Transporter engineering has been documented to improve
substrate absorption, promote the intracellular mass transfer
of intermediate metabolites, and reinforce the transmem-
brane export of target products, which play a decisive role
in the metabolism and mass transfer of the MCFs. However,
reported information about transporters is insufficient,
severely limiting the application of transporter engineering
in MCFs. Therefore, it is extremely necessary to vigorously
develop efficient methods and strategies for mining and
characterizing transporters. The current methods for identi-
tying specific transporters still have limitations, such as rela-
tively low throughput, low efficiency, and labor intensive. It
is necessary to develop high throughput, low-cost, and effi-
cient methods for automated identification and characteriza-
tion of transporters.

Transporters generally have a broad substrate spectrum,
which increases the transport flux of target compounds
through the synergistic effect of multiple transporters. The



heterologous production of various classes of compounds
could combine different types of pumps. However, selecting
the proper type of pump is also vital for a specific heterolo-
gous product. In nature, the expression of some efflux
pumps is often tightly controlled by the relevant regulatory
proteins. Thus, tuning the expression of pump regulators
may be an effective option for transporter engineering as
well. As the transport mechanism becomes clear, the semira-
tional or rational design based on the protein structure could
further expand their substrate spectrum and improve the
transport affinity and transport rate of target compounds.
In addition, combining transporter engineering with other
regulation strategies may further boost production and
efflux of target compounds based on their synergism.
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