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Summary
The risk of cancer recurrence after liver surgery mainly depends on tumour biology, but preclinical
and clinical evidence suggests that the degree of perioperative liver injury plays a role in creating a
favourable microenvironment for tumour cell engraftment or proliferation of dormant micro-
metastases. Understanding the contribution of perioperative liver injury to tumour recurrence is
imperative, as these pathways are potentially actionable. In this review, we examine the key
mechanisms of perioperative liver injury, which comprise mechanical handling and surgical stress,
ischaemia-reperfusion injury, and parenchymal loss leading to liver regeneration. We explore how
these processes can trigger downstream cascades leading to the activation of the immune system
and the pro-inflammatory response, cellular proliferation, angiogenesis, anti-apoptotic signals, and
release of circulating tumour cells. Finally, we discuss the novel therapies under investigation to
decrease ischaemia-reperfusion injury and increase regeneration after liver surgery, including
pharmaceutical agents, inflow modulation, and machine perfusion.
© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the
Liver (EASL). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
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Introduction
Withahigher numberof patientswithnewandmore
extensive malignancies accepted for liver trans-
plantation, the field is currently focused on the
implementation of novel interventions and surgical
techniques to expand the pool of usable donor livers.
However, a better understanding of keymechanisms
is essential for the successful treatment of such
complex patients and to avoid the most feared com-
plications of graft loss, tumour recurrence and pa-
tient death.

Tumour recurrence after surgery is a common
occurrence for both primary and secondary liver tu-
mours, including hepatocellular carcinoma (HCC),1

cholangiocarcinoma,2 neuroendocrine tumours3

and colorectal liver metastases (CRLMs).4,5 Recur-
rence occurs inup to70%of cases after liver resection,
with the liver being the most common site.6–9 Liver
transplantation for oncological indications is also
burdened by significant post-transplant recurrence,
up to 15% for HCC10 and over 80% for CRLMs.11,12

Unlike for resection, post-transplant recurrence is
most commonly extrahepatic.7,13,14

Despite the different tumour recurrence patterns,
the mechanisms and risk factors are similar and
multifactorial. A major role is certainly played by the
tumour per se, with risk factors including size and
number of lesions,15,16 tumour markers (alpha-feto-
protein,15 carcinoembryonic antigen,17 carbohydrate
antigen19-9),degreeofdifferentiation16andvascular
invasion.18 However, intraoperative and early post-
operative risk factors are increasingly recognized.

For transplantation, these risk factors can be
related to donor characteristics and liver quality19,20

(older age, degree of steatosis, cold ischaemia time
[CIT],21,22 donation after cardiac death [DCD]), or to
recipient risk factors (obesity,23 viral aetiology of
underlying liver disease24), and post-transplant
immunosuppression.25 For resections, a higher de-
gree of liver manipulation during surgery has been
linked to an increase in tumour recurrence and
impaired liver regeneration, which involves various
multifactorial pathways. For example, patient-based
factors (i.e., age, comorbidities,26 previous chemo-
therapy27), liver parenchyma quality (i.e., cirrhosis,28

fibrosis, cholestasis, and steatosis29,30), and the
resection procedure itself (extent of liver resection,
blood loss, ischaemic damage) were all described to
contribute to delayed liver regeneration and repair.

Both transplantation and resection require a
certain degree of postoperative liver regeneration to
avoid small for size syndrome and post-hepatectomy
liver failure.31 Recently, evidence has emerged that
tumour cell engraftment is also triggered by mecha-
nisms linked to the process of liver resection and
transplantation itself, with mitochondria being
fundamental in both processes and key to immediate
liver and patient recovery.

The link between mitochondrial alterations and
cancer development has long been recognized.32
org (A. Schlegel).
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Key points

� Tumour recurrence occurs frequently after both liver resection and
liver transplantation.

� While tumour biology and patient factors are major determinants of
the risk of recurrence, perioperative factors such as mechanical
handling, ischaemia-reperfusion injury and liver regeneration also play
a role.

� These perioperative factors are responsible for the activation of
downstream pathways that promote the release of circulating tumour
cells and stimulate cell proliferation in a pro-inflammatory microen-
vironment that favours tumour engraftment.

� Mitochondrial dysfunction represents the starting point of the peri-
operative liver injury cascade.

� Novel therapies targeting mitochondria or downstream pathways are
under investigation to reduce perioperative liver injury, including
pharmaceutical agents, inflow modulation, and machine perfusion.

� Low quality evidence suggests that hypothermic oxygenated machine
perfusion (HOPE) and ischaemia-free liver transplantation may reduce
post-transplant cancer recurrence by diminishing perioperative liver
injury.
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While it is still to be determined whether those alterations have
a causal effect or are consequences of the carcinogenic process, it
is established that mitochondria are essential for the survival,
proliferation, and invasiveness of cancer cells through pathways
related to energy production, survival in the stressful tumoral
microenvironment, and avoidance of cell death. Similarly, hep-
atectomy and liver transplantation, by causing cellular damage
through parenchymal transection, perfusion alterations and
ischaemia-reperfusion injury (IRI), trigger a compensatory
mitochondrial response in hepatocytes and other liver cells. This
response leads to the activation of downstream pro-
inflammatory cascades with consequences both at the local
and systemic level, though the full spectrum of underlying
mechanisms has yet to be completely appreciated.

In this review, we will discuss the main pathways involved in
ischaemia-reperfusion injury and liver regeneration, and
describe how these processes are ultimately linked to cancer cell
engraftment and tumour recurrence. We will also summarize
the novel therapies which are under investigation to target these
mechanisms, as well as possible future directions for research.
Liver regeneration
The liver has a remarkable capacity for regeneration: depending
on parenchymal quality, up to 75% of liver volume can be
resected without inducing post-hepatectomy liver failure. This
feature is at the basis of liver resection, as well as a requirement
to avoid small for size syndrome after liver transplantation with
small grafts, splits, and living donor liver transplant(ation)
(LDLT). Advanced techniques of hypertrophy induction have
been developed to enable hepatectomy in patients who would
otherwise have an insufficient post-hepatectomy liver remnant
volume, including portal vein embolization (PVE), hepatic vein
embolization, two-staged hepatectomy (TSH), and associated
liver partition and portal vein ligation for staged-hepatectomy
(ALPPS). Recently, methods of auxiliary liver transplantation
that exploit liver regeneration have been introduced, such as the
RAPID33 and RAVAS34 technique. In these techniques, an auxil-
iary graft is implanted while maintaining the native liver
completely or partially in place. Once the auxiliary graft has
hypertrophied to a volume sufficient to sustain the metabolic
needs of the body, a completion hepatectomy of the native liver
is performed.

Liver regeneration implies an orderly sequence of events
which starts 5 min after the start of parenchymal transection and
shares many common pathways with wound healing, carcino-
genesis, intrahepatic metastatic progression, and response to IRI.
Indeed, some IRI is present at the start of liver regeneration.

Unlike at other sites, liver regeneration occurs through dif-
ferentiation of fully differentiated cells for the most part,35 with
the support of oval cells (liver stem cells). As previously
mentioned, mitochondria are essential for liver regeneration,
which requires an enormous amount of energy production to
support both liver hypertrophy and liver function.36,37 Mito-
chondrial bioenergetics appear to be directly correlated with
postoperative liver function after hepatectomy as well as post-
hepatectomy volumetric increase.38

Factors that impair liver regeneration are similar to those
increasing susceptibility to IRI (e.g. age, comorbidities, quality of
the parenchyma), as well as factors related to the extent of
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resection and blood loss. The degree of IRI itself also influences
the capacity to regenerate (i.e., the higher the IRI, the more
difficult regeneration is going to be).

Liver regeneration can be divided into three phases: initiation
(up to 5 h), proliferation (from 5 to 144 h), and termination.39

Liver volume is usually restored in about a week in mice35 and
between 2 to 12 weeks in humans.35
Initiation
After resection, liver volume diminishes while the portal venous
flow remains unaltered. This leads to a sudden increase in portal
venous pressure, which triggers initiation of liver regeneration.
The increase in portal venous pressure causes shear stress and
mechanical tension, as well as an increased concentration of
growth factors, cytokines and liposaccharide (LPS) from the portal
circulation. Shear stress activates urokinase plasminogen acti-
vator,40 which upregulates matrix metalloproteinases (MMPs),
causing matrix remodelling and activating hepatocyte growth
factor (HGF).35,41

During the first hour of the initiation phase, the Wnt/b-catenin
pathway is activated.42,43 b-catenin translocates to the cellular
nucleus of hepatocytes, where it induces the transcription of Wnt
target genes, responsible for cell proliferation.44 Simultaneously,
the Notch pathway is stimulated, leading to the nuclear trans-
location ofNICD (Notch intracellular domain).45 TheWnt/b-catenin
and Notch pathways are implicated in the epithelial-to-
mesenchymal transition (EMT),46 a process required for liver
regeneration.

The increased concentration of LPS activates Kupffer cells
through Toll-like receptor 4 (TLR4), C3a and C35 receptors.
Similarly to what happens in response to IRI, this leads to NF-jB
nuclear translocation with subsequent secretion of tumour ne-
crosis factor-a (TNF-a) and interleukin (IL)-6.47,48 TNF-a further
sustains the activation of the NF-jB pathway and the production
of IL-6. IL-6 binds to the IL-6 receptor on hepatocytes and in-
duces STAT3 (signal transducer and activator of transcription-3),
which is responsible for hepatocyte proliferation through cyclin
induction.47,49
2vol. 5 j 100846



Proliferation
The proliferation phase is characterized by cell proliferation in
the first 72 h, followed by angiogenesis. Several growth factors
are involved in the proliferation phase, including HGF,50

epidermal growth factor (EGF),51,52 and vascular endothelial
growth factor (VEGF).53 HGF and EGF, together with other sig-
nalling molecules, activate the IL-6/JAK/STAT3, Ras/MAPK, and
PI3-K/PDK1/Akt pathways, which contribute to cell proliferation
and cell growth.54 VEGF is involved in angiogenesis and recon-
stitution of the sinusoids after cell proliferation.55
Termination
Regeneration is terminated when the liver reaches it pre-
hepatectomy size, or a 2.5% liver mass to total body mass ratio
is restored.56 Any further proliferation is resolved by apoptosis.
The main known factors responsible for termination are TGF-
b,57–59 activin60,61 and the Hippo/Yap/Taz pathway,62 which act
in a similar manner to limit hepatocyte proliferation.63
Ischaemia-reperfusion injury
The full spectrum of IRI occurs whenever blood flow is suddenly
restored after a period of ischaemia. During ischaemia, a lack of
oxygen causes the mitochondrial electron transport chain to stop
producing ATP, causing ATP depletion, acidosis and cell
oedema.64 The components of the electron transport chain get
saturated with electrons, as oxygen is not available for oxidative
phosphorylation, and tricarboxylic acid (TCA) intermediates,
including NADH and succinate, accumulate. This impaired
mitochondrial respiration causes the well-described calcium
release into the cytosol,65 which triggers the opening of the
mitochondrial permeability transition pore and initiates cell
death. When the liver circulation is re-established, the sudden
availability of high succinate levels in hypoxic tissue leads to a
massive production of reactive oxygen species (ROS) at complex
I, which is mainly based on complex II dysfunction. Apoptosis/
necrosis, endothelial dysfunction, and inflammation are the
direct consequence (Fig. 1).66 Excessive oxidative stress therefore
causes nuclear DNA damage, protein oxidation, and further
mitochondrial permeability transition pore opening, leading to
cell death67 and the subsequent release of damage-associated
molecular patterns (DAMPs). DAMPs further push the estab-
lishment of an inflammatory microenvironment via activation of
the inflammasome,66 the release of inflammatory cytokines and
complement proteins, and immune cell activation.68,69 Both, the
innate and the adaptive immune response play a major role in IRI
pathways and link liver quality to acute liver rejection.70,71
Box 1. Critical commentary on cancer recurrence and intraoperative
factors.

Liver surgery requires a strong surgeon-anaesthesiologist relationship, 
more so than other anatomical districts. Adequate perioperative 
management is paramount to maintain fluid balance, decrease surgical 
stress and accelerate postoperative recovery, as well as provide an optimal 
oncological outcome. Recent evidence suggests that the impact of the 
surgical act on prognosis is not a mere matter of surgical margins, but that 
every step of the surgical procedure can influence tumour recurrence. All 
efforts should thus be taken to decrease the intraoperative spread of cancer 
cells and mitigate the post-surgical pro-inflammatory state. 
Hepatic ischaemia-reperfusion injury - mechanism
In liver transplantation, IRI is an inevitable consequence of
conventional organ procurement. For deceased donors, this
process occurs during donor evaluation in the intensive care
unit, where loss of brain function is often accompanied by some
haemodynamic instability with associated periods of hypoten-
sion and hypoxia. The procurement itself involves a period of CIT
for donation after brain death (DBD) or a period of warm
ischaemia time (WIT) followed by CIT in DCD. While LDLT is
commonly regarded as an almost ischaemia-free procedure, a
certain IRI can also be observed in this setting due to paren-
chymal damage during liver transection, elective use of the
Pringle manoeuvre, liver manipulation, and CIT during graft
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back-table preparation. The graft experiences further warm
ischaemia during implantation, followed by reperfusion.

IRI occurs not only during transplantation, but during liver
resection as well. As we have described for LDLT, liver surgery
involves hypoxic and ischaemic damage to the liver parenchyma
during vascular occlusion, manipulation, and transection.

Hepatic IRI can be divided into an acute phase, lasting
approximately 3 h after reperfusion, and a late phase lasting up
to 48 h after reperfusion. The acute phase is characterized by
mitochondrial dysfunction causing oxidative stress in hepato-
cytes, Kupffer cells, and sinusoidal epithelial cells. Oxidative
stress induces the release of HMGB1 (high-mobility group
box 1),72 a DAMP that mediates Kupffer cell activation through a
TLR4-mediated pathway. Activated Kupffer cells produce more
ROS, which induce the degradation of IjB, the molecule that
inhibits the translocation of NF-jB from the cytosol to the
cellular nucleus.73,74 NF-jB is an important mediator of hepatic
IRI.75–77 Once freed, NF-jB enters the nucleus and upregulates
the synthesis of mediators of the pro-inflammatory cytokine
cascade, including IL-1b, IL-6, and TNF-a.74,78 Pro-inflammatory
cytokines act on adhesion molecules and complement proteins
to attract neutrophils and CD4+ T cells into the liver, which are
the main mediators of the late phase of IRI. Neutrophils increase
liver damage through secretion of ROS, MMPs, and pro-
teases79–81 causing hepatocyte necrosis. This liver damage can
eventually evolve into chronic inflammation, causing long-term
consequences such as liver fibrosis and, as we will further
explore in the following sections, cancer recurrence.

Hepatic ischaemia-reperfusion injury – clinical implications
IRI is not merely a time-dependent process, but its severity is
also related to the characteristics of the liver graft and the
recipient. Grafts from extended criteria donors are at an
increased risk of more severe IRI after liver transplantation.82

Steatotic liver grafts exhibit comparatively impaired regenera-
tive responses and reduced tolerance to IRI,83 which translates
into higher rates of primary non function and early allograft
dysfunction.84,85 DCD liver grafts have a higher rate of micro-
thrombi formation86 and cell damage related toWIT.87 The age of
the donor is also a risk factor for more severe IRI, with age >70
years being associated with smaller volumes, reduced overall
flow,88 and less mitochondria.89 Small for size grafts90,91 are also
a risk factor, a relevant consideration in LDLT. Intuitively, the
combination of any of these risk factors further exacerbates IRI
severity, as demonstrated by reports that prolonged CIT is
especially deleterious in steatotic livers.92

Recipient risk factors for more severe IRI are mainly related to
cirrhosis93 and subsequent altered coagulation profiles,94 which
3vol. 5 j 100846
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lead to a pro-thrombotic state with low platelets, altered platelet
aggregation and altered production of coagulation factors.95

Similar considerations can be applied to the quality of the
liver parenchyma during liver resection, where patients who are
older and/or have a higher degree of steatosis or cirrhosis have
less tolerance for vascular occlusion and IRI. IRI is also associated
with impaired liver regeneration through mechanisms that will
be explored in the following section.

Tumour recurrence after liver resection and
transplantation
Tumour recurrence after liver surgery is likely linked to the
mobilization of circulating tumour cells (CTCs), activation of
dormant micrometastases, or a combination of the two. Both
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resection and transplantation cause major alterations in the
local microenvironment and at the systemic level, with acti-
vation of pathways that favour the engraftment of residual
tumour cells.

The link between cancer recurrence and perioperative acute
liver injury is now well accepted. The main processes that tie
these two events are mechanical handling, response to IRI, and
regeneration (Fig. 2). Mechanical handling and squeezing of the
liver during surgery may lead to the release of cancer cells into
the systemic circulation. IRI, causing mitochondrial dysfunction,
can activate many processes that characterize “oncogenic mito-
chondria”, together with an inflammatory microenvironment
that promotes tumour cell mobilization and engraftment. Finally,
in liver regeneration, the drivers of hepatocyte differentiation
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and hyperplasia may also become drivers of cancer recurrence,
as well as promoting factors for the reactivation of dormant stem
cells. Each method of transplantation and resection is related to a
different degree of any of these three processes (Table 1).
JHEP Reports 2023
Cancer recurrence and intraoperative factors (Box 1)
The surgical technique has an impact on the pro-inflammatory
microenvironment that develops in the perioperative period.
The intraoperative handling and “squeezing of the liver” can
5vol. 5 j 100846



Table 1. Level of perioperative liver injury seen with different resection and liver transplant techniques.

Mechanical handling Ischemia/reperfusion injury Regeneration

Liver transplantation
DBD – whole ++ + to +++† +
DBD – split ++ ++ to +++ ++
DCD - whole ++ ++ to +++ +
DCD - split ++ +++ (+)
LDLT ++ + ++
Auxiliary ++ ++ ++
Liver resection
Minor liver resection + + +
Major liver resection (one stage procedure) +++ ++ +++
Two-stage hepatectomy* ± PVE +++ ++ ++
ALPPS +++ ++ +++
Combine techniques
RAPID +++ ++ ++ to +++

+ = minor; ++ = moderate; +++ = major.
ALPPS, associated liver partition and portal vein ligation for staged-hepatectomy; DBD, donation after brain death; DCD, donation after cardiac death; LDLT, living donor liver
transplantation; LT, liver transplantation; PVE, portal vein embolization; RAPID, resection and partial liver segment 2–3 transplantation with delayed total hepatectomy
(residual hepatectomy when transplanted segment 2-3 have grown sufficiently = the second stage); TSH, two-stage hepatectomy.
* Traditional approach: portal vein ligation and partial liver resection (i.e., wedge resection, segmentectomy or left lateral sectionectomy resection).
† In whole DBD grafts, the amount of IRI greatly depends on donor-associated risk factors. High-risk donors (i.e., donor on extracorporeal life support, steatotic liver, need for
high pressor support, repeated episodes of hypotension before or during procurement) will trigger more IRI compared to low-risk donors (i.e., young and healthy donors,
traumatic cause of death, clinically and medically stable before procurement).
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facilitate the mobilization of tumour cells, turning them into
CTCs, as well as increasing the release of catecholamines, pros-
taglandins, and other inflammatory mediators.96 Catecholamines
and prostaglandins have been linked to metastasis development.
Norepinephrine and pro-inflammatory cytokines (IL-6, TNF-a)
can stimulate VEGF-mediated angiogenesis.97 The increase in
pro-inflammatory mediators and growth factors triggers cellular
proliferation in an environment which favours motility and
invasiveness. In a study comparing anaesthesia alone to lapa-
rotomy, appendectomy, and liver resection in a mouse model of
colorectal cancer (CRC), concomitant lung metastases increased
proportionally to the degree of surgical stress.98 In a retrospec-
tive analysis of 106 patients undergoing liver transplantation for
HCC,99 59 patients were treated with PGE-1 (prostaglandin E1)
to diminish surgical stress and IRI; 3- and 5-year recurrence-free
survival was significantly higher in the PGE-1-treated group vs.
the untreated group (87.9% and 85.7%, vs. 65.3% and 63.1%,
respectively, p = 0.003). Further prospective clinical studies are
required to establish this beneficial effect.

Techniques to minimize liver handling during resection have
been developed, including the anterior approach to major hep-
atectomy. Unlike the conventional technique, which requires
complete mobilization of the right hepatic lobe for a right hep-
atectomy, the anterior approach involves early inflow control,
the completion of parenchymal transection, and outflow control
before liver lobe mobilization.100 The anterior approach reduced
liver handling-induced mobilization of tumour cells and has
been associated with better survival outcomes, especially
disease-free survival, after resection.100,101 This relates to the
concept that surgeon’s experience may also be associated with
cancer recurrence.102 A technically “cleaner” operation per-
formed by an experienced surgeon may cause less tissue trauma,
oedema, blood loss, release of inflammatory mediators and CTCs,
all factors that play a role in postoperative cancer recurrence.103

The surgical act is not the only intraoperative event with the
potential to promote cancer recurrence. Other factors, such as
anaesthetic drugs, hypothermia, and transfusion of blood prod-
ucts also increase the inflammatory response.103 They increase
secretion of catecholamines and cytokines, promote platelet
activation, and contribute to the immunosuppressed status that
JHEP Reports 2023
is expected after surgery. These changes increase the chances
that released CTCs will be able to escape immunological recog-
nition and encounter a favourable microenvironment for homing
and metastasis.

Cancer recurrence and regeneration - mechanism
The link between regeneration and recurrence is an intuitive
one: regeneration involves cellular proliferation in an inflam-
matory microenvironment, the ideal conditions for tumour
proliferation, and many pathways involved in liver regeneration
play a role in cancer development, progression, and recurrence.

The interplay between regeneration and cancer recurrence
occurs through regulation of cellular proliferation, EMT, angio-
genesis, breakdown and remodelling of the extracellular matrix
(ECM), and activation of CTCs (Fig. 3).

The Wnt/b-catenin, Notch, and Hedgehog pathways,46,104 as
well as the LPS-mediated release of pro-inflammatory cytokines
(IL-6, IL1- b, TNF-a) are responsible for cellular proliferation and
EMT.105 Notch signalling has an established role in HCC106 and
metastatic CRC development;104 it promotes secretion of growth
cytokines responsible for cell proliferation, EMT, and angiogen-
esis. Hedgehog is another regulator of cell proliferation and EMT,
which is highly expressed in HCC.107 Finally, b-catenin is upre-
gulated in up to 35% of HCCs.46 Mutations in APC (adenomatous
polyposis coli), which occur in the majority of cases of CRC, cause
irreversible activation of this pathway.108,109 b-catenin also reg-
ulates the Hippo/Yap/Taz pathway through Yap activation.110 The
oncogenic role of Yap has been linked to HCC,111 CRC,112 and
cholangiocarcinoma.113

Hippo/Yap/Taz is not the only pathway regulating termination
that is involved in carcinogenesis. TGF-b can play both a pro- and
an anti-tumorigenic role depending on the timing and the
characteristics of the microenvironment. It exhibits anti-
carcinogenic effects in the early stages of tumour development.
This is followed by a shift, the mechanism of which is poorly
understood, in which TGF-b becomes a key player in carcino-
genesis and metastatic development.114,115 This phenomenon is
well studied in metastatic CRC: the overexpression of TGF-b
causes EMT, acquisition of stem cell-like features in cancer
cells, and stromal transformation into a pro-carcinogenic
6vol. 5 j 100846



β-cateninNCID Gli1/2

WntNotch Hedgehog

Cell
proliferation

Parenchymal
damage

3

3

Shear stress
1

LPS from portal 
circulation

2

2

Angiogenesis

ECM
remodelling

uPA

MMPs

Cell
proliferation

Acute liver injury

EMT

Pro-inflammatory
response

NF-κB

TNF-α

IL-6

STAT3

Hepatocyte

Kupffer cell

Fig. 3. The link between liver regeneration and tumour recurrence. Parenchymal loss and transplantation of a small-for-size graft are major triggers of liver
regeneration. Liver regeneration is activated by the increase in portal flow per unit, which causes shear stress and an increase in the concentration of LPS. Shear
stress-activated uroplasminogen and matrix metalloproteinases, responsible for cell proliferation through secretion of growth factors and remodelling of the
ECM. The increase in LPS stimulates the nuclear localization of NF-jB, which can then exert its effect on the transcription of target genes. These genes modulate
the secretion of pro-inflammatory cytokines such as TNF-a and IL-6, which is also responsible for STAT3 activation in hepatocytes, leading to their proliferation.
Injury also affects hepatocytes, activating three pathways (Notch, Hedgehog, Wnt/b-catenin) which favour EMT, angiogenesis and cell proliferation. ECM,
extracellular matrix; EMT, epithelial-to-mesenchymal transition; LPS, lipopolysaccharide.
microenvironment, driving metastatic development.116,117 Met-
astatic and invasive CRC cancer cells have higher levels of TGF-b
compared to cancer cells in the primary tumour,118 and higher
postoperative levels of TGF-b have been shown to correlate with
higher risk of recurrence after curative resection.117

EMT and subsequent MET (mesenchymal-to-epithelial tran-
sition) after cancer homing are pivotal for metastatic develop-
ment. CTCs can be both epithelial or mesenchymal cells, or
exhibit features of both,119,120 as influenced by the Wnt/b-cat-
enin, TGF-b, and Hedgehog pathways. Growth factors, such as
HGF and EGF, also play a role in EMT.121

HGF and EGF are growth factors that sustain the proliferative
phase of regeneration. EGF has been linked to proliferation of
CRC metastases, and its receptor, EGFR, is a known therapeutic
target. Cetuximab and panitumumab are anti-EGFR monoclonal
antibodies used in metastatic CRC either in combination with
chemotherapy or as monotherapy.122,123 HGF is a major driver of
hepatocyte proliferation during liver regeneration. Postoperative
HGF elevation is directly correlated with growth of the liver
remnant after hepatectomy, ALPPS, and LDLT.124–126 Higher
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postoperative plasmatic concentrations of HGF are also associ-
ated with higher recurrence of metastatic CRC,127 and over-
expression of the HGF receptor c-Met has been linked to
worsened prognosis and more aggressive features.128,129 HGF is
also responsible for activating the STAT3 pathway,130 whose
activation is increased post-hepatectomy and promotes cancer
recurrence, as well as enhancing the secretion and activity of
MMPs.131,132

MMPs, together with urokinase plasminogen activator and
other proteases, are responsible for ECM remodelling,133 a crucial
process in liver regeneration, that promotes both migration and
adhesion of cells during cellular proliferation. Likewise, ECM
breakdown and remodelling may promote the shedding of
tumour cells into the circulation, with subsequent homing either
in the liver remnant or in distant organs. Of note, MMPs are also
important mediators of tissue injury after IRI133 by promoting
apoptosis, endothelial dysfunction, leukocyte migration into the
liver, and sustaining the secretion of pro-inflammatory mole-
cules. MMPs also play a role in angiogenesis, together with
Notch134,135 and VEGF.136 VEGF receptors are the targets of
7vol. 5 j 100846



Box 2. Critical commentary on tumour recurrence and liver regeneration.

Its capacity for regeneration is one of the most extraordinary features of the 
liver and a cornerstone of liver surgery. The dramatic influx of factors 
promoting differentiation and angiogenesis, paired with surgery-induced 
and drug-induced immunosuppression, may however contribute to the 
growth and metastasis of residual cancer cells.  As the boundaries of liver 
surgery and transplantation are pushed further and further, the need to 
increase our understanding of the regeneration process and its regulatory 
mechanisms becomes more pressing. On one hand, we should gather 
more insights on the factors that drive or impair regeneration, hopefully on 
a deeper level than the state of the parenchyma or the age and metabolic 
reserve of the patient. On the other, we should find ways to selectively 
promote parenchymal growth while inhibiting or restricting any concomitant 
tumour growth.

Review
several anti-angiogenic therapeutics used in advanced HCC,136

including the tyrosine kinase inhibitors sorafenib, regorafenib,
sunitinib and lenvatinib, and the monoclonal antibody ramucir-
umab. Cabozantinib, a second-line tyrosine kinase inhibitor tar-
gets both VEGFR2 and c-Met (the HGF receptor).137 Anti-
angiogenic therapies are also used in both HCC138 and metasta-
tic CRC,139 with the most common and well-studied agent being
the monoclonal antibody bevacizumab.

In summary, liver regeneration requires extensive cellular
activation and proliferation in a microenvironment that favours
cancer development and metastases thanks to ECM remodelling,
angiogenesis, and inflammation.

Cancer recurrence and regeneration – clinical implications
(Box 2)
Animal models have clearly demonstrated the relationship be-
tween post-hepatectomy regeneration and tumour growth. In
mouse models of CRC with extrahepatic metastases, the post-
hepatectomy growth of extrahepatic lesions exceeded that of
the liver remnant.140,141 This effect was observed after major
resections, which required regeneration to maintain liver func-
tion, but not after minor resections, when the need for subse-
quent regeneration was limited.141,142

The accelerated growth of cancer tissue compared to the
liver has implications for all procedures that require liver hy-
pertrophy with the bulk of the tumour still in place, such as
TSH, PVE, ALPPS and auxiliary liver transplantation. These
techniques operate on the fine balance between adequate liver
hypertrophy and risk of dropout due to tumour progression.
The timeframe needed for liver remnant hypertrophy is
different with each technique, with TSH requiring up to 3
months, PVE between 4 and 6 weeks, and ALPPS 2 to 3 weeks.
This difference in timing is reflected by dropout rates. The
dropout rate due to tumour progression is between 28-
38%143,144 after the first stage of TSH and around 30% after
PVE,145 while it is much lower after the first stage of ALPPS.146

The latter, in particular, is mostly driven by postoperative
complications rather than tumour progression.147,148

Whether this interim tumour growth has long-term prog-
nostic implications once the second stage is performed is still to
be determined. Growth of liver metastases and even develop-
ment of new lesions after PVE have been documented both in
animal models149 and humans.150 Despite inconsistent reports
on the long-term outcomes of PVE, a recent meta-analysis has
shown that, once definitive resection is performed, PVE has no
detrimental effect on intrahepatic recurrence or overall
survival.151

Similar questions can be posed after partial and auxiliary liver
transplantation for oncological indications. Patients with cancer
are considered ideal candidates for these grafts, as they usually
have a preserved liver function and can support the necessary
regeneration process better than patients undergoing trans-
plantation for end-stage liver disease. LDLT is often performed
with small-for-size grafts, and always requires at least some level
of liver regeneration. The evidence onwhether HCC recurrence is
higher after LDLT compared to deceased donor transplantation is
inconclusive, with conflicting reports.152,153 This likely reflects
the multifactorial nature of cancer recurrence as well as the
limitations of comparing two interventions that are not neces-
sarily offered to the same patient populations.154 The contribu-
tion of small-for-size liver grafts to cancer recurrence is
controversial, with some retrospective analyses reporting higher
JHEP Reports 2023
recurrence,155 while others report no difference.156,157 The
experience on auxiliary transplantation is still scarce, but the risk
of tumour progression between the two stages will be a matter
of interest as this technique gains traction.
Underlying mechanisms linking cancer recurrence and
ischaemia-reperfusion injury
Tumorigenesis and IRI share several downstream pathways and a
similar microenvironment, thus it is unsurprising that IRI in-
creases the risk of cancer recurrence. The degree of IRI is clearly
linked to the duration of hypoxia and vascular occlusion, but
there are other exacerbating factors related to the quality of the
liver parenchyma, e.g. age of the patient or donor and the degree
of steatosis.20 Higher IRI levels are associated with more tumour
recurrence and a more invasive phenotype of cancer cells.

The main drivers of IRI are cell death and mitochondrial
dysfunction, with subsequent production of ROS and oxidative
stress. As shown in Fig. 4, oxidative stress leads to release of
DAMPs, secretion of inflammatory cytokines, and subsequent
microvascular dysfunction.

DAMPs activate C-X-C motif chemokine ligand 10 (CXCL10)
through a TLR4-mediated mechanism.158 CXCL10 is a major
driver of the pro-inflammatory response to IRI with implications
for cancer recurrence. It attracts macrophages, monocytes, reg-
ulatory B cells and regulatory T cells to the liver, which have been
shown to promote tumour progression and cancer cell inva-
sion.159–161 CXCL10 regulates the secretion of inflammatory cy-
tokines, including TNF-a, IL-6 and IL-1b.158 These inflammatory
cytokines increase the expression of adhesion molecules (e.g. E-
selectin, ICAM-1, VCAM-1), which act as mediators of tumour
growth and engraftment. CXCL10 also has a direct effect on the
aggressive phenotype of tumour cells, increasing cell motility
and invasiveness90 by upregulating ROCK1 (Rho-associated
protein kinase-1), VEGF and MMP. Overexpression of ROCK,
which regulates cellular motility, proliferation, and apoptosis,
leads to infiltrative tumour growth and metastasis.162 VEGF and
MMP play a role in recruiting endothelial progenitor cells163,164

from the bone marrow, stimulating neoangiogenesis and
creating favourable conditions for recurrence. Furthermore, the
expression of MMPs, particularly MMP-9, is pivotal for ECM
degradation and remodelling,165 a key step in the recruitment
and transmigration of neutrophils and other immune cells into
the liver after IRI. Neutrophils and immune cells further aggra-
vate liver damage and ROS production, contributing to a
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Fig. 4. The link between ischaemia-reperfusion injury and tumour recurrence. During ischaemia, dysfunction in the ETC caused by lack of oxygen leads to ATP
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favourable microenvironment for cancer proliferation and
recurrence. It must be noted, however, that recent evidence
shows that the role of neutrophils in liver transplant IRI is not
merely pro-inflammatory.80 Specific subpopulations of neutro-
phils have been demonstrated to promote clearance of inflam-
mation, revascularization and tissue repair.166

The hypoxic conditions during IRI cause endothelial cell
swelling and unbalanced vasoconstriction, leading to microvas-
cular dysfunction. Microvascular dysfunction, together with
DAMP release, exacerbates tissue hypoxia, leading to hypoxia-
inducible factor-1a (HIF-1a) activation. After nuclear trans-
location, HIF-1a upregulates the expression of genes related to
angiogenesis, glycolytic switch, cell proliferation, and
apoptosis,167,168 which can stimulate tumour growth and meta-
static potential. The role of HIF-1a in the regulation of hypoxia-
induced apoptosis and cell death is controversial. During hyp-
oxia, HIF-1a promotes hypoxia-induced apoptosis via caspase
activation and mitochondrial cytochrome c release;169 this
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happens through different pathways, including p53 stabilization
and induction of proteins, such as BNIP3 (Bcl-2 interacting pro-
tein 3), that downregulate the anti-apoptotic Bcl-2 (B-cell lym-
phoma 2). However, HIF-1a may also have anti-apoptotic effects,
e.g. by promoting the transcription of genes that inhibit
apoptosis, such as IAP2 (inhibitor of apoptosis protein 2). The
target genes upregulated by HIF-1a in any given cell seem to
depend on cell type and on the microenvironment. HIF-1a also
plays a role in the regulation of mitochondrial metabolism. At
low oxygen levels, HIF-1a decreases the activity of the TCA cy-
cle,170 thus decreasing oxygen consumption, and stimulates
glycolysis and autophagy, mechanisms required for cell survival
in hypoxic conditions and often present in cancer cells. The
presence of HIF-1a in several cancers has been linked to clonal
selection of hypoxia-resistant cancer cells,171 and its expression
is associated with resistance to treatment. Increased levels of
HIF-1a have been linked to poorer prognosis in HCC172 and post-
surgical recurrence in CRLMs.173 Indeed, hypoxia-induced HIF-1a
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promotes EMT in CRC cells.174 In addition to HIF-1a expression,
hypoxia may also prevent apoptosis through induction of the
PI3K/Akt signalling pathway, which regulates cell survival and
proliferation,175 as well as NF-jB176 and STAT3.177 Notch, whose
instigation is mediated by ROS, also stimulates STAT3 activation
in a mechanism common to both IRI and regeneration, pro-
moting hepatocyte proliferation.178

Cancer recurrence and ischaemia-reperfusion injury – clinical
and preclinical evidence and implications (Box 3)
Evidence that IRI stimulates tumour growth and recurrence
comes from animal models, as well as from post-hepatectomy
and post-transplantation observations in humans.

Preclinical evidence
In animal models, IRI exerts an effect on both primary and sec-
ondary tumours. In a study by Orci et al.,179 the increase in LPS as
a consequence of reperfusion after vascular clamping was
responsible for higher HCC burden through a TLR4-mediated
pathway, in a mechanism shared by both IRI and liver regener-
ation, and activated during both liver resection with the Pringle
manoeuvre and liver transplantation. Oldani et al.180 showed that
HCC growth was higher after transplantation with an ischaemic
graft, while this effect was reversed if the graft was reperfused
prior to implantation. The duration of ischaemia correlated with
HCC growth. In a study by the same group,181 HCC recurrence
was worse after IRI in mice with severe steatosis compared to
controls, and expression of inflammatory genes encoding for IL-
6, TNF-a, HIF-1a and E-selectin was upregulated. Similarly, Yang
et al.182 found that IRI induces HCC recurrence in fatty livers by
inducing EMT and MMP activation through a PI3K/AKT/NF-jB-
mediated pathway. These findings highlight the pivotal role of
parenchymal quality on IRI tolerance.

Similar evidence has been found for CRLMs. van der Bilt
et al.183 reported the accelerated growth of CRLMs after vascular
clamping, which was associated with areas of hepatic necrosis in
an inflammatory microenvironment. This effect, observed with
prolonged vascular clamping, was not present with intermittent
vascular clamping. The same group184 found that IRI-accelerated
CRLM growth was exacerbated by increasing ischaemia time, and
further increased with age and steatosis. Different groups have
reported that targeting byproducts of the cascades initiated by
IRI, such as MMP-9,185 TNF-a,186,187 E-selectin,188 and circulating
progenitor cells,163 lowers the risk of CRLM growth and
recurrence.

Similar mechanisms to those identified in animal models
have also been found in cases of post-hepatectomy and post-
transplantation recurrence in patients.

Clinical evidence – liver resection
The main source of IRI in liver resection is vascular clamping.
Vascular clamping through the Pringle manoeuvre refers to the
selective occlusion of hepatic inflow from the liver hilum. The
Pringle manoeuvre is commonly performed in liver surgery to
reduce blood loss during parenchymal transection, in a fine
balance between blood loss and IRI. Several authors have re-
ported that an intermittent Pringle manoeuvre (i.e. short periods
of occlusion with periods of reperfusion in between) does not
increase the risk of recurrence of HCC189–191 or CRLMs.191,192 In a
post hoc analysis of two randomized-controlled trials193 on liver
resection for HCC with vs. without an intermittent Pringle
manoeuvre (88 patients per arm), better overall survival was
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observed after an intermittent Pringle manoeuvre in patients
with cirrhosis. Continuous, prolonged vascular clamping has
instead been associated with worsened prognosis. In a retro-
spective analysis of 2,368 patients with HCC,194 a Pringle
manoeuvre lasting >15 min was associated with decreased
overall and recurrence-free survival compared to one lasting
<15 min or no Pringle manoeuvre. Nijkamp et al.195 found that
time to recurrence of CRLMs after resection was significantly
shorter in patients with severe intraoperative ischaemia (i.e.
continuous clamping for >20 min, or more than 3 cycles of
>−15 min) compared to patients with no or minor ischaemia.
Yamashita et al.,196 in a retrospective analysis of 202 patients
undergoing resection for CRLMs, reported worsened recurrence-
free survival and cancer-specific survival in patients with higher
remnant liver ischaemia. Similarly, in an analysis of 328 patients
undergoing resection for HCC,197 severe remnant liver ischaemia
was associated with early recurrence within 6 and 12 months,
and severe remnant ischaemia was a risk factor for diminished
overall and recurrence-free survival.

Clinical evidence – liver transplantation
The liver graft experiences ischaemic damage at different time-
points during procurement, storage, and implantation, with
subsequent reperfusion injury once blood flow is restored inside
the recipient. During the past decade, several retrospective
studies have explored the correlation between the degree of IRI
and post-transplant recurrence.

Factors influencing IRI and response to IRI in liver transplant
are type of donor, quality of the graft, and comorbidities of the
recipient. Regarding quality of the graft, we know for preclinical
models that steatotic grafts have a lower tolerance for IRI. Severe
steatosis of the graft has been associated with increased risk of
tumour recurrence.20,198 The impact of donor age on post-
transplant recurrence is controversial,199,200 but large analyses
of the United Network for Organ Sharing (UNOS) database have
found an association between older age and recurrence. Simi-
larly, both increased body mass index23,201 and older age202 of
the recipient have been associated with increased HCC recur-
rence and poorer oncological outcomes.

While donor and recipient characteristics certainly play a role,
the major driver of IRI is ischaemic time. Ischaemic damage
varies greatly between donor types, with LDLT being associated
with lower ischaemic times, DCDs being associated with the
worst ischaemic damage due to WIT and procurement dynamics,
and DBDs being somewhere in between.

As we will further describe in the next section, some authors
have associated LDLT with increased HCC recurrence, however,
this is thought to be related to the regenerative process that
follows transplantation with a partial graft and a possible lack of
patient selection due to reduced time on the waitlist and lower
risk of waitlist dropout. No evidence on the role of ischaemia
time in LDLT is currently available, nor would it be easy to dissect
the contribution of IRI vs. regeneration.

Evidence from retrospective studies shows that ischaemia
time leads to increased HCC recurrence after transplant with DBD
grafts. Kornberg et al.203 found that CIT, WIT, and total ischaemia
time were all prolonged in patients who developed HCC recur-
rence. WIT >50 min was independently associated with HCC
recurrence at multivariate analysis, together with FDG (fluo-
rodeoxyglucose)-avid HCC, alpha-fetoprotein levels of >400 IU/
ml, and Milan-out status. Similar results were reported by Nagai
et al.21 In their analysis on 391 patients undergoing transplant for
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HCC, CIT of >10 h and WIT of >50 min were associated with
increased recurrence, particularly within 1 year post-transplant.
On multivariate analysis, both CIT and WIT remained signifi-
cantly associated with recurrence, as did alpha-fetoprotein
>200 ng/ml, Milan-out status, poor differentiation, and micro-
and macrovascular invasion. Both Kornberg et al. and Nagai et al.
identified a correlation between peak aspartate aminotransferase
(AST) and prolonged ischaemia time. In a study by Grat et al., AST
was used as a surrogate for IRI, and patients with a peak AST
>−1,896 U/L were found to have significantly lower recurrence-free
survival. This correlation was more pronounced in patients who
were classified as Milan-in, less so in patients who were Milan-
out but Up-to-7-in, and not observed in patients beyond Up-to-
7 criteria. This is in contrast with the findings by Kornberg et al.
and Nagai et al., who found the strongest correlation in patients
with tumour-related prognostic features, FDG-PET avidity and
microvascular invasion, respectively.

DCD grafts are considered extended criteria grafts that are
associated with a higher risk of impaired outcomes compared
to DBD donor livers; however, post-transplant outcomes with
optimal DCD grafts (i.e., young donors, short warm and cold
ischaemia times) are comparable, if not superior to results seen
with extended criteria DBDs.204 The most recent analysis of the
UNOS database comparing DBD and DCD liver transplants in
HCC recipients205 found no difference in HCC recurrence. While
no survival difference was observed between DCD and DBD
recipients with low risk for HCC recurrence, liver trans-
plantation with DCD grafts was associated with lower
recipient survival rates in patients at high risk of HCC recur-
rence.205 This further highlights the interplay between IRI
levels, perioperative factors, and tumour biology. A previous
analysis of the UNOS database20 had found that the risk of HCC
recurrence was increased in DCD grafts with prolonged WIT.
Smaller single-centre studies206–208 have shown that good
quality DCD grafts can lead to similar recurrence rates as seen
with DBD grafts.
Box 3. Critical commentary on cancer recurrence and ischaemia-
reperfusion injury.

Of the mechanisms highlighted in this review, IRI is at once the most 
detrimental and, at first glance, the easiest to target. Reducing IRI during 
liver resection only implies, after all, reducing Pringle manoeuvres and 
ensuring the proper vascularization of the remaining liver segments: two 
things that are easier said than done. Even more challenging is IRI in 
transplantation. In the real world, transplant centres have little control on the 
quality of the grafts they receive. They are often faced with the challenging 
situation of a suboptimal graft and a recipient who is not quite right for that 
graft but desperately needs a liver, especially those in intermediate urgency 
ranges. The severity of IRI is, however, not determined only by the quality 
of the graft, but cold ischaemia time plays a crucial role. The several 
logistical challenges of deceased donation limit any wiggle room for 
reducing ischaemic times per se, thus the most feasible option remains 
organ reconditioning, as we will see in the next paragraph. 
Therapeutic options (Box 4)
Pharmacological interventions
Several therapeutic agents have been shown, in animal models,
to reduce IRI, augment regeneration, or both.209 The most com-
mon mechanisms of action are either exerted on mitochondria,
which represent the beginning of the IRI/regeneration cascade,
or on downstream pathways, mainly regulation of the pro-
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inflammatory response and reduction of apoptosis. Despite
promising results in the preclinical setting, translation into
clinical practice has been limited. Some clinical evidence exists
on the benefits of S-adenosyl-L-methionine210 and prostacy-
clin,211 but larger and more robust studies would be needed to
support their use in standard practice.

Stem cells & extracellular vesicles
Mesenchymal stem cells (MSCs) and stem cell-derived extracel-
lular vesicles (EVs) are novel strategies being investigated to
modulate liver injury. The delivery of MSCs and MSC-derived EVs
can inhibit inflammation, reduce apoptosis, necrosis and oxida-
tive stress, and increase hepatocyte proliferation.212 Animal
studies with mouse, rat and porcine models of IRI after hepa-
tectomy and liver transplantation have shown that MSCs and
MSC-derived EVs can improve liver regeneration and post-
operative liver function,213 reduce markers of IRI214 and cellular
death, and enhance ATP regeneration.215 Clinical evidence on
cirrhosis demonstrates improved liver function after treatment
with MSCs.216

Ischaemic conditioning
Ischaemic conditioning (IC) employs short periods of ischaemia
followed by reperfusion to prime the target tissues, ameliorate
their overall response and protect them from IRI. IC can be per-
formed before (ischaemic pre-conditioning [IPC]), during
(ischemic peri-conditioning), or after prolonged ischaemia
(ischaemic post-conditioning). It can then be applied directly to
the target organ (e.g. the Pringle manoeuvre during hepatic
resection) or indirectly (remote conditioning, e.g. putting a
tourniquet around the patient’s arm). The results of IC on IRI in
preclinical cardiac and hepatic models have been encouraging.
However, evidence from human studies is inconclusive, and
most trials do not report long-term outcomes. Recent meta-
analyses of RCTs failed to identify convincing evidence that
remote IPC reduces IRI during liver resection217 or trans-
plantation,218 while direct IPC has been shown to lower post-
operative AST levels,218 a possible surrogate of IRI, after
transplantation. Well-designed studies with long-term end-
points are needed to confirm these preliminary results.

Machine perfusion
The standard graft preservation technique after procurement is
static cold storage (SCS), i.e. an ice box. Recently, advances have
been made in the field of organ preservation, including different
types of machine perfusion. Machine perfusion represents a
fascinating field, as it can potentially improve different aspects of
the transplant process, from logistics, graft utilization, and
viability assessment, to organ reconditioning and remodelling
through the delivery of therapeutics during prolonged perfusion,
e.g. defatting agents, senolytics, cell-based therapies, and gene
modulation.

The two main machine perfusion approaches are hypothermic
oxygenated perfusion (HOPE) and normothermic machine
perfusion (NMP). Preservation with HOPE involves perfusion of
the explanted graft, through either the portal vein alone or both
the portal vein and the artery (dual HOPE), with a hypothermic
solution containing a high concentration of oxygen (>60 kPa).
Four RCTs are currently available and have shown that HOPE re-
duces early allograft dysfunction and leads to less overall and
biliary complications, resulting in better post-transplant graft
survival and lower retransplantation rates, compared to SCS in
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extended criteria donor livers.219–221 By restoring oxygen in a
hypothermic environment, HOPE reverses hypoxia and mito-
chondrial dysfunction and thus downregulates all the cascades
that derive from them. The mitochondrial electron transport
chain, in particular Complex I, resumes its activities, using oxygen
for oxidative phosphorylation and ATP production. The byprod-
ucts of the TCA cycle that accumulate during hypoxia, which are
responsible for massive ROS production during reperfusion, get
degraded. This has a great effect in dampening IRI and all its
consequences, as shown in Fig. 5. HOPE can also promote liver
regeneration. By diminishing mitochondrial dysfunction,
improving oxygenation through increased perfusion, and
reducing inflammation, it allows mitochondria to provide suffi-
cient energy to sustain the demands of regeneration.222,223

Unlike HOPE, NMP is performed by perfusing the graft with a
red blood cell-based solution at 35.5–37.5 �C. Since the liver
metabolism is restored through perfusion with oxygen and nu-
trients, NMP allows for viability assessment through the mea-
surement of IRI injury levels and functional parameters. A series
of investigational parameters (i.e., bile production, lactate clear-
ance, perfusate transaminases, pH, electrolytes, glucose, LDH,
bicarbonate) were explored in a number of smaller case series
lacking validation. While a standardized set of viability criteria
has still not been established, NMP has proven successful in
enabling the evaluation of the transplantability of grafts that
would have been discarded based on clinical assessment
alone.224 NMP has been shown to diminish early allograft
dysfunction and ischaemic biliary complications compared to
SCS.225,226 While NMP may also exert a dampening effect on IRI,
its mechanisms of action are downstream relative to those of
HOPE and mostly linked to a reduction in pro-inflammatory
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cytokines, neutrophil infiltration and cell death during the late
IRI phase, when a major part of graft injury has already occurred.
No evidence exists so far on the effect of endischaemic NMP on
cancer recurrence.

However, the significant reduction of IRI through the concept
of “ischaemia-free” liver transplantation (IFLT), presented first by
a pioneering group from China, could be of interest.227 For suc-
cessful IFLT, the perfusion device is connected to the vessels
during donor liver procurement, where the graft undergoes NMP
with continuous perfusion during procurement, ex situ liver
transfer to the recipient operating theatre and transplantation.
Once the implantation is completed with revascularization of the
entire liver graft, NMP is stopped.228 The same group performed
a retrospective propensity score matched analysis,229 wherein 30
patients with HCC underwent IFLT and were compared to 85
patients undergoing liver transplantation after standard SCS.
After matching, the two cohorts were similar with regards to
demographic characteristics, pre-transplant AFP, tumours within
Milan criteria, tumour differentiation, microvascular invasion,
and pre-transplant treatments. Surrogates for IRI, such as AST
and LDH on postoperative day 1, were diminished in the IFLT
cohort. Recurrence-free survival at 1 and 3 years was higher in
the IFLT group vs. the SCS group (92.2% and 86.7% vs. 88.1% and
53.6%, respectively, p = 0.048).

Meanwhile, Mueller et al.,230 in a retrospective multicentre
analysis, matched 70 DCD grafts transplanted after endischaemic
HOPE with 70 DBD and 70 DCD grafts transplanted after SCS. Post-
transplant HCC recurrence was significantly lower in the HOPE-
treated DCD group than in the unperfused DBD and DCD groups.

To date, HOPE is the only therapeutic modality that has been
associated with reduction of IRI, promotion of regeneration, and
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reduction of post-transplant HCC recurrence. This has led to the
design and recent initiation of two key clinical trials. The first is a
multicentre RCT in Italy designed to confirm the previously
described impact of HOPE on HCC recurrence after liver trans-
plantation. The second is a study on the effect of HOPE in living
donor grafts deemed too small with a high corresponding risk of
small for size syndrome. This study will elegantly assess the
combined effect of HOPE on IRI and regeneration, considering
the key role of mitochondria in all liver cells. The results of these
two trials are eagerly awaited.
Box 4. Critical commentary on therapeutic options to mitigate periopera-
tive factors for recurrence.

The therapeutic strategies described in this section are either unlikely to 
have much impact (ischaemic conditioning and pharmaceutical agents) or 
unlikely to find broad utilization any time soon (stem cells); except, of 
course, for machine perfusion. The use of machine perfusion in the last 
decade has increased enormously, with organ preservation strategies now 
becoming standard of care in specific situations (e.g., normothermic 
regional perfusion followed by HOPE as standard protocol for DCDs in 
certain European countries). As utilization increases, our understanding of 
the benefits and pitfalls of different machine perfusion strategies is also 
increasing, but we are far away from unleashing their full potential. We are 
still figuring out basic aspects of machine perfusion, such as which strategy 
is better indicated, when to perform sequential perfusion, or when machine 
perfusion adds little to the overall outcome (or even if such cases exist). At 
the same time, more emphasis is being put on more refined features of 
machine perfusion, such as its impact on the immunological status, the 
future conditions of the graft and, of course, tumour recurrence. Although 
we have just scratched the surface of machine perfusion, we can envision 
wonderful things to come.

JHEP Reports 2023
Conclusions & future perspectives
Prevention of tumour recurrence after curative-intent liver sur-
gery remains largely an unmet need. Adequate patient selection,
an operation conducted according to oncological principles, and
the select use of adjuvant therapy are essential to reduce this
risk; however, a deeper understanding of the mechanisms that
favour recurrence may reveal novel potentially actionable tar-
gets. It is now evident that the degree of perioperative injury has
an impact on oncological outcomes. This injury has several
components, ranging from the simple act of squeezing the liver
parenchyma to the dramatic haemodynamic changes that occur
during transplantation. These components have interlacing roles
that may exacerbate one another and eventually determine
whether the liver will recover its function in the immediate
postoperative period. As discussed, the striking activation of
downstream pathways caused by perioperative injury not only
affects the early postoperative period, but may create the perfect
conditions for tumour engraftment while CTCs are released or
activated in response to surgical manipulation and stress. Peri-
operative liver injury can be modulated by targeting different
aspects, which may either diminish sources of damage
(ischaemia-reperfusion, oxidative stress, immune activation,
pro-inflammatory response) or boost liver function and regen-
eration. Therapeutic strategies that appear particularly prom-
ising are those addressing upstream pathways and exerting their
effects at multiple levels in the liver injury cascade, such as stem
cell therapy and hypothermic machine perfusion. Clinical studies
are ongoing, and their results will hopefully shed light on ways
to reduce perioperative liver injury and ameliorate short- and
long-term outcomes that can be implemented in routine patient
care.
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