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Magnetotactic bacteria (MTB), which precisely bio-synthesize magnetosomes
of magnetite or greigite nanoparticles, have attracted broad interdisciplinary
interests in microbiology, magnetic materials, biotechnology and geobiology.
Previous experimental and numerical investigations demonstrate a close link
among MTB species, magnetosome crystal habits, and magnetic character-
istics, but quantitative constraints are currently lacking. In this study, we
build three-dimensional finite-element micromagnetic models of intact
magnetosome chains in common MTB species and corresponding collapsed
chains. Realistic numerical microstructures were constructed for the three
typical biogenic magnetite crystal forms—cuboctahedron, prism and bullet.
Our calculations reveal characteristic magnetic properties associated with
specific magnetite crystal forms and MTB species. Cuboctahedron and bullet
crystals show distinct low coercivity (less than 30 mT) and high coercivity
(greater than 50 mT) clusters, respectively. Prismatic crystals have a broad
range of hysteresis parameters that are strongly controlled by chain structure.
This magnetic property clustering, combined with magnetic unmixing
methods and electron microscopy observations, can fingerprint biogenic
magnetite components in geological and environmental samples. The passive
magnetic orientation efficiency of various magnetosome chains was calcu-
lated. Some bullet-shaped magnetosome chains have higher magnetic
moments than those with cuboctahedron and prism magnetosomes, which
may enable larger MTB cells to overcome viscous resistance for efficient
magnetic navigation.
1. Introduction
Magnetotactic bacteria (MTB) can move along geomagnetic field lines to more
habitable aquatic environments [1]. This magnetic orientation function in bacteria
is facilitated through the synthesis ofmagnetosomes, which are intracellular orga-
nelles composed of chain-arranged magnetic nanoparticles of magnetite (Fe3O4)
or greigite (Fe3S4) enveloped by a lipid membrane [1,2]. The precise production
of magnetosome nanoparticles with regular crystal forms and a relatively
narrow size range are genetically controlled [1,3]. Interacting magnetic particles
arranged in a chain produce a dipole moment approximately parallel to the
chain axis, which interacts with the external magnetic field to determine
the movement orientation of MTB [1,4]. After MTB death, magnetosome nano-
particles can be preserved as magnetofossils in sediments [5], which can record
palaeomagnetic signals [6], palaeoenvironmental information [7–9] and ancient
microbial activities [10]. Therefore, MTB provides a model system for studying
the interface of biological, physical and geological processes.
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So far hundreds of MTB species that synthesize various
magnetite crystal morphologies (octahedral, cuboctahedral,
elongated prismatic, bullet-shaped and tooth-shaped) have
been found [2,11]. Li et al. [11] suggest that the species-specific
nature of the crystal habit of biogenic magnetite can be used as
a proxy for taxonomy to trace ancient microbial and environ-
mental conditions. Additionally, magnetite morphology is
also closely related to itsmagnetic properties [12,13]. Therefore,
it is essential to establish the link among MTB species, crystal
forms and magnetic properties.

Previous studies investigated experimentally the magnetic
properties of commonMTB species using laboratory-cultivated
or wild-type MTB samples [14–18]. These experimental data
provide important constraints on the biomineralization mech-
anism in MTB, and also contribute to the magnetic detection
of magnetofossils in geological materials [14–16,18,19]. How-
ever, it is currently challenging to obtain pure enriched
samples and systematic sampleswith controlledmorphological
parameters for many MTB species. Therefore, it is difficult to
determine experimentally the systematic range of magnetic
properties of varying magnetosome chains and morphologies.
Recent development of micromagnetic methods enables
quantitative calculations of themagnetic properties ofmagneto-
some chains with changing morphological parameters [20,21],
i.e. particle size, particle spacing, particle elongation and
chain structure (straight chain, collapsed chain, and ring-
shaped chain) [22–28]. However, the majority of simulation
work relies on approximated chain models, while micro-
magnetic models with realistic chains are scarce, especially for
the rarely simulated bullet-shaped magnetosome chains.

In this study, we apply a micromagnetic modelling
approach [23] to calculate the magnetic properties of typical
magnetite-producing MTB species. We select three typical
magnetite crystal forms (cuboctahedron, prism and bullet)
of MTB to build micromagnetic models using transmission
electron microscopic (TEM) images of intact magnetosome
chains and collapsed chains. Micromagnetic calculations are
performed to determine the magnetic properties and naviga-
tion efficiency of biogenic magnetite synthesized by various
MTB species.
2. Micromagnetic methods
Biogenic magnetite has multiple crystal forms: cuboctahedral,
octahedral, elongated prismatic, tooth-shaped and bullet-
shaped [2,11]. Cuboctahedral and octahedral crystals usually
have similar two-dimensional projections. The asymmetric
two-dimensional projections of tooth-shaped and bullet-
shaped crystals are also similar. Therefore, we simulate the
three most typical crystal morphology categories of magnetite
magnetosomes: cuboctahedron, prism and bullet [29]. We
select two typical MTB species in each crystal morphology cat-
egory: AMB-1 [11] and MSR-1 [3] for cuboctahedron, SHHR-1
[11] and XJHC-1 [30] for prism, WYHR-1 [31] and a rod MTB
[2] for bullet (figure 1).

Microstructure models of realistic intact chainswere created
based on TEM images of MTB using Trelis 16.3 (figure 1). The
information about particle position, size and rotation angle
of intact magnetosome chains (table 1) was obtained from
TEM images using the computer vision library OpenCV-
Python (figure 1d) following the approach of Bai et al. [23].
Bullet-shaped crystals in chains have variable overlap in the
two-dimensional images. Therefore, we approximately seg-
mented the overlapping particles. Moreover, we constructed
chain collapse models by randomly distributing magnetosome
particles in a cube space with controlled spacing (figure 1).
These chain collapse models were used as one possible end-
member to investigate the effect of chain deformation on
magnetic properties, although other chain collapse modes
are possible and may provide a closer match to observed mag-
netic properties [22]. We modelled a range of bullet-shaped
particles with varying size and elongation to investigate the
effect of crystal form on magnetic properties. Single crystal
models with three crystal forms were built: bullet model-1,
bullet model-2 and prism for comparison. The modelled
bullet crystals have a flat base and a conical tip: bullet
model-1 is created by connecting a cylinder and an elongated
hemisphere; bullet model-2 only contains an elongated
hemisphere. The prism model is used to compare with bullet
particles with the same elongation to explore the influence
of particle shape on magnetism. In addition, we built bullet
models elongating along the [111] and [100] axes to investigate
the effect of magnetocrystalline anisotropy. Magnetocrystalline
anisotropy axes of magnetite were rotated according to
their orientation.

We use the finite element (FE) micromagnetic simulation
software MERRILL (version 1.3.5) to calculate the magnetic
properties [21]. MERRILL computes a magnetization distri-
bution that minimizes the total magnetic free energy to
determine the stable magnetic domain state [21]. The total
magnetic free energy Etot, for the normalized magnetization
vector M = (Mx, My, Mz), is given by

Etot ¼
ð
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where A, K1 and Ms are the temperature-dependent material
parameters for the exchange constant, the cubic magnetocrys-
talline anisotropy constant and the saturation magnetization,
respectively; Hz and Hd are the external Zeeman field and the
demagnetizing field, respectively [21,32]. More importantly,
MERRILL can simulate magnetic particles with realistic and
complex shapes in three dimensions using FE methods [21].
Hysteresis loops and back-field isothermal remanent magne-
tization (IRM) curves of all magnetosome chain models were
calculated for all six types of MTB. First-order reversal curve
(FORC) [33] diagrams were calculated for both intact and col-
lapsed chain models of MSR-1, SHHR-1 and WYHR-1. Intact
and collapsed models were subjected to external magnetic
fields with 50 and 20 random directions, respectively.
ParaView 5.5.2 was used to visualize the domain states [34].
3. Modelling results
3.1. Hysteresis loops and back-field curves
Micromagnetic simulation results indicate large changes in
the coercivity (Bc), the coercivity of remanence (Bcr) and the
ratio of saturation remanence to saturation magnetization
(Mrs/Ms) with variable magnetosome crystal forms and
chain structures (figure 2 and table 2). Average Bc and Bcr

values of the intact chains with cuboctahedron, prism and
bullet crystals are presented in table 2. Simulated Bc and Bcr
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Figure 1. Micromagnetic model constructions of intact biogenic magnetite chains with three crystal forms and the corresponding chain collapse models (a–c), and
an example of model construction procedures based on microscopic images (d). Published transmission electron microscopic (TEM) images of six typical magne-
totactic bacteria were used to create these models: (a) MSR-1 [3] and AMB-1 [11] for cuboctahedron magnetosomes, (b) SHHR-1 [11] and XJHC-1 [30] for prism
magnetosomes, (c) WYHR-1 [31] and a rod MTB [2] for bullet magnetosomes. Green curves and red rectangles in (d ) represent detected particle contours and
recognized minimum area rectangles using the OpenCV-Python library, respectively.

Table 1. Morphological information of biogenic magnetite from published transmission electron microscopic (TEM) images.

crystal form MTB type references length (nm) width (nm) elongation gap (nm)a particles #

cuboctahedron MSR-1 Uebe & Schüler [3] 44.54 ± 8.17 41.87 ± 7.53 1.06 ± 0.06 6.08 ± 2.53 34

cuboctahedron AMB-1 Li et al. [11] 47.63 ± 10.99 42.37 ± 10.07 1.13 ± 0.11 7.11 ± 5.31 30

prism SHHR-1 Li et al. [11] 79.11 ± 16.73 58.96 ± 10.54 1.34 ± 0.14 5.06 ± 1.83 15

prism XJHC-1 Liu et al. [30] 100.63 ± 17.20 78.13 ± 15.14 1.30 ± 0.10 3.84 ± 1.86 16

bullet WYHR-1 Li et al. [31] 86.71 ± 29.22 35.69 ± 4.22 2.41 ± 0.72 - 50

bullet rod Amor et al. [2] 126.78 ± 32.64 42.28 ± 4.89 2.97 ± 0.66 - 44
aThe particle gap of bullet magnetosome chains cannot be effectively measured owing to irregular chain arrangement and multiple chain branching.
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values of intact prism chains and bullet chains are significantly
larger than those of intact cuboctahedron chains (figure 2 and
table 2). AverageMrs/Ms of the intact models is approximately
0.5 (table 2), indicating a dominant uniaxial anisotropy owing
to chain arrangement.

Collapsed models of both cuboctahedron and prism mag-
netosome chains have lower Bc and Mrs/Ms than intact chain
models (figure 2 and table 2). Bc values of collapsed cuboctahe-
dron models (from 19 to 10 mT for MSR-1 and from 16 to
13 mT for AMB-1, table 2) reduce less than prism models
(from 68 to 24 mT for SHHR-1 and from 62 to 15 mT for
XJHC-1, table 2). Mrs/Ms values of the two cuboctahedron
models and XJHC-1 decrease to approximately 0.2–0.3, while
this ratio of SHHR-1 only decreases to 0.4 (table 2). Bc values
of the collapsed bullet models, however, do not decrease sig-
nificantly or even increase slightly for some models (from 67
to 53 mT for WYHR-1 and from 79 to 85 mT for a rod MTB,
table 2) with constant Mrs/Ms of approximately 0.5 (table 2).
Bcr values of both cuboctahedron and bullet collapsed
models are similar to the corresponding intact models
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Figure 2. Simulated hysteresis loops and back-field isothermal remanent magnetization (IRM) curves averaged in multiple directions of all intact (solid lines) and
collapsed (dashed lines) chain models.
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(table 2). Collapsed prism models have significantly reduced
Bcr compared with intact chain models (from 75 to 39 mT for
SHHR-1 and from 66 to 27 mT for XJHC-1, table 2), which indi-
cates that chain collapse has a much stronger influence on the
prism magnetosome chains compared with other crystal
forms. Decreasing particle spacing reduces the Mrs/Ms for
both collapsed cuboctahedron and prism models (figure 3a,
b), and reduces the Bc for collapsed prism models (figure 3b).
However, particle spacing does not obviously affect hysteresis
characteristics of bullet models (figure 3c).

The switching field distributions calculated from the first
derivative of modelled back-field IRM curves for all intact
magnetosome chains show an angular dependence. Theoreti-
cal predictions using the Stoner–Wohlfarth [38] and the
Jacobs–Bean [39,40] models were also calculated. The switch-
ing field of cuboctahedron chains is significantly lower than
the predicted value (figure 4a,b), probably owing to the
large interparticle distance. Our calculated switching fields
are more consistent with prediction from the Jacobs–Bean
model (figure 4a,b). The switching field of the prism and
bullet chains agree well with the theoretical predictions
from the Jacobs–Bean model (figure 4c–f ).

For the single-particle models, Bc values increase gradu-
ally with increasing aspect ratios because of the increase in
shape anisotropy (figure 5a). Prism model and bullet
model-1 (connecting of cylinder and hemisphere) have
similar Bc values and are slightly larger than that of bullet
model-2 (elongated hemisphere) with aspect ratios greater
than 2 (figure 5a). This demonstrates that the shape of
elongated crystals affects the magnetic properties less than
the aspect ratio. Moreover, the Bc values of bullet crystals
with the [111] elongation axes are approximately 10–15 mT
larger than those of crystals elongating along the [100] direc-
tion (figure 5a), indicating the significant impact of different
easy-axis directions and crystal elongation axis on magnetic
properties. The Mrs/Ms of all single-particle models are
approximately 0.44–0.45 (figure 5b).

3.2. Domain states
Magnetite particles in intact chainmodels are in single-domain
states with magnetic moments aligned approximately along
the chain direction (figure 6a–f ), indicating a relatively strong
magnetostatic interaction between adjacent particles along
the chain direction. However, the distorted distribution of
magnetic moment directions in collapsed chain models
(figure 6a–f ) and the presence of some vortex particles
(figure 6d) point to magnetic interaction between particles
along multiple directions.

3.3. First-order reversal curve diagrams
FORC diagrams of three intact chainmodels all show a narrow
central ridge and a negative lower-left region (figure 7a–c).
Central ridges of the prism (SHHR-1) and bullet models
(WYHR-1) aremore rightward distributedwith higher coerciv-
ity than that of the cuboctahedron model (MSR-1, figure 7a–c).
FORC diagrams of three collapsed models manifest the expan-
sion of wings on both sides of the central ridge (figure 7d–f ),
indicating relatively strongmagnetostatic interactions. The cen-
tral ridge of the collapsed prism model shifts to the left with
reduced coercivity relative to the intact SHHR-1 model
(figure 7b,e). Compared with the intact WYHR-1 model, the
central ridge of the collapsed bullet model does not change
significantly (figure 7c,f ).



Table 2. Hysteresis parameters and magnetic alignment calculated in this study and experimental data of magnetotactic bacteria and magnetofossils.

crystal form MTB type data source Bc (mT) Bcr (mT) Mrs/Ms m (10−15Am2) m/Ms ⟨cos θ⟩

cuboctahedron MSR-1 intact model 19 26 0.48 0.46 0.96 0.82

cuboctahedron MSR-1 collapsed model 10 24 0.22 — — —

cuboctahedron AMB-1 intact model 16 20 0.54 0.46 0.94 0.82

cuboctahedron AMB-1 collapsed model 13 22 0.30 — — —

cuboctahedron AMB-1 experimenta 19 23 0.46 — — —

cuboctahedron AMB-1 experimentb 18 23 0.45 — — —

cuboctahedron AMB-1 experimentc 31 37 0.50 — — —

prism SHHR-1 intact model 68 75 0.47 1.27 0.97 0.94

prism SHHR-1 collapsed model 24 39 0.40 — — —

prism XJHC-1 intact model 62 66 0.47 2.96 0.95 0.97

prism XJHC-1 collapsed model 15 27 0.24 — — —

prism MV-1 experimentd 36 44 0.47 — — —

bullet WYHR-1 intact model 67 96 0.49 1.29 0.98 0.94

bullet WYHR-1 collapsed model 53 90 0.48 — — —

bullet rod intact model 79 103 0.47 2.13 0.90 0.96

bullet rod collapsed model 85 98 0.50 — — —

bullet MYR-1 experimente 55 61 0.59 — — —

– magnetofossil experimentf 20 41 0.24 — — —

– magnetofossil experimentf 19 43 0.22 — — —

– magnetofossil experimentf 19 44 0.22 — — —

– magnetofossil experimentg 23 35 0.40 — — —
aLi et al. [35].
bLi et al. [36].
cLi et al. [16].
dJovane et al. [14].
eLi et al. [15]
fChang et al. [7].
gLudwig et al. [37].
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4. Discussion and conclusion
4.1. Linkages between magnetosome crystal

morphology and magnetic properties
We plotted simulated hysteresis parameters of intact magneto-
some chain models and strong collapse models for different
MTB species in the Day diagram (figure 8a) [42] and the Néel
diagram (figure 8b) [43]. Different crystal forms show less
obvious clustering in the Day diagram because of the overlap-
ping Bc/Bcr (figure 8a). In contrast, magnetosome chains with
three crystal forms show a clear linkage to their hysteresis
parameter ranges in the Néel diagram (figure 8b). This demon-
strates that the Néel diagram is a better tool for the magnetic
identification of magnetosome crystal morphologies. Cubocta-
hedron magnetosome chains show specific clustering regions
in theNéel diagram (figure 8b): data for cuboctahedronmagne-
tosome chains have typically low coercivity (less than 30 mT)
and move to the lower-left region with decreasing Bc and
Mrs/Ms during chain collapse. This is mainly owing to the
large spacing between cuboctahedron particles in chains,
which significantly reduces the coercivity [24,46]. The simu-
lated coercivity of AMB-1 (16 mT) is close to the
experimental data of the cultured AMB-1 (18–31 mT)
[16,35,36]. Bullet magnetosomes in both intact and collapsed
chains show distinct magnetic properties (figure 8b): high coer-
civity (53–85 mT), Mrs/Ms of approximately 0.5, and not
obviously affected by chain collapse, which is consistent with
the measured coercivity (55 mT) of MYR-1 synthesizing
bullet-shaped magnetite [15]. This indicates that the magnetic
properties of bullet-shapedmagnetite are dominated by uniax-
ial anisotropy owing to their higher elongations (table 1).
Simulated hysteresis parameters of prism magnetosome
chains have a wide distribution and partially coincide with
cuboctahedron and bullet, mostly owing to amore pronounced
effect of chain collapse on prism chains (figure 8b). The
experimental coercivity data of MV-1 (36 mT) [14] is lower
than that of the simulated prism magnetosome chains (68 mT
for SHHR-1 and 62 mT for XJHC-1), probably because of the
larger spacing between the magnetite particles in the MV-1
chainwhich reduces the coercivity [24].Moreover, themicromag-
netic simulation results of Bai et al. [23] indicate a coercivity
range of approximately 15–21 mT for greigite magnetosomes,
which partially overlaps with the range calculated for the
cuboctahedron magnetosome in this study (figure 8b).

Previous studies indicate a correlation between the crystal
habits of biogenic magnetite or greigite and MTB species
owing to a strong genetically controlled biomineralization
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[2,11,30,47,48]. For example, Desulfobacterota phylum and
Nitrospirota phylum synthesize straight bullet-shaped and
curved bullet-shaped magnetite, respectively [48]. Moreover,
MTB have been widely found in various modern aquatic
and sedimentary environments [47,49]. In this study, the
micromagnetic simulation method based on TEM images
can accurately predict the magnetic properties of typical
MTB. These magnetic parameters can be used to indicate
the crystal morphology of biogenic magnetite, thereby tracing
possible MTB species and living environments. However, the
correlation among crystal morphology of biogenic magnetite,
MTB species and ecology has not been systematically demon-
strated owing to the high diversity of MTB species, so a
systematic database needs to be established in the future.
4.2. Implications for magnetofossil identification
It is challenging to directly identify in situ magnetofossils
in sediments or rocks owing to their nanoscale size. Extracting
in situ magnetofossil information currently relies on rock
magnetic techniques, such as principal component analysis of
FORC diagrams (FORC-PCA) [50,51] and IRM unmixing
[7,8,37,52,53]. Our simulation results demonstrate that the clus-
tering regions in the Néel diagram can be used to distinguish
the crystal morphologies of biogenic magnetite (figure 8b),
and thereby constrain the interpretation of magnetofossil
components using magnetic unmixing methods. Furthermore,
based on the species specificity of crystal habits of modern
MTB discussed in §4.1, this clustering relationship of magnetic
signals has the potential to infer possible ancientMTB species of
magnetofossils and palaeoecological information.

Previous investigations have identified two typical
IRM components of biogenic magnetite in natural samples:
lower-coercivity biogenic soft (BS) and higher-coercivity
biogenic hard (BH) [52]. BS and BH were considered to rep-
resent equant and elongated biogenic magnetite, respectively
[52,54–56]. Moreover, recent micromagnetic studies indicate
that BH and BS could also be produced by different magneto-
some chain structures [25]. Our modelling results provide
new constraints for the morphological characteristics of bio-
genic magnetite indicated by BH and BS: (i) BS represents
cuboctahedral biogenic magnetite (both straight and strongly
collapsed chains) and prismatic biogenic magnetite with
collapsed chain structure; (ii) BH corresponds to all bullet-
shaped biogenic magnetite (both straight and strongly
collapsed chains), as well as prismatic biogenic magnetite
tightly arranged in an approximately straight chain
(figure 8b). Clearly, BS and BH components originate from
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both biogenic magnetite crystal morphologies and chain struc-
tures. Moreover, some of the soft magnetic components may
also originate from greigite magnetofossils (figure 8b) [23].
Thus, electron microscopy is needed to directly identify bio-
genic magnetite or greigite in sediments, and the origin of
the BH and BS components.

Experimental data of magnetofossils are located in the
confidence ellipse of cuboctahedron and prism in the Néel
diagram (figure 8b), indicating that they are dominant in
sediments, while the contributions from bullet-shaped par-
ticles or prism particles tightly arranged in linear chains, i.e.
represented by BH, are relatively small. Moreover, FORC
diagram is also helpful to distinguish the in situ chain struc-
ture of magnetofossils to determine whether there is possible
chain collapse (figure 7) [22,25,26]. For complicated natural
samples containing various magnetic minerals, the magnetic
approach proposed in this study needs to be combined with
other rock magnetic techniques (e.g. FORC-PCA [50,51] and
IRM unmixing [52,53]) and microscopic observations to
identify magnetic mineral phases.
4.3. Magnetic orientation in magnetotactic bacteria
The magnetic dipole moment of magnetosome chains is used
by MTB to orient passively along the external magnetic field
[4]. The magnetic energy between the magnetic moment m
and the external magnetic field B should exceed thermal
energy kBT (Boltzmann constant kB multiplied by temperature
T ) to overcome the rotational Brownian motion. The align-
ment angle θ between m and B can be evaluated using the
Langevin function [57]

cos uh i ¼ coth
mB
kBT

� �
� kBT

mB
: ð4:1Þ

Higher values of 〈cos θ〉 close to 1 indicate a more optimal
passive magnetic orientation to the external magnetic field.
We calculated the 〈cos θ〉 values for the three modelled
MTB using the simulated magnetic dipole moment of
magnetosome chains: 0.82 for MSR-1 and AMB-1, 0.94 for
SHHR-1 and 0.97 for XJHC-1, and 0.94 for WYHR-1 and
0.96 for a rod MTB (table 2). These results indicate that
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MTB with a larger total volume of magnetite in chains has a
higher degree of passive orientation.

In contrast to chains containing cuboctahedra and prisms,
the chain arrangement of bullet-shaped magnetite is more
disordered and the crystal elongation direction is the hard
axis [001] rather than the easy axis [111] for some MTB
species [11,58]. Our simulation results show that the magnetic
properties of bullet-shaped particles are dominated by shape
anisotropy (i.e. elongation), as predicted by the previous theor-
etical model [59]. Thus, bullet magnetosome chains are more
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resilient to deviations from perfect chains owing to their high
elongations. Simulated bullet and prism magnetosome chains
have similar magnetotactic efficiency (approx. 0.95). Therefore,
relatively disordered particle arrangement in the chain and
elongation along the hard axis do not affect the magnetotactic
efficiency of bullet-shaped magnetosomes. Moreover, some
large MTB cells, such as giant rod MTB [15,60], produce
hundreds of bullet-shaped magnetite crystals with a strong
magnetic moment to overcome the viscous resistance [60].
MTB living in sediments need an even larger magnetic
moment for magnetic navigation owing to higher viscous
drag and poor geomagnetic alignment [61]. Therefore, our
simulation results indicate that the bullet-synthesizing MTB
can provide a sufficient magnetic moment to adapt to their



royalsocietypublishing.org/journal/

10
larger cell volume and complex living environment, evenwhen
the chain deviates from the easy axis and perfect arrangement.
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