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A critical step in data analysis for many different
types of experiments is the identification of features
with theoretically defined shapes in N-dimensional
datasets; examples of this process include finding
peaks in multi-dimensional molecular spectra
or emitters in fluorescence microscopy images.
Identifying such features involves determining if
the overall shape of the data is consistent with an
expected shape; however, it is generally unclear how
to quantitatively make this determination. In practice,
many analysis methods employ subjective, heuristic
approaches, which complicates the validation of
any ensuing results—especially as the amount and
dimensionality of the data increase. Here, we present
a probabilistic solution to this problem by using
Bayes’ rule to calculate the probability that the
data have any one of several potential shapes. This
probabilistic approach may be used to objectively
compare how well different theories describe a
dataset, identify changes between datasets and
detect features within data using a corollary method
called Bayesian Inference-based Template Search;
several proof-of-principle examples are provided.
Altogether, this mathematical framework serves as
an automated ‘engine’ capable of computationally
executing analysis decisions currently made by visual
inspection across the sciences.

2022 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rspa.2022.0177&domain=pdf&date_stamp=2022-10-26
mailto:rlg2118@columbia.edu
mailto:colin.kinzthompson@rutgers.edu
https://doi.org/10.6084/m9.figshare.c.6251404
https://doi.org/10.6084/m9.figshare.c.6251404
http://orcid.org/0000-0001-5390-698X
http://orcid.org/0000-0001-9297-2955
http://orcid.org/0000-0002-1344-5581
http://orcid.org/0000-0002-2636-7893


2

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A478:20220177

..........................................................

1. Introduction
Across the physical and life sciences, many experimental techniques rely upon pragmatic data
analysis steps where an expert researcher is required to make scientific decisions based on
their visual perception of data. This perception involves identifying and recognizing correlations
between datapoints that stem from underlying physical processes, which are ideally invariant
across experiments; we refer to these correlations as the latent structure of the data. Latent
structure manifests visually in what we would colloquially call the ‘shape’ of the data and is the
basis for inspection-driven analysis decisions. For example, an expert researcher might have to
visually identify a feature of interest by recognizing an expected shape in a plot of their data (e.g.
a shoulder on a peak in a molecular spectrum). Alternatively, such a researcher might anticipate
the location of an expected feature within their plotted data (e.g. a peak at a specific frequency
in a molecular spectrum), but must then decide whether it is actually present at that location.
In these types of determinations, the researcher must generate at least two visual models of a
phenomenon, manually compare those models with the shape of their experimental data and
then choose the model that, in their expert opinion, best describes the data. To be explicit, in
the aforementioned first example, the researcher visually compares both the shape of a peak and
the shape of a peak with a shoulder with the experimental molecular spectrum. Similarly, in the
second example, the researcher visually compares both the shape of a peak and the shape of
signal-free background noise with the experimental molecular spectrum.

A key advantage of such expert-driven analyses is the human ability to make accurate,
informed decisions about the latent structure of experimental data, even in the absence of a full
theoretical description of the phenomenon of interest. For instance, while the spectral line shapes
of peaks in molecular spectra arise due to physical processes with well-established theoretical
foundations, a full quantum mechanical calculation is generally not required to determine
whether a certain peak exists at a particular location, nor whether it has a shoulder. Instead,
approximate models of the shape of a peak, guided by a researcher’s physics-based intuition and
years of experience, are usually sufficient for the level of analysis required for these problems.
Having considered all the models they deem appropriate, the expert researcher then decides
which of those models is the best description of their data and, thus, is best supported by the
available evidence.

Such researcher-dependent approaches to data analysis create major practical, quantitative
and scientific challenges. An obvious difficulty is the time required for manual data processing,
which limits a researcher’s output and productivity. Another is simply the learning curve required
to perform visual inspection-based analysis tasks—an extensive amount of training is required
before an inexperienced researcher can build enough physics-guided intuition to accurately and
reliably interpret experimental data. Yet another obstacle is the lack of a quantitative metric
for assessing the confidence that one should have in one’s own or someone else’s analysis
decisions, especially in cases of conflicting results. The lack of such a quantitative confidence
metric makes it similarly difficult to validate or replicate such visual inspection-based analyses.
Most importantly, there exist fundamental barriers that inhibit precise communication of the
details of these analyses: namely, the intrinsic complexity of describing in writing the exact
details of a method performed within one’s mind, and conversely, of understanding the details
of such a method solely by reading a description of it. All of these challenges are exacerbated
as scientific research fields progress towards more quantitative, data-driven approaches, and as
more techniques are developed that yield larger amounts of increasingly more complex data, as
is systematically occurring with, for instance, the advent of ultrahigh-throughput methods [1,2].

In contrast to such human-dependent approaches, here we have developed a computational
framework designed to automate and imitate the visual inspection-based data analysis steps
typically performed by expert researchers, but in a manner that is quantifiable, reproducible and
precisely communicable. Inspired by the human ability to visually assess the ‘shape’ of plotted
data, our approach is to use probabilistic inference-based model selection [3,4] on technique-
specific sets of models to calculate how well the shape of each model, which we call a ‘template’,
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Figure 1. Applications of shape calculation to the physical and life sciences. A graphical representation of our mathematical
framework (black), with examples of data analysis methods made possible by it (purple), specific tasks these methods enable
(blue) and applications of these tasks in specific techniques in the physical and life sciences (dark cyan) along with the specific
problems (light cyan) that the application of our framework to these techniquesmay address. The given examples are notmeant
to be exhaustive. (Online version in colour.)

can quantitatively describe the latent structure of the data. Specifically, we apply Bayes’ rule to
the probability expressions, known as evidences, which here characterize the degree to which
the models under consideration can explain the observed data in a process known as Bayesian
model selection (BMS) [5]. Broadly, advantages of adopting a Bayesian framework have led to
the increased usage of Bayesian methods in recent times across the sciences [6]. For instance, in
the field of biophysics, and particularly single-molecule studies, the use of Bayesian inference has
been transformative due to its intrinsic ability to handle particularly noisy data (reviewed in [5]).
However, the difficulty of deriving evidences has historically limited the extension of Bayesian
inference to BMS-based analysis approaches [7,8], except in a few specialized cases (e.g. in [9,10]).

In this work, we create a generalized BMS-based framework using closed-form expressions
for evidences that can be adapted by researchers in the physical and life sciences to a variety
of different applications with computational ease and efficiency (figure 1). In addition, because
each implementation of this framework is defined by the specific set of physics-informed
models considered, our approach can be leveraged to create constrained analyses that achieve
optimal balances between theoretical precision and computational efficiency. We also harness this
framework to create a corollary method, called Bayesian inference-based template search (BITS),
which enables us to achieve a large computational speedup when identifying and localizing
multiple features of interest within a dataset. Altogether, our probabilistic, BMS-based framework
is a radically new method for analysing data that allows researchers to computationally mimic
expert-based visual analyses without needing to resort to a subjective, researcher-dependent
approach.

2. Describing the shape of a dataset
In this section, we detail a mathematical framework designed to resemble the process of expert-
based visual analysis. This approach uses orientation-preserving affine transformations of a
template vector to map the associated model of latent structure onto the experimental data
being analysed. The marginal likelihood of the data given a specific template is then calculated
regardless of the scaling and translation of this transformation, or the noise present in the data.
These marginal likelihoods are computed for a pre-defined set of templates and are then used
in BMS to calculate the posterior probabilities for each template. The shape of the data is then
optimally described by the template with the highest posterior probability.
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(a) Defining a template
To begin, we consider the problem of specifying a model of the latent structure of a dataset for
the purpose of mimicking visual recognition. In our framework, a dataset, y, is a tensor whose
components are the individual, scalar datapoints. Regardless of the experimental relationships
between those datapoints (i.e. the organizational structure of the tensor), for simplicity, we can
reshape y into an N-dimensional vector y = [y1, . . . , yN], where yi are the scalar datapoints. One
can imagine a dataset y collected using a particular instrument, in a particular location, on a
particular day, and by a particular researcher. Altogether, these specific factors might induce
systematic differences in y relative to an otherwise equivalent experiment. For example, an optical
filter in an instrument might slowly oxidize, which could reduce the intensity of light incident
upon the detector and, over a period of months, yield y with different scales (i.e. units). Similarly,
overhead lights might be left on accidentally when making an optical measurement, which could
increase the background photons incident on the detector and yield y with different relative
offsets. Likewise, local vibrations might vary from day to day, which could affect the stability
of an instrument and yield y with different amounts of noise. Yet factors such as the scaling, offset
or amount of noise in a measurement generally do not alter the underlying physical processes
that give rise to the measured data and thus should not affect the latent structure (i.e. the shape)
of y. Instead, these factors often act as irregularities, or nuisances, that can limit our ability to
model the shape of y; hence, our use of the term ‘nuisance parameters’ to describe them. With
this in mind, we define a template, x = [x1, . . . , xN], as a particular N-dimensional vector of scalar
quantities, which is related to y through the following transformation:

yi = mxi + b + ξi for all i = 1, . . ., N. (2.1)

In this equation, m and b are nuisance parameters representing changes to scale and offset,
respectively, ξ = [ξ1, . . . , ξN] is a nuisance parameter composed of stochastic terms representing
the experimental noise, and N is the number of components in x or y. If we recall our definition
of shape as correlations within data that derive from fundamental physical processes, we can
conceptually understand a template, x, as an ideal representation of these correlations, without
noise or background. To avoid confusion, we note that our definition of shape is distinct from
those that take shape to mean a boundary or segmentation in data [11] and that it is this choice of
definition which enables our framework and aligns it with the intuitive visual analyses performed
manually by researchers.

It is important to note that the shape of y, regardless of any distortions caused by the
experimental nuisance parameters described earlier, may often be reasonably described by many
different xs. Indeed, there are no restrictions on what specific xs one may choose as templates.
Different xs might depend on different levels of theory, the particular details of the experimental
set-up and even sample-to-sample variability. For example, the laws of diffraction dictate the
point spread function (PSF) that describes the shape of point emissions in a fluorescence
microscopy image [12]. However, for a standard microscope, the PSF can be modelled by
an Airy disk, a two-dimensional circular Gaussian function or, to incorporate an astigmatism
correction, even a two-dimensional elliptical Gaussian function [13]. Each of these models of the
PSF provides a distinct, theoretically valid x capable of modelling the shape of y with varying
degrees of complexity. Alternatively, one’s xs could be empirically derived from data previously
recorded in other experiments. In the context of the aforementioned example, an x can be created
from fluorescence microscopy images of point emitter-like samples without needing to explicitly
invoke a theory of diffraction, and such empirically derived xs might even model the latent
structure of y more effectively than analytical, theory-derived xs. Regardless of the complexity
of x or its origin, once formulated, it is directly related to a y by the simple affine transformation
given in equation (2.1).

The choice of which x (or set of xs) one uses to model the shape of y depends not only on
the experimental technique but also on the level of precision required for that particular analysis.
When using this mathematical framework to analyse experimental data from the natural sciences,
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one can invoke prior knowledge of the physics governing the experiment which gave rise to the
data to constrain the choice of templates used in the analysis. Thus, while templates with higher
complexities (e.g. an Airy disk as a model for a PSF) may be required for certain applications,
in other cases, a less complex template (e.g. a two-dimensional Gaussian as model for a PSF)
can perform just as effectively while greatly reducing the computational cost of the analysis. The
flexibility in choice of templates enabled by our framework can greatly increase the efficiency and
effectiveness of an analysis method (see §3); however, determining which of the chosen xs, if any,
is the optimal template requires that we first compute how well the shape of y is explained by a
given x.

(b) Deriving probabilistic expressions for shape
After defining an x, we quantify the degree to which it describes the latent structure of
y, regardless of the nuisance parameters described earlier in equation (2.1). For the kth
template, xk, in a set of templates, {x} = {x1, . . . , xK}, this means calculating a marginalized
likelihood probability called the evidence, P(y|xk, M0). Here, the conditional M0 represents all
of the details of the experiment, previous knowledge about the system and particulars of the
analysis method(s)—including which templates have been incorporated into the chosen {x}. The
expression for the evidence of xk is the marginalization of the joint probability, which is given by

P(y | xk, M0) =
∫∫∫

p(y | xk, ξ , m, b, M0) × p(ξ , m, b | M0) dξ dm db. (2.2)

In equation (2.2), p(y|xk, ξ , m, b, M0) is called the likelihood, and it represents the probability
density of observing y for a given xk and given values of the nuisance parameters; p(ξ , m, b | M0)
is called the prior, and it represents the joint probability density of those particular nuisance
parameter values based on the prior knowledge specified by M0.

In this work, we have used combinations of different likelihoods and priors to derive a set
of evidences, expressed in a closed form, that are particularly useful for calculating the shape
of data in a variety of experimental situations. For all of the cases presented here, we have
assumed in our M0 that ξi are uncorrelated, such that 〈ξi〉 = 0 and 〈ξi, ξj〉 = τ−1δij, where τ is
a constant called the precision and δij is the Kronecker delta. While this assumption is not a
requirement of our approach, this noise model is often experimentally reasonable, and it has
allowed us to present analytical solutions to evidence integrals in many general situations (see
electronic supplementary materials, §2 for other noise models). Together with equation (2.1), this
assumption yields the following likelihood function:

p(y, | xk, m, b, τ , M0) =
N∏

i=1

( τ

2π

)1/2
e−(τ/2)(yi−mxi−b)2

. (2.3)

Very similar likelihood functions arise with this noise model when m is known to be 0 or 1, and/or
b is 0.

Specifying the probability expression for the prior—the second term in the integrand in
equation (2.2)—requires that we mathematically represent our previous knowledge of how
m, b and τ are distributed in the experiments of interest [3]. In particular, the prior dictates
the integration bounds of equation (2.2) by determining the values that are possible for these
parameters to assume (i.e. regions where the prior probability is non-zero). For the results derived
here, we have used so-called maximum entropy priors, which allow us to encode information
and constraints into our prior probability expressions, without dictating their functional form in
an ad hoc manner [3]. If we assume in M0 that we only know that m, b and τ are within some
range and that we do not know the magnitude of τ (i.e. the amount of noise we expect), then the
corresponding maximum entropy priors are a uniform distribution for m and b, and a uniform
distribution over the logarithm of τ (see electronic supplementary materials, §1). If we further
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assume that m, b and τ are independent, then the corresponding joint prior of these parameters
within the given ranges is

p(m, b, τ | M0) = τ−1

�m�b�(ln τ )
, (2.4)

where the shorthand �f ≡ fmax − fmin defines the range of a parameter.
To analytically integrate equation (2.2), the integration bounds in the prior must be explicitly

defined. We note that a positive transformation of an xk (m > 0) can have a distinct physical
interpretation from a negative transformation (m < 0). Thus, to differentiate between these two
cases and properly model the underlying shape of y, we impose that xk and y be oriented
in the same direction. This constraint can be encoded into the calculation by only considering
orientation-preserving (i.e. positive scaling) affine transforms of the xk in equation (2.1). To
explicitly include this information in the prior, and thus in our M0, we therefore use mmin = 0
rather than some mmin < 0. In the case that the negative transformation (m < 0) is of interest, we
note that −xk with m > 0 is equivalent to xk with m < 0. Closed-form expressions for the evidence
derived using other integration bounds are also provided in the electronic supplementary
material. In addition, to keep the prior normalized and avoid using a so-called improper prior,
the minimum and maximum values must be chosen such that �m, �b and � ln τ are not
infinite. For the purposes of a tractable integration [14,15], we have used such large negative and
positive values that the integration bounds in equation (2.2) can be approximated as m ∈ [0, ∞),
b ∈ (−∞, ∞) and τ ∈ [0, ∞). While the exact values of the bounds are important and should be
chosen judiciously, we note that the resulting prior normalization terms end up cancelling in
subsequent steps during BMS (see below). Using the integration bounds discussed earlier, the
closed-form probability expression for the evidence calculated using equation (2.2) is

P(y | xk, M0) = Γ ((N − 2)/2)N−N/2π−((N−2)/2)

2�m�b� ln τ
V−1/2

x

× (Vy(1 − r2))−(N−2)/2
[

1 + r
|r| Ir2

(
1
2

,
N − 2

2

)]
, (2.5)

where Vx ≡ 〈xk
2〉 − 〈xk〉2, Vy ≡ 〈y2〉 − 〈y〉2, r ≡ (〈xky〉 − 〈xk〉〈y〉) /

√
VxVy, 〈f 〉 ≡ (1/N)

∑N
i fi is the

arithmetic mean, Γ (x) is the gamma function and Ix(a, b) is the regularized incomplete beta
function. This evidence is the probability that the shape of y corresponds to a specific template
xk, regardless of the particular values of the (positive) scale, offset and noise parameters used in
the affine transformation that relates xk to y (equation (2.1)). At first glance, the appearance of the

term V
− 1

2
x suggests that two xks that are equivalent up to a multiplicative constant would have

different abilities to explain the same y. However, that constant must also be accounted for in
the prior term �m−1, where it can cancel this effect. Thus, choosing the range for m in the prior
is intimately related to setting the Vx of the xk and, unless one has a reason to believe different
models have different ranges of m, the xk within a {x} should be normalized such that their Vx are
equivalent.

While the evidence expression in equation (2.5) is very general in the sense that it can be used
for almost all choices of templates, it is not applicable to the special, ‘null’ case in which a template
is absent (i.e. where xk is flat and/or m is only zero). This case is very useful in our approach
for validating the presence or absence of a shape in experimental data, as we will show in the
following section. The corresponding evidence expression for this case is expressed as follows:

P(y | xnull, M0) = Γ ((N − 1)/2)N−N/2

�b� ln τ
(πVy)−(N−1)/2, (2.6)

where xnull represents the case that the model lacks a template. This evidence expression
represents the probability that the experimental data are featureless (i.e. lacking any latent
structure) beyond the presence of a constant background offset and noise, regardless of the exact
values of these parameters. Together, the evidence expressions in equations (2.5) and (2.6) enable
us to quantitatively express how well the shape of experimental data agrees with candidate
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templates, independent of extraneous details and nuisance parameters that may change from
experiment to experiment.

(c) Describing the shape of a dataset using BMS
We compare the performance of different templates by using BMS [3–5] to calculate the
probability that each xk is the best description of the shape of the data, y. This calculation is
conditionally dependent on the assumptions in M0, which define the specifics of the analysis
method, including the composition of {x}. Multiple distinct analysis methods can consequently be
developed by using different M0s to tailor their effectiveness to individual experimental situations
and systems. For any chosen M0, an appropriate template prior probability for xk, P(xk|M0), must
then be assigned, for example, by (i) using an equal a priori assignment of K−1, where K represents
the number of templates in {x}; (ii) learning prior values from separate experiments; or even (iii)
using a Dirichlet process or hierarchical Dirichlet process [16] for a non-parametric ‘infinite’ set of
templates. Once all of the P(xk|M0) have been assigned, Bayes’ rule can be used to perform BMS
and compute the template posterior probability as follows:

P(xk | y, M0) = P(y | xk, M0)P(xk | M0)∑K
j=1 P(y | xj, M0)P(xj | M0)

. (2.7)

This expression represents the probability of an xk given the observed data y and, thus, may be
used to identify the xk in {x} that most optimally describes the latent structure of y (for a specific
choice of M0). Using equation (2.7) is therefore a quantitative means by which the underlying
shape of experimental data may be determined. Furthermore, by considering a ‘background’-
shaped xk and/or just the presence of noise (i.e. equation (2.6)) in the BMS process, this approach
can also validate whether using the most probable xk to describe the shape of y is justified or
whether the shape of y can be better explained as just noise in the data. Altogether, this BMS
process sets up an objective, quantitative, researcher-independent metric for not only determining
the shape of experimental data but also validating such shape assignments.

The shape calculation equations we report earlier describe a relationship between ideal
distributions (i.e. xk) and noisy signals (i.e. y) that is independent of many experimental details
which would otherwise complicate the analysis being performed. The only requirements are that
both xk and y exist in the same data-space and are vectors of the same size. Practically, however,
most templates are generated from some underlying model that exists in a separate ‘model space’
distinct from the data space of xk and y. Relating such a model space to data space requires that
a set of parameters, {θ}, be used to map the model to an xk. For example, a model of a three-
dimensional object being projected onto a two-dimensional image may use the Euler angles of
the object to generate xks with different orientations in the two-dimensional image data space.

Generally, when using such a model to generate xks for identifying the shape of y, the template
posterior probabilities for an entire group of model-associated xks must be calculated to account
for the many possible ways that the single model could have been mapped into data space.
Having performed all of those calculations, it is then possible to marginalize out the dependence
upon some of the {θ} from the model. In the example mentioned earlier, marginalizing out
the Euler angles would yield the posterior probability that the shape of y corresponds to a
two-dimensional image of the model, regardless of not knowing the true orientation of the three-
dimensional object being projected into the image. Thus, this type of marginalization in data space
enables our framework to provide objective measures for shape assignment in model spaces as
well. We note that the map between model space and data space used in these shape calculations
should be explicitly acknowledged and defined to mitigate unintentional mis-estimations of the
weight of particular models in data space during the change of variables. Finally, it is worth
mentioning that such model spaces almost always exist for scientific analyses, even if they are
only implicitly invoked within M0.

The most complete implementations of these BMS-based shape calculations occur when using
M0s that specify every physically appropriate xk. However, this approach may not always be
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theoretically possible or computationally feasible if an effectively infinite number of xks exist.
In such situations, it is worth noting that, depending on the precision required by a particular
analysis method, the full set of templates may not be required to obtain effective results.
Importantly, a major benefit of BMS is that we can determine which xk among a set of approximate
templates best describes the shape of y, even if none are ‘exact’. In addition, the BMS expression in
equation (2.7) can be rearranged into a function of the log difference of evidence expressions (i.e.
a Bayes’ factor) between a test xk and an appropriate control xk (or a ‘null’ model), which yields
an effective cost function for the direct optimization of a single xk (see electronic supplementary
materials, §3). Overall, the most powerful aspect of the BMS-based shape calculations described
here is that by considering different M0s, an analysis method can be optimized for completeness
(where all appropriate templates are enumerated) or efficiency (where only a test and a control
template are considered), or for a trade-off between the two (using only a restricted set of
templates), as the situation demands. This flexibility is a large reason why our framework can
be effectively adapted to mimic nearly any of the subjective, expert-based analysis methods that
it is meant to replace. Furthermore, the ability to easily disseminate the {x} used in an analysis
means that methods can be readily shared, critiqued and reproduced. Together, these especially
powerful aspects of our framework make it extremely straightforward to implement tailor-made,
shape-based analysis methods for new experiments and applications.

3. Searching for shapes: BITS
While the practical scientific applications of shape calculations are numerous (see figure 1 and
§4), the flexibility of our framework leads to a corollary of this approach that can be used to
search for the presence of particular ‘local’ features in the data. Experimental examples of this
kind of analysis include finding the location of peaks in molecular spectra, puncta in fluorescence
microscopy images or stepping behaviour in time-series. In all of these situations, an underlying
physical relationship exists between the datapoints in y (e.g. emission wavelength, Cartesian
position on a substrate or measurement time). In the previous section, we considered y as an
N-dimensional vector in a manner that largely ignored the relationships between datapoints.
Because y is a tensor, however, we can reshape it to fundamentally account for these relationships.
For instance, if y is a fluorescence microscopy image, then each datapoint might correspond to a
pixel of spectral colour c with an associated position (rx, ry and rz) in the sample space of the
experiment. Thus, it would be useful to reshape y from a first-order tensor (i.e. a vector) of N
scalar datapoints into a more natural representation as a fourth-order tensor with one dimension
each for c, rx, ry and rz. Because rx, ry and rz exist in a Euclidean metric space, we can also calculate
a distance, d(yi, yj), between any two datapoints in this example. With such a distance metric for
at least one of the tensor dimensions of y, a local neighbourhood around the position of yi can
be defined as the subset of datapoints, y(i,ε) ⊂ y, for which d(yi, yj) < ε, where ε is a specified
distance cutoff. Notably, this neighbourhood contains n ≤ N datapoints and may be orders of
magnitude smaller depending on the choice of ε. Thus, for a fixed value of ε, y can be thought of
as a composite of approximately N unique ε-neighbourhoods of size n (i.e. distinct subsets y(i,ε)).

We can then define the local, latent structure of y by performing the BMS-based shape
assignment described in §2 separately within each of these unique neighbourhoods using a set
of templates, {x}, where each xk is also of size n. Intuitively, this process can be understood as
‘scanning’ a small region through y along the dimensions of the tensor and assessing the shape
of the data at each site. Whenever one of the xk is found to be an appropriate description for
the data in a particular neighbourhood, a feature (i.e. xk) is effectively ‘localized’ at that site.
Therefore, we call this local analysis approach ‘Bayesian inference-based template search’ (BITS),
because it localizes the templates in {x} within y by traversing the unique neighbourhoods of y
and determining the latent structure of the data in each using the BMS approach described earlier.
As the name BITS suggests, this approach is conceptually similar to traditional template matching
calculations (e.g. via normalized cross-correlation [17]), and in fact incredible mathematical
similarities, as seen in the r cross-correlation term between xk and y in equation (2.5), have
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naturally arisen from our probabilistic approach. As such, we believe many strategies used for
template matching (e.g. fast Fourier transforms) might be adapted with future work. Regardless,
as discussed later, by casting the template matching process into a probabilistic framework
BITS enables powerful extensions facilitated by model selection, such as model comparison and
automatic feature localization.

We note that each local calculation is technically performed over all y but, by splitting the
likelihood into two regions, one within y(i,ε) modelled by {x} and one without y(i,ε) modelled by
xnull (i.e. non-local data are ‘noise’), the evidence contribution from without the local region is the
same for each xk and cancels in the Bayes’ factors of equation (2.7). Thus, the entire calculation can
be simplified, and only the local region within y(i,ε) needs to be addressed. Of course, rather than
use the local BITS approach described here, a composite template simultaneously containing all
of the features being localized could be used to describe the shape of the entire y; however, as we
will show, BITS is much more computationally efficient. For instance, a y of size N that contains
R unique features of size n that are to be localized with datapoint resolution would require NR

distinct templates be tested. Both constructing each template and calculating the evidence for a
template are O(N), so such a full-sized shape calculation has computational scaling of O(NR+1).
Clearly, this approach has severe scaling issues for any number of features. Fortunately, the
equivalent BITS calculation that interrogates N localization sites, and where we have chosen ε

so that the xk are the size of the features, n, has a computational scaling of O(nNR). In the context
of shape-based analyses, template searching with BITS greatly reduces the computational burden
of localizing features down from a geometric to a linear scaling.

The BITS process is demonstrated in figure 2 with an illustrative example of the analysis
of an image of a cellular environment. The data space to be analysed in this example consists
of a second-order tensor of pixel intensities where the two tensor dimensions correspond to
Cartesian co-ordinates in the cellular environment. While the image is coloured to differentiate
and visualize different cellular components with the human eye, we note that, for simplicity, our
illustrative example is dealing with the total intensity value of each pixel. Three-dimensional
atomic resolution structural models for these molecules are used to generate a corresponding set
of two-dimensional xks that represent each biomolecule in a particular orientation in the image of
the cellular environment (shown in the figure in grey boxes). Given the number of templates and
that the size of these templates is much smaller than the total size of the image, BITS can be used
very efficiently in this analysis.

Along with a null template (xnull), the biomolecular model templates are ‘scanned’ through the
image y, and the BMS calculation of equation (2.7) is performed on the y(i,ε) at each site. The white
square on the image shows the specific local neighbourhood y(i,ε) currently being interrogated
using BMS, and in subsequent steps BMS calculations are performed on the adjacent local
neighbourhoods (‘scanning’ order denoted by the white arrow). The biomolecular orientation
dependence of the xks is marginalized out of this calculation by combining the template posterior
probabilities of the xks derived from the same biomolecular model. This yields the model posterior
probability that each biomolecule of interest is localized at a particular position in the image
regardless of its orientation. The specific neighbourhood being analysed in figure 2 highlights the
advantages of including a xnull in a BITS analysis. While this region of the image contains some
latent structure, we can visually see that it is not explained by any of the biomolecular model
templates. Corresponding to this visual analysis, BITS finds that the null template has the highest
posterior probability, and hence, no feature is localized. This stipulation, that a feature is only
localized if the shape of the data is better explained by a model template than random noise,
provides critical protection against over-fitting, which is a distinct advantage of BITS over other
template searching methods.

Notably, in figure 2, only a small sample of biomolecular model orientations is used, and
we assume that if a particular neighbourhood contains a biomolecule of interest in a similar
orientation as one of the chosen templates, there is sufficient overlap of shape between the two
for it to be detected in the BMS calculation. The exact amount of similarity required for this
correspondence depends only on how well the other templates can account for the local shape of
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templates probabilitiesmodels

model 3 templates: 0.01

model 2 templates: 0.02

model 1 templates: 0.07

null template: 0.90

Figure 2. Illustration of the Bayesian inference-based template search algorithm. An example of a BITS process is shown,
where three different biomolecules are searched for in a two-dimensional image of a cellular environment. Different sets of
cellular components are coloured differently for illustrative purposes to demonstrate the expected locations of the different
biomolecules (green for cell membrane components, purple for translationmachinery, blue for enzymes and yellow and orange
for transcription and replication machinery). A set of rotational templates (in grey boxes) generated from different models
of the biomolecules of interest (coloured as earlier) is scanned through subsections of the image (white arrow), and the
probability that each template best matches the local shape of the data in a specific subsection (white box) is calculated and
then marginalized into an aggregate probability for each model that is used to identify the local composition of the image.
The probability values shown were chosen to illustrate the example case of the null template being identified in the case
where the shape of a subsection cannot be explained by any of the model templates. Adapted from illustrations by David
S. Goodsell, RCSB Protein Data Bank (DOIs: doi:10.2210/rcsb_pdb/goodsell-gallery-028, doi:10.2210/rcsb_pdb/mom_2000_10,
and doi:10.2210/rcsb_pdb/mom_2016_6, doi:10.2210/rcsb_pdb/mom_2003_3). (Online version in colour.)

this neighbourhood. Thus, while the number of sampled orientations may need to be optimized
for different applications depending on the desired outcome, {x} with sparse samples of a model’s
orientations may still be used to effectively localize features.

Overall, the BITS algorithm can be understood as a method that quantifies the degree to which
the latent structure in the data of each neighbourhood y(i,ε) of y is correlated with an xk. This
correlation is maximized when BITS reaches the ‘true’ location of a feature of interest in the data
and the xk is perfectly aligned with the feature. When misaligned by even one datapoint, however,

http://dx.doi.org/10.2210/rcsb_pdb/goodsell-gallery-028
http://dx.doi.org/10.2210/rcsb_pdb/mom_2000_10
http://dx.doi.org/10.2210/rcsb_pdb/mom_2016_6
http://dx.doi.org/10.2210/rcsb_pdb/mom_2003_3
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the positive correlation can be negligible, and immediately another xk (e.g. a null template) or
even no particular xk can dominate the BMS calculation. The effect of this behaviour is that only
the location in y corresponding to the centre of a feature of interest (i.e. perfectly overlapped
by xk) is identified with a high P(xk|y, M0). Interestingly, this means BITS inherently protects
against multiple localizations of the same feature while simultaneously facilitating localization
of multiple, closely spaced features.

Perhaps the most important and unique aspect of the BITS algorithm is that it enables
ys acquired under different experimental conditions to be directly compared within a single,
common reference frame. Specifically, since BITS uses evidence expressions that are based only
upon agreement of an xk with the latent structure of y, it is independent of many experimental
nuisances that would otherwise obstruct direct comparisons. For example, while different
background levels in two experiments can render the use of a common threshold value to localize
features completely ineffective, BITS remains invariant under changes in background and thus
yields two sets of feature localizations that can be directly compared. Moreover, by setting a
pre-defined posterior probability threshold and/or by including a model of the background
or simply noise as xks in {x}, BITS can automatically identify and localize features for a wide
range of experimental techniques without human intervention or advanced knowledge about the
experimental situation (e.g. exposure times for a detector).

4. Discussion
The ability to describe the latent structure of experimental data can readily be leveraged for many
different techniques and analyses in the physical and life sciences (figure 1). Here, we consider
several examples and briefly demonstrate and discuss some of their implementations. We begin
with experiments in which raw data are pre-processed in a manner according to its shape. For
instance, in signal processing-based analyses, the shape-based framework presented here can be
used to (i) perform multivariate calibration transfer [18] (e.g. in optical spectroscopy techniques)
by comparing the shapes of responses for standardized samples across multiple instruments;
(ii) perform blind deconvolution [19] (e.g. in atomic force, optical, or electron microscopy) by
comparing the convolution of possible instrument response functions and deconvolved signals
with the shape of the recorded data (figure 3a); or (iii) to align distinct measurements of the same
object or sample (e.g. the same field of view in different colour channels [20] or multiple image
planes [21] of a fluorescence microscope) by finding the optimal polynomial transform to create
an interpolated measurement that matches the shape of another measurement.

In analytical chemistry experiments that are used to identify the contents of an experimental
sample based on the characteristics, or ‘fingerprints’, of known standards, the framework
presented here can be used to compare the shape of the signal of an experimental sample
against databases of standard experimental and/or theoretical templates of the possible contents.
Examples of this kind of analysis include identification of chemicals from characteristic infrared
spectra [22], or 1H nuclear magnetic resonance (NMR) spectra [23], and identification of proteins
from fragmentation patterns in mass spectrometry data [24]. Similarly, a shape assignment-
based approach would enable the automated identification of sample contents from the noisy
measurements typically obtained in analyses involving small sample concentrations. In addition,
shape comparisons can be used to construct and validate atomic resolution or near-atomic
resolution models in structural biology experiments by comparing the: (i) structure factors from
different molecular models to the diffraction pattern for an X-ray crystallography experiment
[25], (ii) electrostatic potential maps from different molecular models to the reconstructed density
in a cryogenic electron microscopy (cryo-EM) experiment [26], or even (iii) predicted electron
scattering patterns from different atomic models to the raw electron microscopy micrographs in a
cryo-EM experiment. In fact, in the last example, a similar Bayesian approach has been pioneered
by Cossio & Hummer to analyse cryo-EM micrographs [9]. Despite differences in the priors,
scaling parameter and specific use of BMS, our generalized shape-based analysis framework
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Figure 3. Examples of analyses based on shape calculations. (a) A fluorescence lifetime dataset (left) may be modelled as a
convolution of an exponential decay of unknown lifetime (τ ) and a Gaussian instrument response function of unknownwidth.
By comparing shapes of the data with convolved templates, a joint log-probability map of the two unknowns is constructed
(middle) and the deconvolved functions corresponding to the parameters with the maximum probability are plotted (right).
(b) A signal versus time trajectory (left) with two discontinuous jumps may be compared in shape with a set of templates
corresponding to all possible jump times to generate a map of the joint log-probabilities for the times of the jumps (middle).
The times corresponding to the maximum probabilities are overlaid (in blue) over the raw signal and the continuous segments
identified are idealized (in red) using a Gaussian filter (right). (c) A fluorescence emitter in a microscope image (left) may be
modelled as a Gaussian of known width centred at a certain location. By using a subpixel grid to generate such templates with
varying centres, amapof the joint probability for the co-ordinates of the emitter is plotted, alongwithmarginalizedprobabilities
for the x- and y-axes (middle). The co-ordinateswith themaximumprobability are overlaid (in blue) over the raw image (right).
(Online version in colour.)

otherwise readily maps onto this approach, and could thus be used to develop a specialized
method that achieves effectively the same results.

In analyses in which transitions between different signal values need to be identified, our
approach can be extended to locate change points by comparing xks with and without a discrete
change of any arbitrary magnitude in shape (figure 3b). This could be used to locate changes in the:
(i) efficiency of fluorescence resonance energy transfer (EFRET) in the EFRET versus time trajectories
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Figure 4. Computational efficiency of full-dataset versus BITS analyses. (a) An example signal versus time trajectory (left) with
onediscontinuous jumpanalysedby comparing the shapeof thedatawith templates the size of theentire dataset (full template)
and using BITS with a small template encoding a ‘step up’. The logarithm of the computational time, required to perform an
analysis, τ , is shown as a function of the logarithm of the length of the signal versus time trajectory, N. The linearized curves
were fit with a first-order polynomial to yield the computational scaling of each calculation. These values match the predicted
scaling for one template (R= 1) ofO(NR+1 = N2) andO(N1), for full template and BITS, respectively. (b) As in (a), but with
signal versus time trajectories (left) with two discontinuous jumps such as in figure 3b. The computational scaling matches the
predicted scaling for two templates (R= 2) ofO(N3) andO(N1). Together these results demonstrate the linear scaling of BITS
with respect to the number of features in a dataset.

reporting on the (un)folding or conformational dynamics of a biomolecule in single-molecule
FRET (smFRET) experiments [27], (ii) extension in the force versus extension or extension versus
time trajectories reporting on the (un)folding or conformational dynamics of a biomolecule in
single-molecule force spectroscopy experiments [27,28], (iii) position in the position versus time
trajectories reporting on the directional stepping of a biomolecular motor in single-molecule
fluorescence experiments [29], (iv) conductance in the conductance versus time trajectories
reporting on the (un)folding or conformational dynamics of a biomolecule in single-molecule
field effect transistor (smFET) experiments [30], or even (v) conformation in the conformation
versus time trajectories reporting on (un)folding or conformational dynamics of a biomolecule
in molecular dynamics simulations. Indeed, such a BMS-based method to detect transition in
time-series data has been pioneered by Ensign & Pande [10]. Despite minimal differences in noise
models, our generalized shape-based analysis framework can be mapped onto the approach of
Ensign and Pande, thus facilitating the development of a specialized method that can effectively
arrive at the same results. This general approach to analysing time-series extends the use of
Bayesian inference-based techniques for the detection of change points in a time-dependent signal
to any sequential data with arbitrary signal properties, thereby enabling the accurate estimation
of kinetics from a wide range of experimental techniques.

In addition to the full shape-based methods discussed earlier, we expect that BITS is poised
to have a large impact on a number of more specialized situations—particularly analyses that
require localization of well-defined signals or image features. For example, given a particular
spectral line shape (e.g. a Lorentzian function), BITS can be used to find peaks in multi-
dimensional NMR spectra [31]. Similarly, BITS can be used to identify particles of interest
and their orientations in cryo-EM [32] and cryogenic electron tomography [33] micrographs
in a manner similar to that shown in figure 2. This is also readily extended to localizing and
identifying individual molecules and molecular structures in atomic force microscopy [34] and
super-resolution fluorescence microscopy images [35] (figure 3c). Methods using traditional
template matching for such analysis tasks can be easily adapted into our BITS framework,
thereby enabling comparison across disparate datasets (e.g. [36,37]). In the case of the analysis
of time-series (e.g. single-molecule fluorescence, molecular dynamics), BITS can be used to detect
transitions or change points between states, even when those transitions are more diffusive than
instantaneous, as is a typical requirement for analysis using hidden Markov models. In addition,
as discussed in §3, BITS makes this type of time-series analysis much more efficient than when
analysing the shape of a whole time-series at once (figure 4).
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The range of examples provided earlier are broad, but not exhaustive. Nonetheless, they
highlight the versatility of our approach, and we hope they will inspire others to adopt this
framework for their experiments and analysis methods. Although the development, optimization,
bench-marking and in-depth discussion of each of the individual scientific applications described
earlier is necessarily very specialized, and thus, beyond the scope of the current work, we have
created a gallery of illustrative, proof-of-principle examples that are open-source and written in
Python to demonstrate and enable the use of our framework; they can be accessed at https://
bayes-shape-calc.github.io.

5. Conclusion
To the best of our knowledge, the use of probabilities to determine the latent structure of data
as discussed earlier is a radically new approach to analysing experiments in the physical and
life sciences. The framework we present here is the quantitative extension of a very intuitive
approach to data analysis in which expert researchers visually determine whether their data
is the shape that they expect it to be. Rather than develop heuristic approaches to emulate
this subjective process, our method provides a quantitative metric based only on probability
that is free from human intervention and experimental considerations. Among other things, the
ability to determine the shape of data enables researchers to objectively pre-process data; identify
fingerprints and validate assignments; detect change points and identify and localize features
using BITS (figures 1 and 2). In addition, the shape-based framework we present here can be
readily applied to analyse large, high-dimensional datasets that are difficult to visualize and
would be nearly impossible to analyse manually. As can be seen from the breadth of potential
applications listed earlier (figure 1), the overall methodology described in this work transcends
individual fields and techniques and indeed represents a new quantitative lens through which
countless experiments in many different areas of the physical and life sciences may be analysed.

Data accessibility. We have provided a clearing house-type website for future method developments using
the framework presented here (https://bayes-shape-calc.github.io), through which annotated examples
coded in Python can be accessed (https://bayes-shape-calc.github.io/examples). Derivations and additional
probability expressions are provided in the electronic supplementary material [38].
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