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Theimmune response to SARS-CoV-2 antigen after infection or

vaccination is defined by the durable production of antibodies and T cells.
Population-based monitoring typically focuses on antibody titer, but
thereisaneed forimproved characterization and quantification of T cell
responses. Here, we used multimodal sequencing technologies to perform
alongitudinal analysis of circulating human leukocytes collected before
and after immunization with the mRNA vaccine BNT162b2. Our data
indicated distinct subpopulations of CD8" T cells, which reliably appeared
28 days after prime vaccination. Using a suite of cross-modality integration
tools, we defined their transcriptome, accessible chromatin landscape

and immunophenotype, and we identified unique biomarkers within

each modality. We further showed that this vaccine-induced population
was SARS-CoV-2 antigen-specific and capable of rapid clonal expansion.
Moreover, we identified these CD8 T cell populations in scRNA-seq datasets
from COVID-19 patients and found that their relative frequency and
differentiation outcomes were predictive of subsequent clinical outcomes.

The coronavirus disease 2019 (COVID-19) pandemic has been aglobal
public health challenge, yet mRNA vaccines effectively protect against
severe disease”. Immune responses elicited by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines are typically
assessed through titers of neutralizing antibodies, which rise rapidly
after vaccination boosts but decline after 3-6 months**. However,
cellular immunity, mediated in part by CD4* and CD8" T cells, has a
critical rolein viral clearance and protection’. Vaccine-induced T cells
were reported to protect against COVID-19 even without antibody
responses®. A deeper understanding of the distinct subpopulations
that drive cellularimmunity will be essential for interpreting individual
immune responses and for informing public health strategies’.

Antigen-specific T cells are conventionally identified by cytokine
profiling or by labeling with peptide-major histocompatibility complex
(pMHC) multimers. Both assays can be multiplexed with additional sur-
face proteins for flow cytometry®. Multiple studies have applied these
approachestoinvestigate SARS-CoV-2mRNA vaccine responses, focusing
onthekinetics of antigen-specific T cell proliferation and surface marker
characterization***'°, Longitudinal profiling of human peripheral blood
mononuclear cells (PBMCs) followed by pMHC-I tetramer enrichment
showed an initial surge of antigen-specific CD8'T cells after vaccination,
thencontractionascellsdifferentiated over 3-4 months’. Ex vivoactivation
experimentsdemonstrated similar kinetics and highlighted the potentially
limited sensitivity of these assays to quantify rare CD8" cells*™2,

'New York Genome Center, New York, NY, USA. *Center for Genomics and Systems Biology, New York University, New York, NY, USA. *Department of Cell
Biology, New York University Grossman School of Medicine, New York, NY, USA. *Perlmutter Cancer Center, New York University Langone Health, New
York, NY, USA. *Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA. 5New York University Langone Vaccine
Center, New York, NY, USA. "Howard Hughes Medical Institute, New York, NY, USA. ®These authors contributed equally: Bingjie Zhang, Rabi Upadhyay.

e-mail: dan.littman@med.nyu.edu; rsatija@nygenome.org

Nature Immunology | Volume 24 | October 2023 | 1725-1734

1725


http://www.nature.com/natureimmunology
https://doi.org/10.1038/s41590-023-01608-9
http://orcid.org/0000-0002-0535-0371
http://orcid.org/0000-0002-2154-0132
http://orcid.org/0000-0003-2613-4050
http://orcid.org/0000-0003-1951-7790
http://orcid.org/0000-0002-2850-8688
http://orcid.org/0000-0001-9448-8833
http://crossmark.crossref.org/dialog/?doi=10.1038/s41590-023-01608-9&domain=pdf
mailto:dan.littman@med.nyu.edu
mailto:rsatija@nygenome.org

Article

https://doi.org/10.1038/s41590-023-01608-9

Single-cell RNA-sequencing (scRNA-seq) assays are, in princi-
ple, well suited for characterization of cellular responses. Moreover,
single-cell sequencing assays enable unsupervised identification of
cell states directly from PBMC samples, without need for ex vivo res-
timulation to reveal pre-established immunophenotypic markers of
differentiation or specificity for particular HLA haplotypes. Despite
advancements in scRNA-seq assays, detecting rare or subtle cell states
from sparse and noisy datasets remains challenging. A study on COVID
mRNA vaccine responses revealed activation and proliferation in mye-
loid clusters but failed to identify antigen-specific T cell subsets".

Here, we performed a longitudinal analysis of human PBMCs
from a SARS-CoV-2 mRNA vaccination series using a suite of multi-
modal single-cell sequencing technologies. Moving beyond the
transcriptome, we additionally measured chromatin accessibil-
ity, surface protein abundance, immune receptor repertoires and
pMHC-multimer-binding modalities. By leveraging computational
tools for within- and across-modality integration, we identified spe-
cific groups of vaccine-induced effector memory CD8" T cellsin each
dataset. This enabled us to delineate high-resolution subpopulations
and biomarkers within each modality, validate their clonal identity and
antigen-specificity and identify their developmental regulators. By
integrating our datasets with single-cell datasets of natural SARS-CoV-2
infection, we tracked the temporal differentiation patterns of these
cellsand showed that their quantitative abundance was strongly associ-
ated with recovery from severe disease.

Results

CITE-seq identifies vaccine-induced CD8" T cell subsets

To investigate immune responses to SARS-CoV-2 mRNA vaccination
atsingle-cell resolution, betweenJanuary and April 2021, we recruited
six healthy donors with no self-reported previous experience with
SARS-CoV-2infection and analyzed circulating PBMCs at four time-
points over atime course of BNT162b2 mRNA vaccination: immediately
before vaccination (day 0), after primary vaccination (day 2, day 10) and
7 days after boost vaccination (day 28) (Methods and Supplementary
Table 1). For each of the 24 samples, we performed two multimodal
single-cell sequencing assays: cellular indexing of transcriptomes
and epitopes by sequencing (CITE-seq) for simultaneous measure-
ment of cellular transcriptomes and surface proteins'* and ATAC with
select antigen profiling by sequencing (ASAP-seq) for simultaneous
profiling of open chromatin regions alongside cell surface proteins®
(Fig.1a).For eachassay, we used an optimized panel of oligo-conjugated
antibodies (‘TotalSeq-A’ panels; Methods and Supplementary
Table 2) along with the inclusion of additional markers. Our initial
dataset represented 113,897 single cells in the scRNA-seq dataset and
78,677 single cells in the scASAP-seq dataset.

We first explored the CITE-seq datasets by applying our
‘anchor-based’ integration workflow to match together cellsinshared
biological states across individuals and timepoints'®". Although this
caused shared cell typesin pre-vaccination and post-vaccination data-
sets to cluster together initially (Extended Data Fig. 1), integration
enabled us to consistently annotate these cell states across samples
and ensure the results were not driven by effects from one individ-
ual donor. To cluster cells, we applied weighted-nearest neighbor
(WNN) analysis (Methods), which defines cell states jointly based ona
weighted combination of RNA and protein modalities”. WNN analysis
improved theidentification of cell states for multimodal technologies
suchas CITE-seq by simultaneously leveraging the unsupervised nature
of transcriptomic data with the robust protein measurements from
oligo-tagged CITE-seq antibodies”. We annotated clusters at three dif-
ferentlevels of resolution (Fig. 1b, Extended Data Fig. 2a and Methods).

Comparison of sample expression profiles across timepoints
indicated astrongactivation of interferon-signaling pathways originat-
ing at day 2 and dampened at day 10 and day 28 (Fig. 1c and Extended
Data Fig. 2b), consistent with previous studies'". This response was

most strongly activated in innate immune response components but
was weakly detectable in lymphoid cell types as well (Extended Data
Fig. 2c). The mRNA vaccine-responsive gene set was accompanied by
the clear upregulation of cell surface protein biomarkers, including
CD64 and CD169, in myeloid cell types” (Extended Data Fig. 2d). We
next explored the changes in cellular density and abundance across
the four vaccination timepoints and identified two subsets of CD8*
T cells. ‘Vaccine-induced group A CD8" T cells’ (hereafter VI-A CD8"
T cells) and ‘vaccine-induced group B CDS8" T cells’ (VI-B CD8" T cells;
Fig. 1d,e) were minimally present in day O samples but increased in
abundance moderately after primary vaccination (day 2), and sharply at
day 28 (after boost vaccination) across multiple donors (Extended Data
Fig. 2e,f). We observed consistent results using either cluster-based
differential abundance testing or alternately, using Milo, aframework
for identifying differences in cellular density without reliance on cel-
lular labels™ (Fig.1d,e). We observed only mild changesin cellular den-
sity among CD4" T cell subgroups when comparing samples between
day 0and day28 (Fig.1d,e), likely due to the differential kinetics of CD4"
and CDS8' T cell responses™"”.

Both VI-A and VI-B CD8" T cell subsets exhibited upregulation
of protein biomarkers previously associated with activation during
antigen-specific responses®?, including CD38, HLA-DR, and CD278
(ICOS) (Fig. 1f and Extended Data Fig. 2g). Inclusion of protein data
using WNN analysis was essential for identifying and defining these
subgroups, as they were not readily identifiable using unsupervised
analysis of the transcriptomic dataalone. Once identified, differential
analysis revealed that VI-A and VI-B CD8" T cells differed primarily in
the expression of cell cycle genes (Fig. 1g), whereas a module of 197
genes (referred to hereafter as VI-GEM) was consistently upregulated
across both groups (Fig.1g, Extended Data Fig. 2h and Supplementary
Table 3). This gene set was enriched for cytotoxic effector, TCR signal-
ing, antigen processing and metabolic and respiratory gene categories
(Extended DataFig. 2i). We also observed an upregulation of multiple
deaminase proteins (such as APOBEC3H, APOBEC3G, APOBEC3C and
ADA), that canintroduce mutations as part of the antiviral response*-*
(Fig. 1g and Extended Data Fig. 2j). These observations indicated the
presence of a proliferative (VI-B) and non-proliferative (VI-A) CD8"
T cell populations, and we also discriminated between proliferative
responses (unique to VI-B) and activation responses (shared between
VI-A and VI-B), which might otherwise blend together.

For additional validation, we reanalyzed a previously published
CITE-seqdataset profiling asimilar SARS-CoV-2 mRNA vaccinationtime
course across six individuals®. Although the original study"” did not
identify populations of vaccine-induced CD8" T cells in unsupervised
transcriptomic analysis, we tested if supervised reference mapping
workflows had higher power to detect subtle cell states. Mapping
the query onto our newly generated reference identified both VI-A
and VI-B CD8" T cell populations (Extended Data Fig. 3a) and showed
theysharplyincreasedinfrequency at day 28 (Extended Data Fig. 3b),
upregulated the expression of CD38 and ICOS and highly expressed the
VI-GEM (Extended DataFig.3c). These cellswere broadly annotated as
CDS8' T cellsin the original study® but were mixed together with other
cell states based on scRNA-seq alone, indicating the importance of
utilizing multimodal data for identifying rare cell populations that may
otherwise be overlooked. Together, the multimodal analysis identified
CD8'T cell subpopulations and molecular signatures that were induced
after vaccination and were reproducible across donors and studies.

ASAP-seq identifies enhancersin vaccine-induced cells

Although transcriptomic measurements arerich descriptorsofacell’s
current state and molecular output, ATAC-seq profiles are uniquely
suited for identifying enhancers that exhibit heterogeneous activ-
ity and regulators that establish and maintain cellular state. We col-
lected ATAC-seq profiles from the same biological samples as the
CITE-seq data but from different cell aliquots. Given the challenges
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Fig.1|Multimodal identification of SARS-CoV-2 mRNA vaccine-induced
CDS8'T cells. a, Overview of study design, in which PBMCs were collected from
six healthy donors at day 0, day 2, day 10 and day 28 during the BNT162b2 mRNA
vaccination process and comprehensive analyses using both CITE-seq and ASAP-
seqwere performed on these samples. b, Uniform manifold approximation and
projection (UMAP) visualizations of 113,897 single cells obtained as in a profiled
with CITE-seq and clustered by a weighted combination of RNA and protein
modalities. Cells are colored based on level-2 annotation (level-1and level-3
annotations; Extended Data Fig. 2a). ¢, Single-cell heatmap showing activation
of interferon response module within CD14" monocytes. d, Milo analysis of
differentially abundant cell states between day O and day 28 samples asin panel
a.UMAP on the left is color coded by timepoint. Right plotindicates embedding
ofthe Milo differential abundance. Each node represents a neighborhood, node
size is proportional to the number of cells, and neighborhoods are colored by

the level of differential abundance. Nhood, neighborhood. e, Beeswarm plot
showing the log-fold distribution of cell abundance changes between day 0 and
day 28 samples as in a. Neighborhoods overlapping the same cell population
are grouped together, neighborhoods exhibiting differential abundance are

coloredinred.f, Violin plots with protein upregulation of CD38

,HLA-DR and

CD278(1COS) inVI-Aand VI-B CDS8" T cells compared with CD8" naive, CD8" Ty,
and CD8' Ty, cells. g, Heatmap showing mRNA expression of 50 marker genes
for VI-A CD8" T cells, as well as cell-cycling genes highly expressed in VI-B CD8*

T cells. For visualization purposes, arandomly selected subset of CD8" Ty, cells
are presented. HSPC, hematopoietic stem and progenitor cell; NK, natural killer;
pDC, plasma dendritic cell; T, central memory T cell; T, effector memory
Tcell. ASDC, AXL" dendritic cell; CTL, cytotoxic T cell; dnT, double-negative
Tcell; gdT, gamma-delta T cell; MAIT, mucosal associated invariant T.
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inidentifying and annotating high-resolution cellular states from
SCATAC-seq profiles***, we aimed to integrate chromatin accessibil-
ity profiles with the CITE-seq measurements. To integrate datasets
across modalities, we applied a ‘bridge integration’ approach, which
can map scATAC-seq query datasets onto sCRNA-seq references using
apublicly available ‘10x Multiome’ dataset as a bridge”. Applying this
workflow (Methods), we annotated chromatin accessibility profilesin
the ASAP-seq datasets by transferring labels from the CITE-seq refer-
ence (Fig. 2a). We validated the inferred annotations using cell sur-
face protein datathat was simultaneously generated during ASAP-seq
(Extended Data Fig. 4a). For example, predicted monocytes were
uniquely enriched for expression of CD14, predicted B cells expressed
CD19, predicted dendritic cells upregulated FCER1A, and predicted
CD8" T and CD4" T cells expressed CD8 or CD4 surface markers
(Extended Data Fig. 4a).

Examination of the accessibility changes in the innate immune
response did not indicate marked remodeling of chromatin acces-
sibility at interferon-responsive genes in myeloid cells, despite their
transcriptomic upregulation (Fig. 2b,c and Extended Data Fig. 4b,c).
In a genome-wide analysis, which included both proximal and distal
regions (Methods), the chromatin accessibility profiles of CD14" mono-
cytes were highly concordant before and after vaccination (R=0.997;
Fig. 2c). Although we did detect a small number of peaks (n=106)
that were differentially accessible across timepoints, these changes
reflected minor quantitative fluctuations, as opposed to the opening
or closing of regulatory regions (Fig. 2c and Extended Data Fig. 4c).
We observed similar findings for major subsets of B, T and NK cells
(Extended Data Fig. 4d and Supplementary Table 4). These results
suggested that the epigeneticlandscape required to drive the transcrip-
tional innate immune response was already established before vacci-
nation, enabling the cells to quickly respond to external stimuli****?
We also identified nearly identical patterns when we reanalyzed a
published dataset® of chromatin accessibility profiles before and after
influenza vaccination (Extended Data Fig. 5; R=0.998). These results
suggested that chromatin accessibility patterns in myeloid cells exhib-
ited only minor fluctuations during the initialinnateimmune response,
and highlighted how pre-established cell-type-specific differences in
accessibility correlated with future functional potential.

Thebridge integration workflow also annotated VI-ACD8' T cells
in the ASAP-seq datasets (Fig. 2a). These cells increased sharply in
frequency after boost vaccination at day 28 (Fig. 2d), and upregulated
the expression of CD38, HLA-DR and ICOS (Fig. 2e and Extended Data
Fig. 6a). Because the cell surface protein measurements were not con-
sidered during the bridge integration procedure?, their consistency
with the CITE-seq dataset represented an independent validation
of our annotations. Moreover, VI-A CD8" T cells exhibited elevated
gene ‘activities’ for the VI-GEM identified by CITE-seq (Methods and
Extended Data Fig. 6b). We did not observe a second population of
proliferating cells in the ATAC-seq data (Fig. 2a), likely due to only
subtle differences in chromatin accessibility that can accompany cell
cycle changes®.

Next, we explored unique features of the chromatin landscape
in VI-A CD8' T cells. We identified 2,678 peaks exhibiting differential
accessibility in VI-A CD8" T cells (Supplementary Table 5) compared
toall other CD8" T cell subsets (Methods). These peaksincluded puta-
tive enhancer elements upstream of the CD38 and ICOS loci (Fig. 2f).
Globally, 1,350 peaks were either proximally located (within 20 kb), or
linked through publicly available promoter-capture Hi-C data®® from
CDS8" T cells, to genes that were upregulated in vaccine-responsive
CDS8" T cells. However, among the 864 peaks that could confidently be
assigned a target gene based on Hi-C data, 444 peaks did not exhibit
similar transcriptional differences, suggesting the pre-establishment
ofachromatinlandscape that would enable the downstream function
ofthese cells. Enhancers specific to vaccine-specific cells harbored 13
SNPs previously reported to be highly associated (Pvalue > 5x107%) with

COVID susceptibility”, including within elements adjacent to FYCOI,
CCR3, CCR2 and IFNAR?2 (Fig. 2f).

Next we asked if the ASAP-seq data could identify specific regula-
torsrequired for the developmentand maintenance of VI-ACDS8" T cells.
Toaccomplish this, we searched for transcription factor binding motifs
that were overrepresented in specific peak subsets. We found that
the motif for the transcriptional regulator BATF3, which is required
for the specific development of CD8* memory T cells®, exhibited the
strongest association with increased accessibility in VI-A CD8* T cells
(Fig.2g).Because BATF3 hasbeen characterized as acritical regulator
of DC development®**, these observations suggested that VI-A CD8"
T cells contributed to CD8* T memory responses.

VI-GEM expression correlates with clonal expansion

Although our previous analyses identified and characterized CD8*
T cell populations that were induced in response to vaccination,
our initial dataset could not establish if these subgroups were
mounting antigen-specific responses. To address this, we used dual
DNA-oligo-tagged and fluorochrome-tagged peptide-class | MHC
multimers®, constructed off a dextran backbone (‘dextramers’). We
selected reagents designed to bind TCRs specific forimmunodomi-
nant SARS-CoV-2 spike peptides, which enable direct ex vivo detec-
tion of antigen-specific T cells by either sequencing or cytometry.
We selected eight total donors carrying HLA-A*02:01 or HLA-B*07:02
alleles and assayed for dextramer-positive (Dex") cells initially by flow
cytometry. We validated five such dextramer reagentstoincludein our
panel (each targeting a separate peptide epitope), by demonstratinga
robust and specific appearance of Dex*CD8" T cells after vaccination
(Extended Data Fig. 7a). To explore the heterogeneity within respond-
ing cells, we performed additional single-cell profiling using Expanded
CRISPR-compatible CITE-seq (ECCITE-seq), which enables joint pro-
filing of immunophenotypes, 5-end transcriptomes and immune
repertoires®. We included the dextramer panel to detect the T cells
specific for SARS-CoV-2 spike protein. To enhance recovery of rare
cell states, we restricted the analysis to day 28 PBMCs and performed
pre-enrichment steps through flow cytometric labeling and sorting,
with 25% representing all CD8" T cells, and 75% additionally enriched
for CD38 expression and/or dextramer binding (Methods). Our final
dataset consisted of 31,396 single cells.

Clustering and visualization of cells using WNN analysis based on
three modalities (protein, transcriptome and T cell receptor sequence)
allowed us to define cellular state based on all data types (Methods).
We identified six cell clusters, including naive CD8* T and CD8" central
memory T cell subsets (Fig. 3a). In addition, matching the CITE-seq
dataset, we observed both cycling (‘antigen_prolif’) and non-cycling
(‘antigen’) subsets of CD8" T cells that exhibited elevated expression
of VI-GEM, as well as CD38 and HLA-DR surface proteins (Fig. 3a,b).
These clusters were strongly enriched for Dex"* cells (Fig. 3c) as well
aslarge and expanded cell clones (Fig. 3d and Extended Data Fig. 7b).
We also found extensive TCR sharing between the antigen_prolif and
antigen groups (Fig. 3e).

Ourenrichment strategy enabled us to explore further sources of
cellular heterogeneity amongst CD38'CD8' T cells (Fig. 3a,b). We found
that a subset of CD38"CD8" T cells uniquely expressed the inhibitory
receptor KLRG1(Fig.3a,b).Incontrast to the antigen and antigen_prolif
clusters, CD38'KLRG1'CD8" T cells were not enriched in Dex" cells
(Fig. 3¢), did not show evidence of expanded clonality and did not
show enriched overlap with TCRs on antigen-specific cells (Fig. 3d,e).
Toaddress the possibility that the CD38 ' KLRG1'CD8' T cells harbored
TCRs not recognized by the dextramer panel, we examined a large
external database of TCRP sequences®”*® specific for SARS-CoV-2 spike
protein (Methods). Unlike CD38"'KLRG1 CD8" T cells, which showed
marked overlap with SARS-CoV-2 TCRs, CD38'KLRGI'CD8" T cells
had minimal overlap with these documented clonotypes (Fig. 3f and
Methods). They also exhibited weaker expression of VI-GEM (Fig. 3b),
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measuring the correlation between day 0 and day 2 pseudobulk chromatin

chr2 position (bp)

chr3 position (bp)

accessibility of CD14" monocytes. Each point corresponds to a called scATAC-

chr3 position (bp)

chr3 position (bp)

seq peak. d, UMAP visualization of scATAC-seq data on day O and day 28 after
bridge integration. VI-A CD8" T cells are highlighted in red. e, Expression of CD38
proteinin VI-ACD8' T cells, CD8" naive, CD8" T.,and CD8" Ty, cells. f, Chromatin
accessibility patterns around CD38, ICOS, FYCO1, CCR3 and CCR2 gene loci on day
28inVI-ACDS8'T cells, CD8" naive, CD8" T, and CD8" Ty, cells. Single-nucleotide
polymorphism (SNP) sites are annotated as yellow lines. g, Motif-based
overrepresentation analysis of transcription factor binding sites in the top 1,000
peaks with differentially enriched accessibility in the VI-ACD8" T cells.
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Fig.3| Antigen-specific clonal expansion of vaccine-induced CD8* T cells.

a, UMAP visualizations of 31,396 single cells profiled with ECCITE-seq and
clustered based on weighted combination of RNA, protein and T cell receptor
information. b, Violin plots for CD38, HLA-DR and KLRG1 protein expression, and
the expression of VI-GEM in antigen, antigen_prolif, bystander CD8" T cells, CD8"
naive, CD8" T and CD8" Ty, cells. ¢, UMAP visualization from a, with Dex" cells
highlighted in red (left) and the fraction of cells harboring spike-specific TCRin
each cluster (right). ATCR clone is considered spike-specific when at least one
cellof the cloneis Dex*. Boxplot shows variation across n =10 samples. d, UMAP
visualization froma. Cells are colored by the expansion index of their associated

clonotype based on TCR sequence information. e, UMAP visualization froma.
Cells representing the six most abundant spike-specific clones are highlighted.
f, Boxplots showing the fraction of cells harboring TCR matching SARS-CoV-2
spike antigens in public databases (n =10). g, Boxplots showing the single-cell
expression of the VI-GEM in antigen and antigen_prolif CD8" T cells. Cells are
grouped by labels in panel d. Hyper: n = 815; large: n = 4058; medium: n = 5531;
small: n=4709; rare, n = 506. For the boxplotsin panels c, fand g, the central
line represents the median, whereas the upper and lower limits of the boxes
correspond to the upper and lower quartiles, respectively. The whiskers extend
to1.5times the interquartile range (IQR).

suggesting that CD38"'KLRG1'CD8" T cells may represent cells express-
ing TCR with weak affinity for spike protein antigens, or alternatively,
represent TCR-independent ‘bystander’ responses, such as those pre-
viously described within the microenvironments of tumors and other
pathogens®*°,

Multiparameter flow cytometry on the Dex" gate indicated that
these cells were KLRG1  inaddition to being CD38"HLA-DR" (Extended
Data Fig. 7a), consistent with our initial CITE-seq. As these three
markers represented prominent features from the CITE-seq and

ECCITE-seq experiments, we gated for this population by flow cytom-
etrywithinall CD8'T cells and compared across timepoints (Extended
Data Fig. 7c,d). We observed a marked induction of this population
on day 28 (Extended Data Fig. 7d), an observation agnostic to the
donor’s HLA haplotype or immunopeptidome. We conclude that
CD38'HLA-DR'KLRG1"CDS8" T cells were the most highly enriched for
antigen-specific CD8'T cells.

The rate of clonal expansion of antigen-specific T cells is an indi-
cator of the strength of the immune response*. When we searched
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for gene expression patterns that were correlated with clonal size,
even among antigen-specific cells, we found that the expression of
VI-GEM was upregulated in antigen and antigen_prolif subsets (Fig. 3b)
and that the module score exhibited a dose-dependent relationship
with clonal size (Fig. 3g). Of note, the VI-GEM was shared in both anti-
gen_prolifand antigen groups (Fig. 3b), and therefore did not include
proliferation-dependent genes that would be expected to correlate
with clonal size. Instead, expression of VI-GEM likely reflected the
signal strength of the original TCR-peptide interaction, an essential
parameter which regulates the magnitude of clonal expansion and
immune response****, Taken together, the multimodal ECCITE-seq
dataset verified the spike-specific nature of vaccine-induced CD8"
T cells, nominated specific biomarkers that subdivided heterogene-
ous activated populations, and identified specific gene modules and
surface markers that could be used to predict clonal dynamics, even
inthe absence of HLA haplotype and immune repertoire information.

CDS8'T cell responses predict COVID-19 progression

To ask if VI-GEM was conserved in samples from patients infected
with SARS-CoV-2, we first examined a published dataset that used a
SARS-CoV-2 dextramer panel to identify long-lived memory CD8" T cells
during acute SARS-CoV-2infection**. Although unsupervised clustering
ofthe published scRNA-seq data** did not clearly identify Dex*-enriched
CDS8' Tcell clusters (Fig. 4a), we found that the expression of the VI-GEM
had high predictive power (receiver operating characteristic = 0.88)
toaccurately predict Dex" cells (Fig. 4b). We observed that the VI-GEM
originallyidentified in vaccinated datasets was highly conservedin the
Dex" cells in the dataset** of SARS-CoV-2-infected samples (Fig. 4¢).

SARS-CoV-2-specific adaptive immune responses are associated
withmilder disease®. To test whether the abundance of antigen-specific
CDS8" T cells correlated with disease phenotype and progression, we
reanalyzed alarge ECCITE-seq dataset (transcriptome, surface protein
and TCR) from the COVID-19 multi-omics blood atlas (COMBAT)*,
which contains 65,889 CD8" T cells prospectively collected from 10
healthy controls and 61 COVID-19 patients at the time of admission to
inpatient hospital care,and who subsequently manifested mild, severe
or critical disease*. Applying the WNN integrative analysis pipeline,
weidentified analogous clusters enriched in the expression of VI-GEM
as well as expression of CD38 and HLA-DR (Fig. 4d and Extended Data
Fig. 8a), suggesting these populations were specific to SARS-CoV-2
antigens. Abundances of both antigen_prolif and antigen clusters
were sharply elevated inall SARS-CoV-2-infected samples compared to
healthy controls (Fig. 4e and Extended Data Fig. 8b). We also identified
CD38'KLRG1 and CD38'KLRG1* CD8' T cells (Fig. 4d and Extended
Data Fig. 8a). In terms of abundance, CD38*KLRG1 CD8" T cells (both
‘antigen’ and ‘antigen_prolif’ clusters), but not the CD38°KLRG1'CD8"
T cell clusters, were associated with the severity and trajectory of
COVID-19 (Fig. 4f). Therelative abundance of antigen_prolifand antigen
cellswassharplyincreased in SARS-CoV-2-infected samples compared
to healthy controls (Fig. 4f) but were progressively lower across the
spectrum of mild to critical patients (Fig. 4f). Moreover, we found that
patients who exhibited severe disease at the time of sample collection
butlaterrecovered (n =16) exhibited anincreased relative abundance
of CD38"'KLRGI' CDS8" T cells, compared to patients with severe disease
who further deteriorated (Fig. 4g). This suggests that patients who did
not mount effective cellular immune responses were more likely to
succumb to critical COVID-19.

We next explored the relationship between immune repertoire
sequences and molecular state, which were simultaneously measuredin
the COMBAT dataset. As expected, antigen and antigen-prolif clusters
were enriched for cells participatingin either large- or hyper-expanded
clones (Extended Data Fig. 8c). Only CD38"'KLRG1'CDS8" T cells exhib-
ited enriched overlap with a public database of SARS-CoV-2-specific
TCR sequences (Extended Data Fig. 8d), indicating that in both vac-
cination andinfection, KLRG1 expression demarcated heterogeneous

immune responses amongst activated and responding CD8" T cells.
Lastly, we observed extensive TCR sharing between different CD8"
Tcellsubsets (Fig. 4h), indicating evidence for lineage-specific differ-
entiation trajectories. Exploring the TCR clonotype overlap between
antigen-specific CD38'KLRG1 CD8" T cells with CD8" T cell subsets,
we found the most substantial overlap was with highly cytotoxic
CD127 CD45RACD27°CD8" T cell subsets, and lower overlap with
CD127 CD45RA'CD27 CDS8" Tya cells (Fig. 4h). The molecular state
of differentiated T cells sharing CD38'KLRG1™ TCRs also varied as a
function of disease severity (Fig. 4i). Nearly 25% of TCR sequences
observedin predicted antigen-specific subsets exhibited clonal over-
lap with cytotoxic subsets of CD127"CD45RA"CD27 CD8" T, cells in
COVID-19 patients with mild SARS-CoV-2 infection, but this percentage
was sharply reduced in severe (median of 7.74% for antigen cells, 10%
for antigen_prolif cells) or critical COVID-19 patients (median of 7.14%
for antigen cells, 12.1% for antigen_prolif) (Fig. 4i). This level of clonal
overlap was not observed in CD127 CD45RA"CD27  CD8" Tgyra cells
(Extended DataFig. 8e), and asaresult, the distribution of cells harbor-
ing expanded antigen-specific TCR sequences was skewed toward a
Tewra Phenotype in these samples (Fig. 4j and Extended Data Fig. 8f).
These findings were not driven by potential correlations between dis-
ease severity and time since onset (Extended Data Fig. 8g). Theseresults
showed that the abundance of CD38"HLA-DR'KLRG1” CD8" T cellsand
their molecular differentiation outcomes during SARS-CoV-2 infection
were predictive of disease severity and clinical progression.

Discussion

Although the protein biomarkers CD38 and HLA-DR identified here
have been previously used to characterize antigen-specific CD8" T cells
in flow cytometry assays>**, our unsupervised single-cell profiling strat-
egyidentified additional heterogeneity within thisimportant subset.
Inadditiontoidentifyingboth cycling and noncycling antigen-specific
CDS8' T cells, we observed heterogeneity in the expression of KLRG1
within this group and found that KLRG1™ subpopulations were most
likely to contain highly clonal CD8" T cells that exhibited binding to
spike-specific dextramer reagents. Although KLRG1 is a highly cyto-
toxic molecule, within antigen-specific T cells, its expression has been
linked to ashort-lived phenotype*~*°. Our results suggested that KLRG1
distinguished cells with distinct antigen specificities, whichlikely con-
tributed to downstream differences in their phenotype and persistence.

Using molecular signatures from vaccinated samples, we anno-
tated antigen-specific CD8' T cells in additional published datasets”,
including samples from patients with COVID-19 (refs. 44,46). In these
samples, we also leveraged immune repertoire information to link
antigen-specific CD8" T memory precursor cells with their differenti-
ated progeny. We found that disease severity and outcome correlated
notonly with the abundance of the CD8* T memory precursor cells but
also with the molecular state of their descendants, and in particular,
we found that donors who manifested extensive TCR sharing between
memory CD8" T precursor cells and cytotoxic CD8" T cell progeny
were associated with amilder clinical course. These results exemplify
apotential mechanism by which cellularimmunity may play animpor-
tantroleinresolving viral infection.

Although our study is rooted in analyzing mRNA vaccination and
coronavirus disease, the antigen-specific CD8" T cell subpopulations
we uncover are likely to represent features of humanimmune responses
more broadly. For example, a study identified a subpopulation of cir-
culating CD8" T cells, similarly enriched for expression of CD38 and
HLA-DR, whose abundance within the primary tumor and within PBMCs
changed after a 3-week course of checkpoint blockade therapy®’.In a
separate context, the study also identified heterogeneity in the expres-
sion of KLRG1 and found that the specific abundance of PDI'KLRG1™
cells within that subset positively correlated with optimal induction of
tumor antigen-specific T cells and overall treatment outcome®. Taken
together, these results demonstrated the potential for monitoring
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Fig. 4 |Inferred spike-specific T cellsin SARS-CoV-2-infected samples.

a, UMAP visualization from Adamo et al.*, representing 6,070 CD8" T cells
collected during acute COVID-19 disease. Dex" cells are highlighted inred. b,
Violin plots showing distribution of expression of VI-GEM in Dex” and Dex"

cells (left) and receiver operating characteristic (ROC) curve assessing the
ability of the expression of VI-GEM to correctly predict Dex” cells (right). c,
Expression of top 40 genes of VI-GEM in Dex™ and Dex" cells. For visualization
purposes, arandomly selected subset of Dex™ cells are presented. d, WNN UMAP
visualization of 65,889 single cells from the COMBAT dataset. WNN performed
based on RNA and protein modalities. e, Milo analysis of differential abundance
changes in healthy versus SARS-CoV-2-infected groups, as in Fig. 1e. f, Boxplots
showing donor fraction of antigen, antigen_proflif, and CD38*KLRG1" cells
amongst all CD8T cells, grouped by disease state. n =71 donors (HV:n =10;
mild: n=17; severe: n = 28; critical: n = 16), and P values from two-tailed Wilcoxon
rank-sum test. g, Boxplots showing donor fraction of antigen, antigen_prolif,

and CD38'KLRG1" cells amongst all CD8" T cells in patients exhibiting severe
symptoms grouped by their clinical outcome. Deteriorated, n =12; stable/
recover, n=16.h, UpSet plot visualizing the overlap of TCR clonotype across
antigen, antigen_prolif, cytotoxic and Tgyr, CD8" T cells. i, Fraction of TCR
clonotypesidentified in either antigen cells (right) or antigen_prolif cells (left)
that were also observed in cytotoxic Ty, cells. Boxplots show variation across
61diseased donors (mild: n=17; severe: n =28; critical: n=16). Pvalues were
determined by two-tailed Wilcoxon rank-sum test. j, Density plots showing the
abundance distribution of all CD8" T cells harboring the same TCR clonotypes
identified in antigen and antigen_prolif CD8" T cells. For the boxplots in panels
f,gandi, the central line represents the median, whereas the upper and lower
limits of the boxes correspond to the upper and lower quartiles, respectively.
The whiskers extend to 1.5 times the IQR. HV, healthy volunteers; Tgyga, effector
memory T cells re-expressing CD45RA.
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antigen-specific T cells to inform our understanding of disease and
treatment trajectories.
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Methods

Ethics statement

All research complied with relevant ethical regulations, as outlined
by New York University’s Institutional Review Board (across protocols
18-02035,18-02037 and 12-01137).

Human participants and PBMC collection

PBMCs were collected from observational studies of adults (Supple-
mentary Table1) who werereceiving BNT162b2 vaccination and willing
to participate, excluding individuals with severe anemia or inability
to comply with procedures. The specific subset of donors included
12 females and 4 males of variable racial and ethnic background, aged
17 to 58 years (Supplementary Table 1). All groups were provided with
written consent for enrollment with approval from the New York
University Institutional Review Board (across protocols 18-02035,
18-02037 and 12-01137). Participants had blood drawn at a baseline
beforehand (day 0), on day 2 and day 10 after prime vaccination, as
well as day 28 (7 days after boost vaccination at day 21), with 1-2 days
flexibility inscheduling. Sample size calculations were not performed
before the start of these nonrandomized, non-interventional studies,
and outlier analyses were not performed.

Venous blood was collected by standard phlebotomy (total
volumes ranging 40-80 ml). Within 5 h of room-temperature trans-
port from an outpatient clinic, PBMCs were isolated from heparin
vacutainers (BD Biosciences), followed by processing using SepMate
(STEM-CELL Technologies), Ficoll-Paque Premium with density 1.077
(Cytiva) and Hank’s balanced salt solution (ATCC), inaccordance with
manufacturers’recommendations. Aliquots of 1 ml were slowly frozen
overnight within Corning CoolCell containers placedin-80 °C freezers,
with cells suspended in complete media (RPMI 1640 supplemented
with 40% fetal bovine serum) along with 10% DMSO, and after 2 days,
all vials were transferred to liquid nitrogen.

Flow cytometry and sorting

For initial CITE-seq and ASAP-seq experiments, PBMCs from all time-
points (days 0,2,10 and 28) across 3 donors (12 specimens in total) were
simultaneously thawed and promptly transferred to a 96-well V-bottom
plate. This enabled further processing in parallel with multichannel
pipettes. The same workflow was repeated with 3 additional donors, to
generate the aggregate datain Figs.1and 2. Each aliquot of 1-3 million
frozen PBMCs was thawed into 10 ml complete media, centrifuged at
300 RCF for 10 min at 4 °C and resuspended in 200 pl conventional
cytometry buffer (PBS with 4% fetal bovine serum), DAPI and 2 mM
EDTA. Samples were passed through a 70-micron filter, and single
cellswere sorted on a FACSAriall (BD Biosciences) usinga100-micron
nozzle. Theinstrument operated via FACSDiva software, with post-sort
analysis performed on FlowJo 10.8.1 (Tree Star). Gating excluded cel-
lular debris and doublets based on FSC and SSC profiles and excluded
dead cellsbased on DAPI. Cells were collected into 5 ml complete media
separately maintained onice until all sorting concluded, at which point
all tubes were simultaneously centrifuged. Individual pellets were
resuspended with 100 pl staining buffer (PBS with 2% BSA and 0.01%
Tween) along with unique hashing antibodies, followed by incubation
onicefor15 min. Hashed samples were washed three times with 500 pl
staining buffer and then pooled together. Viability (greater than 92%)
and final cell counts were assessed with trypan blue and Countess II FL
automated counter (ThermoFisher).

CITE-seq library preparation

Workflows for CITE-seq and cell hashing were performed as previ-
ously described". An aliquot 0f 300,000 sorted and hashed cells
was stained with 173 TotalSeq-A antibody panel (BioLegend, Catalog:
399907. Supplementary Table 2). After incubating on ice for 30 min,
cells were washed three times with 1 ml staining buffer to remove
excess antibody. Cells were passed through a 40-micron Flowmi

filter, resuspended in PBS and ultimately loaded onto four lanes of
10x Genomics Chip G, following manufacturer protocols.

RNA library construction was performed according to the 10x
scRNA-seq protocol, whereas the ADT and HTO library constructions
were conducted following the CITE-seq protocol (https://citeseq.
files.wordpress.com/2019/02/cite-seq_and_hashing_protocol_190213.
pdf). During cDNA amplification (Step 2.2a), 0.2 uM of ADT additive
primer (5-CCTTGGCACCCGAGAATTCC-3’) and 0.1 uM HTO addi-
tive primer (5GTGACTGGAGTTCAGACGTGTGCTC-3’) were added to
the reaction mixture to enrich antibody tags. During cDNA cleanup
(Step 2.3), supernatant containing the antibody tags was saved and
further purified with 2x SPRI. The eluate was split into two tubes for
ADT and HTO libraries. After cDNA cleanup, additional PCR reactions
generated ADT and cell hashing libraries. These reactions were set
up with KAPA Hifi Master Mix with the following primers: 10 pM 10x
Genomics SI-PCR primer (5’-AATGATACGGCGACCACCGAGATCT
ACACTCTTTCCCTACACGACGCTC-3’), and 10 pM Illumina TruSeq
DNA D7xx primer (5-CAAGCAGAAGACGGCATACGAGATXXX
XXXXXGTGACTGGAGTTCAGACGTGTGC-3’) for HTO library. 10 uM
10x Genomics SI-PCR primer, and 10 pM TruSeq Small RNA RPIx
primer (5-CAAGCAGAAGACGGCATACGAGxxxxxxxxGTGACTG
GAGTTCCTTGGCACCCGAGAATTCCA-3’) for ADT library. The PCR
products were purified with 1.6x SPRI.

SCATAC-seq library preparation

ASAP-seqwas conducted as previously described”, with minor modi-
fications. After staining with cell surface antibodies, cells were fixed
in 0.1% formaldehyde for 5 min at room temperature. After washing,
the cell pellet was resuspended in 100 pl lysis buffer (10 mM Tris-HCI
pH 7.4,10 mM NacCl, 3 mM MgCl,, 0.1% Tween-20, 0.1% Nonidet-P40
substitute (IGEPAL) and 1% BSA) and kept on ice for 5 min. The per-
meabilized cells were then resuspended with 1x Diluted Nuclei Buffer
(10x Genomics) to a concentration of around 5000 cells/pL. 10 pL
transposition mix (3 pl 10x ATAC Buffer B and 7 pl 10x ATAC Enzyme)
was mixed with 5 pl sample and incubated for1hat 37 °C. 0.5 pM bridge
oligo A(TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGNNNNNNNN
NVTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT/3InvdT/) was added to
the barcoding mix for proper amplification of antibody tags. The GEM
incubation was performed with the following PCR program: 40 °C for
5min,72°Cfor5min,98 °Cfor30 ;12 cyclesof 98 °Cfor10s, 59 °C for
30 s and 72 °C for 1 min; ending with hold at 15 °C. Post-GEM incuba-
tion cleanup and library construction were conducted following the
ASAP-seq protocol (https://citeseq.files.wordpress.com/2020/09/
asap_protocol_20200908.pdf).

Dextramer validation with spectral flow cytometry

We initially tested a panel of 16 commercially available dextramer
reagents (Immudex, catalog: RX19) designed to bind SARS-CoV-2 spike
protein MHC class I epitopes™® across 7 HLA haplotypes. All reagents
were tagged with a unique DNA oligo barcode as well as PE fluoro-
chrome. PBMC aliquots from all four timepoints for each donor were
thawed as above and were subsequently resuspended in a cytometry
buffer containing 0.1gram/liter of herring sperm DNA (ThermoFisher)
and Human TruStain FcX block (BioLegend). Cells were maintained in
thisblocking solution for 10 minatroom temperature, 1 pl of each test
dextramer reagent was subsequently added to each timepoint sample,
wells were thoroughly mixed, and the plate wasincubated at4 °Cinthe
dark for 10 min. A separate antibody staining panel was also prepared
in cytometry buffer, containing CD8a at 1:250 dilution, as well as 1:100
dilutions of CD2,CD4, CD14, CD16, and CD20. This was directly added
(100 pl/well) to each well after initial dextramer incubation, wells were
mixed, and the plate was returned to darkened 4 °C for 30 min. The
plate underwent four rounds of centrifuge at 300 RCF 4 °C followed
by wash with cytometry buffer, with final resuspensionincluding DAPI
and EDTA, followed by 70-micronfilter passage. Samples were analyzed
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onaCytek Aurora cytometer (Cytek) via SpectroFlow software (v3.03),
with careful precalibration of fluorochrome spectral profiles to maxi-
mize accuracy and sensitivity. The gating strategy included FSC, SSC;
DAPI-negative; singlets; Dump™ (CD14, CD16,CD20); CD2*; CD4~; CDS8";
andafinal dextramer/PE-positive gate to identify antigen-specific cells.
Consistent with previous reports**, only a subset of the 16 dextramer
reagents exhibited anacceptable minimal non-specific binding at day
0and day 2 timepoints, along with distinctly increased binding at day
28 timepoint for the same test donor (Extended DataFig. 7a).

We chose to use five dextramer reagents that met this validation
criteria, spanning the HLA-A*0201and HLA-B*0702 alleles. These were
loaded with the following spike (S) glycoprotein-derived immunodomi-
nant peptides and tagged with respective DNA barcodes: VLNDILSRL
with TTGTACTGAGTAAGC; YLQPRTFLL with CGGTTACAGTCGGTG;
RLNEVAKNL with TCCAGGAACCATATG; NLNESLIDL with CGGTGT-
TAACGCGTT; SPRRARSVA with AGCTACTCGCACCAC. Our experiments
also included a negative control reagent harboring the HLA-A*0201
allele loaded with a nonsense peptide (with barcode CAACTAATATG
GTTA), as well as a nonsense HLA loaded with a nonsense peptide
(withbarcode GCAGACTTAGAAGAA). We identified eight donors who
stood out in exhibiting sizable antigen-specific T cell populations
exclusively from day 28 specimens (binding one or more of the five
validated experimental dextramers) and used these samplesto enrich
for spike-specific CD8" T cells.

Enrichment of spike-specific CD8* T cells before ECCITE-seq
Tofacilitate the study of rare populations, we enriched for spike-specific
CD8'T cellsbefore performing ECCITE-seq analyses. We aimed to facili-
tate enrichment while also mitigating the effect of potential biases,
including the fact that no dextramer panel can successfully identify
all spike-specific cells across all possible clonotypes. We proceeded
to sort three populations: all dextramer-bound CD8" T cells (Bin 1),
allCD38'CD8" T cells (Bin 2) and an unenriched sampling of all CD8"
Tcells (Bin3). Given the relatively scarcity of dextramer-positive cells,
we enriched for this population first, and then obtained cells from the
subsequent bins.

We stained day 28 specimens with an aggregate panel of all 5 dex-
tramers and 2 negative control reagents. A PCR tube was first loaded
with 1.4 pl of 100uM d-Biotin (ThermoFisher) diluted in PBS (to mini-
mize non-specific binding). Then, 10 pl each dextramer specificity was
sequentially added, the panel was well mixed, and ultimately 8.93 pl of
this dextramer panel was added to each well of PBMC (consistent with
manufacturer’s recommended concentrations). A similar antibody
panelasabove (CD14, CD16,CD20,CD2,CD4 and CD8) was added after
dextramer, now also including CD38 at 1:100 dilution, as well as indi-
vidual CITE-seq antibodies targeting CD8 and CD38. Final incubation
with dextramers, fluorochrome antibodies, CITE-seq antibodies and
hashing antibodies ensued for 30 min at 4 °C in the dark. Subsequent
cell preparation followed our prior cytometry protocol, except sam-
ples were loaded onto FACSAriall for sorting. Gating was the same as
above, with an additional CD38-high population created off the CD8
parent gate.

Because dextramer-positive CD8" events were the rarest, we col-
lected all possible cells from this gate. Subsequently, we collected cells
fromthe second and third bins. We then mixed all three bins together, at
approximately10% (Bin1), 65% (Bin 2) and 25% (Bin 3) ratio. This mixed
poolwas used asinput for ECCITE-seq.

ECCITE-seq library preparation

Sorted cells were centrifuged at 400 RCF for 8 min at 4 °C and then
resuspended in staining buffer. TotalSeq-C human cocktail (BioLe-
gend) (BioLegend, Catalog: 399905. Supplementary Table 2) was
added for the surface protein staining, on ice for 30 min. After wash-
ing three times with 1 ml staining buffer, cells were resuspended in
PBS and the cell concentration was adjusted to about 2000 cells/pL.

Cells were loaded onto the 10x Chromium Next GEM Chip N, fol-
lowing manufacturer recommendations (Chromium Next GEM
Single Cell 5 HT Reagent Kits v2). During cDNA amplification,
0.2 uM each of ADT (5-CCTTGGCACCCGAGAATT«CxC-3’) and HTO
(5-GTGACTGGAGTTCAGACGTGTGC=T=+C-3") were added to thereac-
tion.RNA, HTO, ADT and TCRibraries were constructed as previously
described’®.

Sequencing

Sequencing libraries were pooled and sequenced on an Illumina
Novaseq using sequencing read lengths of 107 bp (read 1), 8 bp (i7
IndexRead), 16 bp (i5 IndexRead) and 107 bp (read 2). bcl2fastq was
used to demultiplex raw sequencing data.

Pre-processing, quantification and quality control of
sequencing data
Sequencing data from ADT and HTO libraries were both aligned and
quantified with salmon alevin (v1.8.0)°2. Custom ADT and HTO indi-
ces, based on the DNA oligo barcode sequences, were constructed
by running ‘salmon index’ command. Single-cell barcode quantifica-
tion matrices were generated by running ‘salmon alevin’ command
with the following parameters:-naiveEqclass,-keepCBFraction 1.0.
RNA-sequencing data were aligned to the GRCh38 human reference
genome using Cell Ranger (v6.0.0, ‘cellranger count’) with default set-
tings. ATAC sequencing data was aligned to the GRCh38 human refer-
ence genome using Cell Ranger ATAC (v2.0.0 ‘cellranger-atac count’)
with default settings. TCR sequencing datawas aligned to the GRCh38/
Ensembl human reference using Cell Ranger (v6.0.0, ‘cellranger vdj’)
with default settings.

For QC, we retained cells that passed the following thresholds:
For the RNA modality, we retained cells that surpassed 500 UMI, and
exhibited <15% of reads mapping to mitochondrial regions. For the
ATAC modality, we retained cells exhibiting at least 900 unique frag-
ments per cell. For the ADT and HTO modalities in CITE-seq, we retained
cells that surpassed 500 and 40 unique counts per cell, respectively.
For the ADT and HTO modalities in ASAP-seq, we retained cells that
surpassed 100 and 40 unique counts per cell, respectively. For each
experiment, weretained cells that passed the required thresholds for
each measured modality (that is, for CITE-seq data, we retained cells
that surpassed thresholds for RNA, ADT and HTO modalities). After
performing quality control, we identified and removed doublets based
onthe cell hashinglibraries, using the HTODemux function in Seurat”’
with default parameters.

Visualization and clustering of CITE-seq data

To perform clustering and annotation of the original CITE-seq dataset
(Fig. 1b), we first processed the RNA and ADT modalities separately,
performing normalization, dimensional reductionand dataintegration
steps. Subsequently, we performed WNN analysis" to jointly define
cellular state based on RNA and protein data.

Normalization and dimensional reduction. We first split the CITE-seq
datainto 24 separate groups based on the combination of donoriden-
tity (n = 6) and experimental timepoint (n = 4). We performed nor-
malization, feature selection and dimensional reduction oneachgroup
independently.

For the RNA modality, we performed normalization using sctrans-
formvl (ref. 53), using the SCTransform functionin Seurat. This proce-
durealso performs variance stabilization. We performed dimensional
reduction using principal-component analysis (PCA), retaining 40
dimensions. For the ADT modality, we performed normalization using
the centered log-ratio (CLR) transformation, implemented in Seurat
using the NormalizeData function with the arguments: normalization.
method = ‘CLR’, margin=2. We centered the values for each feature
to have a mean of 0 across all cells but did not scale features to have
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unit variance, using the ScaleData function in Seurat (arguments:
center=TRUE, scale=FALSE). We included all173 ADT features for down-
stream analysis. We performed dimensional reduction using PCA,
retaining 40 dimensions.

Data integration across donors and timepoints. We next applied
our ‘anchor-based’ data integration workflow' to integrate data-
sets produced across donors and timepoints. We performed sepa-
rate integration analyses on both the RNA and ADT modalities. For
the RNA modality, we selected a consensus set of 3,000 variable fea-
tures across the 24 experimental groups using the SelectIntegration-
Features command in Seurat, and augmented this list with the set of
up-regulated gene expression markersinVI-Aand VI-BCD8" T cells. We
performed integration as previously described using the ‘reciprocal
PCA’ workflow, as implemented using the FindIntegrationAnchors
(arguments: dims=1:40, reduction="rpca’) and IntegrateData (default
parameters) functions. This procedure returns asingle 40-dimensional
space (integrated.rna) that groups together shared cell states across
donors and timepoints based on their transcriptomes. For the ADT
modality, as also performed integration using the reciprocal PCA work-
flow, using all features and utilizing 40 dimensions. This procedure
returns asingle 40-dimensional space (integrated.rna.pca) that groups
together shared cell states across donors and timepoints based on their
protein data.

Data integration across modalities and cluster annotation. To define
cellstate based on aweighted combination of RNA and ADT modalities,
we constructed a WNN graph”. We constructed the graph using the
FindMultiModalNeighbors (arguments: reduction.list=c(‘integrated.
rna.pca’, ‘integrated.adt.pca’), dims.list=c(1:40,1:40)) function in Seu-
rat. The output of this procedure represents acellgraph (‘wsnn’) that
was used asinput for UMAP visualization, and graph-based clustering.
We performed UMAP visualization using the RunUMAP command in
Seurat with default parameters, and clustering using the FindClusters
functionin Seurat (arguments to FindClusters: graph.name = ‘wsnn’,
resolution = 1). We performed differential expression on all pairs
of clusters for both RNA and protein markers, and merged clusters
that did not exhibit clear evidence of separation, or where the only
differentially expressed features represented ribosomal genes or
mitochondrial genes. In some cases (particularly for extremely rare
celltypes that required ahigher resolution tobe correctly annotated
in our clustering), we increased the granularity of our clustering by
subsetting cells in an individual cluster, and rerunning FindClusters
on this subgraph. We initially categorized these clusters into eight
broad Level 1 groups, which were then further subdivided into 30
level 2 annotation categories that represented well-defined subtypes
of human immune cells. These subtypes were annotated manually,
but with the assistance of a previously defined set of markers from a
CITE-seq reference of circulating humanimmune cells”. Our 47 level-3
clusters represent the highest level of granularity using the markers
listed in Supplementary Table 6.

Differential cell-type abundance analysis using Milo

Toidentify differentially abundant cell states between day 0 and day 28,
we used Milo™ to analyze a WNN graph generated from CITE-seq data.
The precomputed shared nearest neighbor graph (‘wsnn’) wasfirst used
as input required for Milo using the ‘buildFromAdjacency’ function
(k=20,d =30).Next, cellswere assigned into representative neighbor-
hoods by running the ‘makeNhoods’ function (refined=TRUE, prop=0.1,
refinement_scheme = ‘graph’). Cells were counted in neighborhoods
using ‘countCells’ function. To test for differential abundance, the
‘testNhoods’ function was run (fdr.weighting = ‘graph-overlap’) with
design=-~batch +timepoint. Neighborhoods with SpatialFDR < 0.1 were
determined as statistically significant for differential abundance, and
were coloredin Fig.1d,e.

Gene module score

To examine the strength of interferon response, we downloaded the
list of genes that upregulated in response to alpha and gamma inter-
feron proteins from GESA website (https:/www.gsea-msigdb.org/). We
used the ‘AddModuleScore’ functionin Seurat to quantify the expres-
sion of this gene module in single cells. In Fig. 1c and Extended Data
Fig.2c,d, one donor was excluded due to aberrant interferon expres-
sionatday28.

To identify a module of genes that were biomarkers of
vaccine-induced cells, we performed differential expression analysis.
We used the ‘FindMarkers’command in Seurat to compare expression
of levels of VI-A CD8" T cells with CD8 TEM 3 cells (the most similar
CD8"Tcell clusteratlevel-3 resolution). We selected the top 200 genes
(ranked by adjusted Pvalue) with adjusted Pvalue < 0.001 and minimal
logFC threshold > 0.2. To ensure that our module was not contami-
nated by cell-cycle genes, we conservatively removed three genes that
exhibited minimal upregulationin VI-ACDS8" T cells, but were strongly
upregulatedin VI-BCD8" T cells. Theresulting 197-gene listis included
inSupplementary Table 3.

Mapping of ASAP-seq data with bridge integration

To analyze the ASAP-seq dataset (Fig. 2), we used our recently
developed ‘bridge integration’ workflow®, which integrates data-
sets that measure different modalities (that is, scATAC-seq and
scRNA-seq data) based on a ‘bridge’ dataset, where both modali-
ties are measured simultaneously (that is a10x multiome dataset).
We downloaded a publicly available multiome dataset from 10x
Genomics (https://www.10xgenomics.com/resources/datasets/
pbmc-from-a-healthy-donor-granulocytes-removed-through-
cell-sorting-10-k-1-standard-2-0-0), consisting of 11,351 paired
scRNA-seq and scATAC-seq profiles of human PBMC, and used this
asabridge dataset to annotate each of our 78,677 ASAP-seq profiles.

To perform annotation, we followed the steps detailed in the
cross-modality reference mapping Seurat vignette (https://satijalab.
org/seurat/articles/bridge_integration_vignette.html), utilizing our
CITE-seq dataset (Fig. 1b) as a reference, and our ASAP-seq dataset
as a query. The output of the bridge integration procedure includes
multi-level cell annotations for each ASAP-seq profile, and addition-
ally, visualizes the ASAP-seq dataset alongside our previously CITE-seq
derived UMAP embedding.

We also performed further downstream analysis of the ASAP-seq
dataset, based onthe cell annotations derived from bridge integration.
For these analyses, we performed TF-IDF normalization using the RunT-
FIDF functionin Signac** with default parameters. We used normalized
values to calculate ‘gene activity’ scores, which serve as a proxy for
expression levels based on the average chromatin accessibility within
and upstream of agene body, using the GeneActivity functionin Signac.
Toidentify differentially accessible peaksin vaccine-induced cells, we
used the ‘FindMarkers’ function in Seurat, utilizing alogistic-regression
based test™ (arguments, test.use =‘LR’, latent.vars = ‘peak_region_frag-
ments’), including cell-specific fragment countinformation to alleviate
differences in cellular sequencing depth. The full list of differential
peaksisincludedinSupplementary Table 5. We also used the top 1,000
differential peaks from this group as input to the FindMotifs func-
tionin Signac, which identifies enriched motifs from the JASPAR2022
database in this peak set compared to a background control set with
matched GC content.

Analysis of influenza vaccine ATAC-seq data

We downloaded and reanalyzed publicly available scATAC-seq data®®
of samples before and after vaccination with the trivalent inactivated
seasonal influenzavaccine (TIV) from GEO (GSE165906). We performed
the same pre-processing steps as performed on our ASAP-seq dataset,
using the 10x Genomiics cellranger-atac software to align to the GRCh38
genome. One sample (donor ID: 79) was excluded as an outlier from
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downstream analysis due to a low unique fragment number per cell
(1,158 reads/cell) compared with others (median: 7,576 reads/cell). We
integrated the ATAC modality across biological samples from different
donors and timepoints. We applied reciprocal LSI projection to find
integration anchors by running the ‘FindIntegrationAnchors’ func-
tioninSeurat (reduction = ‘rlsi’, dims=2:30). The final integration was
conducted using the ‘IntegrateEmbeddings’ function to integrate the
LSIcoordinates across the datasets, returning a single 30-dimensional
space (integrated_lsi). The integrated_Isi dimenstion of 2 to 30 were
used as input for graph-based clustering, cell annotation, and UMAP
visualization. To compare pseudobulk profiles of cells before and after
vaccination, we quantified genomic bins using the ‘GenomeBinMatrix’
functioninSignac (arguments: binsize =5,000), retaining bins with at
least one count.

Visualization, clustering and annotation of ECCITE-seq data
Each ECCITE-seq profile simultaneously measures RNA and ADT
modalities, but also measures immune repertoire sequences (TCR),
aswell as quantitative levels of the five MHC I Dextramers loaded with
SARS-CoV-2 spike peptides. To analyze this dataset, we used WNN analy-
sistojointly define cell state based on three modalities: integrated RNA,
integrated ADT and TCR. We also independently classified each cell as
Dex" or Dex . Cells were classified as Dex" if the UMI counts for any of
thefive spike protein dextramers were at least two times as high as the
UMI counts for the negative control. We annotated each TCR clone as
‘spike-specific’if any individual cellin the clone was annotated as Dex".

Performing WNN analysis on multiple modalities requires a
reduced-dimensional space to be independently generated for each
modality. For RNA and ADT modalities, we generated this graph using
the same normalization, data integration across samples and dimen-
sional reduction steps as we performed in our CITE-seq WNN analy-
sis. To learn a separate low-dimensional space based solely on TCR
sequences, we used clonotype neighbor graph analysis (CONGA™),
which uses the TCRdist distance metric® to quantify the similarity
between two cells based on shared TCR sequence features. The script
‘setup_10x_for_conga.py’ was first run in CONGA with ‘-no_kpca’ flag
to prepare input files. The script ‘merge_samples.py’ was run next to
merge the datasets frommultiple 10x lanes. By running the ‘run_conga.
py’ script with default settings, we performed kernel principal com-
ponents analysis (kPCA) based on the TCRdist distance matrix and
retained 40 components for downstream analysis. We used the three
dimensional reductions (integrated RNA, integrated ADT, TCR) to per-
formatrimodal WNN analysis, which returned asingle neighbor graph
that integrated data from all three modalities. This graph was used
asinput for UMAP visualization, clustering and annotation (Fig. 3a).

We also annotated individual T cells as belonging to rare, small,
medium, large or hyperexpanded clones using the scRepertoire*®
package. The clonotype was called using the combination of the amino
acidsequence of the CDR3 region for both the TCRax and TCRf chains.
Theavailable chain was used for cells where only one of the two chains
could beidentified. For cells with multiple expressed chains, only the
top two expressed chains were included for downstream analysis. We
assigned clonal size for each cell by running the ‘clonalHomeostasis’
function in scRepertoire with the proportional cutpoints: (rare =1 x
107%; small=0.001; medium = 0.01; large = 0.1; hyperexpanded =1).

We compared each TCR with publicly available databases of T cells
specific for SARS-CoV-2 peptide. We pooled TCRB sequences from the
ImmuneCODE COVID-19 TCR database® and the VDJdb COVID-19 TCR
database®. When comparing TCR from our vaccination dataset, we
restricted our overlap analysis to spike protein epitopes.

Analysis of publicly available SARS-CoV-2 vaccination and
infection datasets

We downloaded a publicvaccine CITE-seqdataset” from GEO (GSE171964)
and mapped these data using our previously described ‘refere

nce-based mapping’ workflow’. One sample (donor id: 2055) was
excluded from downstream analysis due to the low data quality of
scRNA-seq on both day 7 and day 21. Our CITE-seq dataset was used as
the reference, and RNA data from the public CITE-seq was used as the
query. Afteridentifying the anchors by running the ‘FindTransferAnchors’
functionin Seurat, the query datawas projected onto the reference UMAP
withthetransferred cell-type labels using ‘MapQuery’ function.

We obtained publicly available scRNA-seq dataset of acute
SARS-CoV-2 infection samples** from (https://zenodo.org/
record/5770747). The UMAPinFig.4ais areproduction of the visualiza-
tioninthe original manuscript. For further analyses, we used datafrom
two individual sample sets: (1) patients CoV2_T001- CoV2_TO010, acute;
(2) patients CoV2_T011-CoV2_T020, acute. Weretained cellswithatleast
500 detected UMI, mitochondrial read percentages lower than15%, and
where SNP-based demultiplexing was consistent with asingle donor. As
in the original manuscript**, we removed a particular dextramer (pep-
tide QYIKWPWYI) in the downstream analysis due to high nonspecific
binding. Asinthe originalmanuscript*, cells were labeled as CoV2-Dex”
whenthe UMIcount of a CoV2-Dextramer was higher than10 and the fold
change versus the negative control was more than five.

We obtained publicly available datasets from the COvid-19
Multi-omics Blood ATlas (COMBAT) Consortium®*, profiling human
PBMC samples across multiple human donors at different stages of
infection using ECCITE-seq (https://zenodo.org/record/6120249). We
considered CD8" T cells from healthy donors and patients with mild,
severe or critical symptoms. Cells with fewer than 300 detected genes
or mitochondrial read percentage higher than 10% were removed.
Donorsincludinglessthan200 CD8T cells after QC were excluded. To
perform integration across samples and modalities, we ran the same
anchor-based integration procedure separately on the RNA and ADT
modalities as we ran for our CITE-seq dataset. The WNN graph was
generated using 30 RNA and 20 protein dimensions. The WNN graph
was used as input for UMAP visualization and clustering.

Statistics and reproducibility

No statistical method was used to predetermine sample size. The
experiments were not randomized. The investigators were not blinded
to allocation during experiments and outcome assessment. In Fig. 1c
and Extended DataFig. 2c,d, one donor was excluded due to aberrant
interferon expressionat day 28. The specific statistical tests conducted
onthedata, along with the respective sample sizes, areindicated in the
figurelegends. Individual Pvalues are presented directly in the figures.

Reporting summary
Furtherinformation onresearch designis availablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

All raw sequencing data are deposited under dbGaP accession:
phs003322.v1.pl. The processed datasets are available as open-access
downloads at: https://zenodo.org/record/7555405. The vaccine
CITE-seq dataset” used in Extended Data Fig. 3 was available at:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171964.
The scATAC-seq data®® of trivalentinactivated seasonal influenza vac-
cine was obtained at: https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE165906. The scRNA-seq dataset** of acute SARS-CoV-2
infection used in Fig. 4 was obtained at: https://zenodo.org/
record/5770747. The datasets from COvid-19 Multi-omics Blood ATlas*¢
(COMBAT) was available at: https://zenodo.org/record/6120249.

Code availability

Seurat and Signac are freely available as open-source software pack-
ages at https://github.com/satijalab/seurat and https://github.com/
timoast/signac, respectively. The scripts used for dataset processing
canalso be found at: https://zenodo.org/record/7555405
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Extended Data Fig. 1| UMAP visualizations of CITE-seq dataset without integration. UMAP visualizations of 113,897 single cells profiled with CITE-seq and
clustered on the weighted combination of both RNA and protein modalities without performing data integration. Cells are colored with experiment, donor, timepoint,

level 2 or level 3 annotations.
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Extended Data Fig. 2| See next page for caption.
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Extended Data Fig. 2| Unveiling unique molecular signatures of vaccine-
induced CD8'T cells via CITE-seq analysis. a, UMAP visualizations of 113,897
single cells profiled with CITE-seq and clustered on the weighted combination

of both RNA and protein modalities. Cells are colored with either level 1 or level

3 annotations. b, Enriched GO terms for activated (Day 2 vs Day 0) genesin
CD14"Monocytes. ¢, Violin plots of interferon response signatures in selected
celltypes across four timepoints. P values were adjusted for multiple testing
correction. d, Violin plots of protein expression of CD64 and CD169 in single cells
inselected cell types, across four timepoints. e-f, Percentage of CD8" T cellsin

vaccine-induced groups for each donor across four timepoints. g, Violin plots
showing the protein expression of CD45RA, CD127, CD27,CD57 and CXC3R1in
selected cell types. h, Violin plots comparing gene module scores in VI-A and VI-B
CD8" T cells, as well as selected other subsets. i, Enriched reactome biological
pathways for the 197 signature vaccine-induced gene set. P values were adjusted
for multiple testing correction. j, Heatmap showing the expression of select
genesin CD8 T cell subtypes. The visualization presents pseudobulk averages,
with cells grouped by cell type, individual human donor, and timepoints, and
demonstrates that marker genes are reproducible across donors.
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Extended Data Fig. 3| Detection of underrepresented vaccine-induced
CDS8'T cellsin a published dataset via supervised reference mapping. a,
UMAP visualization of CITE-seq data derived from human PBMC fromref. 13 on
day 0 and day 28, after reference mapping to the CITE-seq datain Fig. 1b. Cells 1.5x interquartile range (IQR), respectively. ¢, Violin plots showing protein
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cells (left) or VI-B CD8" T cells (right) for each donor across eight timepoints. Each

dot represents one donor. The dataset is comprised of samples from
n=>5individual donors. Box center lines, bounds of boxes and whiskers
indicate median, first and third quartiles and minima and maxima within a
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Extended Data Fig. 4 | Investigating chromatin accessibility via ASAP-seq
dataset. a, Violin plots showing the expression of canonical surface proteins in
the ASAP-seq dataset. Cells are grouped by bridge integration-derived labels.
Proteins visualized include markers of CD4"and CD8* T cells, CD14* and CD16*
monocytes, B cellsand cDC2 cells. b, Violin plots showing the gene ‘activity
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Pearson correlation
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set showninFig. 1c. ¢, Scatter plot showing the correlation between pseudobulk
chromatin accessibility of CD14* monocytes from day 0 and day 2 samples. Each
point corresponds to a SKB genomic bin. d, Correlation matrix showing Pearson
correlation coefficients (all peaks) between two specified samples of chromatin
accessibility.
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Extended DataFig. 6 | Validation of VI-A CD8" T Cells predicted by bridge
integration workflow. a, Violin plots showing the protein expression of
HLA-DR and CD278 (ICOS) inthe VI-A CD8" T cells identified in the ASAP-

seq dataset. Cells are grouped by their bridge integration-derived labels. b,

Violin plots showing the module score of VI-GEM in the ASAP-seq dataset. The

module score is calculated based on gene activity scores, which are derived
from scATAC-seq data.
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Extended Data Fig. 7 | See next page for caption.

(Gated on CD8'KLRG1" T cells)
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Extended Data Fig. 7 | Flow cytometry evaluation of Dex'CD8" T Cells. a, Flow third quartiles and minima and maxima within a1.5x interquartile range (IQR),

cytometry data generated during validation of individual dextramer reagents, respectively. ¢, Exemplary flow cytometry plots indicate the percentage of cells
with the progressive emergence of cells in the Dex” gate across timepoints fora in CD38'HLA-DR" gate of asingle donor, from a parent gate of KLRG1"CD8" cells.
single donor. CD8" cells were used as input. Middle and bottom row show CD38, d, Bar graph shows the percentage of CD38"HLA-DR’ cellsin each donor, as a
HLA-DR, and KLRG1 abundance from the parent gate of Dex'CD8" T cells. b, fraction of the KLRG1 CD8" gate exemplified in c. Data represents n = 4 donors
Boxplotsindicate the fraction of cells harboring a hyper- or large-expanded TCR withvariable HLA haplotypes, presented as mean + s.e.m.; p-value is calculated
clonein each cluster across n =10 samples. Each dot represents one biological using unpaired Mann-Whitney U test. PE, phycoerythrin.

sample. Box center lines, bounds of boxes and whiskers indicate median, first and
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Assessing the differential abundance of CD38 ' KLRGI
CDS8' T cellsin SARS-CoV-2 infected samples. a, Violin plots showing the
protein expression of CD38 and HLA-DR, along with the signature gene module
score for the vaccine-induced cells, in the COMBAT dataset. b, Milo analysis

of differential abundance changes between healthy and SARS-CoV-2 infected
CD8'T cells groups from the COMBAT dataset. UMAP visualization of the Milo
differential abundance testing results. Each node represents a neighborhood.
Thesize of nodes is proportional to the number of cells in the neighborhood.
Neighborhoods are colored by their log fold changes for SARS-CoV-2 infected
versus healthy groups. Only neighborhoods showing significant enrichment
(SpatialFDR <0.1and logFC >2) are colored. ¢, Boxplots showing the fraction

of cells harboring a hyper or large expanded TCR clone within each cluster.
Each dot represents one biological sample. Mild: n =17; Severe: n = 28; Critical:
n=16.d, Barplot showing the fraction of cells within each cluster harboring TCR

matching SARS-CoV-2 antigens in public databases. e, Fraction of TCR clonotypes
identified in either antigen cells (right) or antigen_prolif cells (left), that are also
identified in Tgyga cells. Boxplots show variation across 61 diseased donors. Mild:
n=17;Severe: n =28; Critical: n = 16. P values were determined by two-tailed
Wilcoxon rank-sum test. f, Heatmaps show the distribution of cells harboring
expanded antigen-specific TCR sequences among all cell states. Each row
corresponds to one expanded clone, clones that are shared between molecular
states will exhibit a positive fraction in multiple columns. g, Scatter plot showing
the lack of a potentially confounding correlation between the fraction of CD8

T cellsin the Tgyrq State, and the sample collection time since onset. Each dot
represents one donor and is colored by disease state. For the boxplotsin c and

e, the center line indicates the median, box limits represent the upper and lower
quartiles and whiskers indicate 1.5 times the IQR.
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The datasets generated in this study are available as open-access downloads at: https://zenodo.org/record/7555405

The scATAC-seq data of tivalent inactivated seasonal influenza vaccine:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE165906

The public vaccine CITE-seq dataset used in Extended Data Fig. 3:
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The scRNA-seq dataset of acute SARS-CoV-2 infection used in Figure 4:
https://zenodo.org/record/5770747

The datasets from COvid-19 Multi-omics Blood ATlas (COMBAT):
https://zenodo.org/record/6120249
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Population characteristics PBMC were collected from observational studies of adults who were receiving BNT162b2 vaccination and willing to
participate, excluding individuals with severe anemia or inability to comply with procedures. The specific subset of donors
included 12 females and 4 males of variable racial and ethnic background, ages ranging 17-58. All groups were provided with
written consent for enrollment with approval from the New York University (NYU) Institutional Review Board (across
protocols 18-02035, 18-02037, and 12-01137). Detailed characteristics of the population in this study are provided in
Supplementary Table 1.

Recruitment Inclusion Criteria:
1. Adults and children ages 0 - 110
a. Including breastfeeding and pregnant women
2. Must be able to understand and sign the Informed Consent Form (ICF) or Assent
Form (for individuals < 18 years of age)
3. Must be able to understand and sign the HIPAA authorization form
Exclusion Criteria:
1. Known clinically significant anemia (i.e., Hb < 10 g/dL)
2. Contraindication to phlebotomy based on investigator judgement; i.e., anticoagulation
therapy or clinically significant thrombocytopenia
3. Any condition that, in the opinion of the Investigator, would make study
participation unsafe or would interfere with the objectives of the study

Ethics oversight New York University (NYU) Institutional Review Board (across protocols 18-02035, 18-02037, and 12-01137).

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design
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Sample size Our study recruited a total of 12 donors. No statistical method was used to determine the sample size.




Data exclusions  Cells are of low data quality were excluded from the analysis (Supplementary Methods)

Replication Experiments were conducted with multiple replicates, all of which yielded comparable results. Specifically, the CITE-seq experiment was
performed with four replicates, while both the ASAP-seq and ECCITE-seq experiments were conducted with two replicates each.

Randomization  Randomization was not applicable in this case as the study did not involve any interventions.

Blinding Blinding was not applicable in this case as the study did not involve any interventions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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Antibodies
Antibodies used Please see Supplementary Table 2 for a full list of antibodies, clones. TotalSeq™-A Human Universal Cocktail, V1.0 (Catalog: 399907).
TotalSeq™-C Human Universal Cocktail, V1.0 (Catalog: 399905)
Validation All antibodies are commercially available and validated by the vendor: https://www.biolegend.com/en-us/products/totalseq-c-

human-universal-cocktail-v1-0-19736?pdf=true&displayInline=true&leftRightMargin=15&topBottomMargin=15&filename=TotalSeq
%E2%84%A2-C%20HUMan%20Universal%20Cocktail, %20V 1.0.pdf&v=20230721091804

Flow Cytometry

Plots

Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation For initial CITE-seq and ASAP-seq experiments, PBMCs from all timepoints (Day 0, 2, 10, and 28) across 3 donors (12
specimens in total) were simultaneously thawed and promptly transferred to a 96-well V-bottom plate. This enabled further
processing in parallel with multichannel pipettes. The same workflow was repeated with 3 additional donors, to generate the
aggregate data in Fig.s 1-2. Each aliquot of 1-3 million frozen PBMC was thawed into 10 mL complete media, centrifuged at
300 RCF for 10 minutes at 4 °C, and resuspended in 200 pL conventional cytometry buffer (PBS with 4% fetal bovine serum),
DAPI, and 2mM EDTA. Samples were passed through a 70-micron filter, and single cells were sorted on a FACSAriall (BD
Biosciences) using a 100-micron nozzle. The instrument operated via FACSDiva software, with post-sort analysis performed
on FlowJo 10.8.1 (Tree Star). Gating excluded cellular debris and doublets based on FSC and SSC profiles and excluded dead
cells based on DAPI. Cells were collected into 5mL of complete media separately maintained on ice until all sorting
concluded, at which point all tubes were simultaneously centrifuged. Individual pellets were resuspended with 100 pL of
staining buffer (PBS with 2% BSA and 0.01% Tween) along with unique hashing antibodies, followed by incubation on ice for
15 minutes. Hashed samples were washed 3 times with 500 pL of staining buffer and then pooled together. Viability (greater
than 92%) and final cell counts were assessed with trypan blue and Countess Il FL automated counter (ThermoFisher).

Instrument FACSARIA Il running FACSDiva software; Cytek Aurora cytometer running SpectroFlow software.

Software FlowJo 10.8.1 (Treestar).
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Cell population abundance Purity of sorted populations (dextramer-positive and CD38-positive CD8+ T cells) was confirmed by post-sort re-analysis on
the Cytek Aurora. Abundance of the sorted populations, and the ratios in which they were mixed before input into
downstream sequencing is described under Supplementary Methods subheadings "Dextramer validation with spectral flow
cytometry" and "Enrichment of spike-specific CD8+ T cells, prior to ECCITE-seq."

Gating strategy Voltages were adjusted to center the majority of cells in the SSC-A vs FSC-A plot, with a gate drawn in the middle to avoid
cellular debris in the bottom left corner. "Singlets1" was taken by the major linear population on FSC-W vs FSC-A, and
"Singlets2" was similarly taken from SSC-W vs FSC-A. Live cells were gated from DAPI vs FSC-A. Non-T cell dump gate included
CD14, CD16, and CD20, and these cells were excluded, while CD2-positive cells were gated in. CD8 vs CD4 was plotted with
CDS8 cell population gated in. Finally, gates were drawn for Dextramer+, or CD38+HLA-DR+, as shown in Supplementary
Figure 5.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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