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In a downward global trend in timing of maturation, today’s
children are reaching pubertal milestones earlier than prior gen-
erations.1,2 The average age at onset of breast development
(thelarche), for example, has dropped by 3 months per decade
since the 1970s,2 likely owing to higher energy intake and more
sedentary lifestyles.3,4 How do environmental pollutants, partic-
ularly those that disrupt the gonadal and adrenal hormone axes
that regulate puberty, fit in? Although it may be convenient to
speculate that the increasing production of synthetic endocrine-
disrupting chemicals (EDCs) around the world has fueled the
secular trend in pubertal timing, the reality is, of course, more
complicated.5

Per- and polyfluoroalkyl substances (PFAS), a class of forever
chemicals, are of particular concern in this context given their
reproductive and developmental toxicity, their widespread use in
industrial applications and consumer products, and their resist-
ance to environmental and biological degradation.6 Data from the
National Health and Nutrition Examination Survey indicate nearly
100% of Americans have measurable blood levels of PFAS, with
exposure typically occurring through contaminated water and
food, as well as via consumer products.7,8 To date, results of epide-
miological studies examining the impact of PFAS on pubertal out-
comes have been inconsistent, likely owing to methodological
differences and challenges.9–12

Among those challenges is the variable timing of pubertal
milestones, leading to mistiming of exposure and outcome
assessment in some participants.9,12 The widespread reliance on
self- or parent-reported assessment of pubertal development,
rather than gold-standard Tanner staging by a trained professio-
nal, can additionally introduce outcome misclassification and
obscure true associations.13,14 Finally, there remains controversy
regarding the role of body size as a potential mediator in the asso-
ciation between PFAS and pubertal development; adjustment for
body mass index (BMI) as a potential confounder may result in
overadjustment bias.

In this issue, Pinney et al.15 overcome limitations and advance
the field through a carefully and intentionally designed longitudi-
nal study developed as part of the larger Breast Cancer and the
Environmental Research Program.16,17 PFAS were measured in
middle childhood (6–8 years of age) reducing concerns regarding
“late age at entry” that have hindered prior studies. Participants
were followed through annual or semiannual visits, including com-
prehensive assessments of pubertal outcomes by trained examiners

using gold-standard methods in addition to measurement of puber-
tal hormones. Sophisticated statistical approaches were used to
estimate ages at thelarche and pubarche (first appearance of pubic
hair) based on pubertal changes occurring between regular visits,
therebyminimizing error in outcome timing,18 andmediation anal-
yses were conducted to understand the role of BMI.

These considerable methodological advances make for the
most rigorous analysis on this topic to date, and results indicated
that girls with higher baseline perfluorooctanoic acid (PFOA) con-
centrations were significantly less likely to have reached pubarche
and menarche (first occurrence of menstruation) by the end of
follow-up, with similar patterns observed for perfluorooctane sul-
fonate (PFOS). PFOA concentrations 6 months prior to thelarche
were additionally inversely associated with concentrations of the
circulating hormones estrone and dehydoepiandrosterone sulfate,
suggesting endocrine pathways through which PFAS exposures
may delay puberty. The authors identified a “triangular relation-
ship” between PFAS, BMI, and pubertal timing, moreover, such
that PFOA was a significant predictor of lower BMI, as well as of
later pubertal milestones, whereas higher BMI independently pre-
dicted earlier pubertal milestones. These results both complement
and contrast with studies showing that prenatal PFAS exposures
were associated with reduced fetal growth and birth weight fol-
lowed by greater childhood adiposity.19,20

Ultimately, the results of the study by Pinney et al. require deep
reflection. Concerns about the acceleration of pubertal development
in the modern era have been fueled by reports of the negative conse-
quences of early pubertal development, including increased risks of
cardiometabolic disease (reviewed by Prentice and Viner21) and
reproductive cancers,22–24 as well as mental health and behavioral
concerns.25–27 By contrast, far fewer studies have considered the
implications of delayed pubertal development. Although delays in
pubertal timing may have benefits in terms of reductions in risks of
hormone-sensitive cancers,28 there may also be adverse impacts on
bone density and microstructure.29 Furthermore, some seemingly
protective impacts of delayed maturation may be limited; for
instance, one study reported U-shaped associations between age at
menarche and risks of coronary heart disease, whereby risks were
highest in both early and latematurers.30

The work by Pinney et al. improves upon key limitations of
the prior literature and provides strong evidence that PFAS expo-
sure in mid to late childhood is associated with delays in pubertal
milestones. These compelling results, of course, lead to more
questions in urgent need of answers. A clear next step is to query
how exposures to mixtures of PFAS—as a class of compounds,
as well as in combination with other classes of EDCs—impact
pubertal milestones. How do PFAS, moreover, interact with
dietary factors that can be both a source of exposure and inde-
pendent predictors of body size and pubertal development? In
addition, the critical and sensitive windows during which PFAS
exposures are most impactful remain uncertain, and evaluating
the contributions of exposures during multiple critical windows
(a so-called “two hit” approach) is warranted.31,32 Last, the land-
scape of PFAS contamination is evolving, with average blood
levels of legacy PFAS (including PFOA and PFOS) declining
even as a new generation of replacement PFAS is on the rise.33,34
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Unfortunately, precious little is known about the human health
impacts of these newer contaminants. This important study rein-
forces the urgency of better understanding the impacts of these
“forever chemicals” on child and adolescent health.
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