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ABSTRACT: Drug-induced liver injury (DILI) is a significant concern in drug
development, often leading to drug withdrawal. Although many studies aim to
identify biomarkers and gene/pathway signatures related to liver toxicity and
aim to predict DILI compounds, this remains a challenge in drug discovery.
With a strong development of high-content screening/imaging (HCS/HCI) for
phenotypic screening, we explored the morphological cell perturbations induced
by DILI compounds. In the first step, cell morphological signatures were
associated with two datasets of DILI chemicals (DILIRank and eTox). The
mechanisms of action were then analyzed for chemicals having transcriptomics
data and sharing similar morphological perturbations. Signaling pathways
associated with liver toxicity (cell cycle, cell growth, apoptosis, ...) were then
captured, and a hypothetical relation between cell morphological perturbations
and gene deregulation was illustrated within our analysis. Finally, using the cell
morphological signatures, machine learning approaches were developed to
predict chemicals with a potential risk of DILI. Some models showed relevant performance with validation set balanced accuracies
between 0.645 and 0.739. Overall, our findings demonstrate the utility of combining HCI with transcriptomics data to identify the
morphological and gene expression signatures related to DILI chemicals. Moreover, our protocol could be extended to other toxicity
end points, offering a promising avenue for comprehensive toxicity assessment in drug discovery.

■ INTRODUCTION
The general success rate to bring a drug candidate to market is
estimated at 8%.1 One of the most significant reasons for
attrition is adverse clinical side effects and toxicity. Since drug-
induced liver injury (DILI) is a major reason for the withdrawal
of drugs,2 being able to detect molecules with the potential risk
of DILI as early as possible during drug development is a crucial
issue in drug discovery.
Many studies have been performed to identify biomarkers and

gene/pathway signatures related to liver toxicity based on
toxicogenomics studies3−9 or machine learning models.10−14 In
all these studies, it is assumed that chemicals having a similar
structure or inducing specific gene expression profiles to known
DILI chemicals can be identified as putatively toxic based on
shared compound structures or common mechanisms of
response at the molecular level. Nevertheless, the challenge
remains to be able to predict the potential toxicological profile of
a drug in humans and to capture the underlying mechanistic
events associated with this toxicity.
Recently, with the advances in automated fluorescence

microscopy and image analysis pioneered by Anne Carpenter
and her team, there was a reinvestment in high-content
screening/imaging (HCS/HCI) and notably in cell morphology
analysis provided by the Cell Painting assay.15 The Cell Painting
assay uses a mixture of 6 fluorescent dyes to stain different
compartments of a cell (nucleus, cytoplasm, plasma membrane,

...), which are then represented by morphological features (i.e.,
shape, intensity, and texture, among others).16 Such an assay
originally uses the human osteosarcoma U2OS immortalized
cell line and allows the investigation of the morphological
perturbation profiles induced by large sets of chemicals to
inform on phenotypic changes associated with different modes
of action (MoAs).17,18

However, although HCS/HCI allows the observation of the
morphological perturbation of a cell caused by a chemical, it
does not provide direct readouts on the molecular mechanism
that underlies the cell perturbation, and the results obtained
need to be interpreted using dedicated specific approaches.19

The association of molecular and cellular features to be able to
describe biological effects has started to be reported.20−23

Furthermore, Cell Painting data have been combined with
transcriptomics data to assess the potential link between
transcriptomic changes and the corresponding alterations in
morphology.24−26 Overall, these studies highlighted that the
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relation between gene expression and morphology profiles is
challenging, and the choice of cell line has a non-negligible effect
on the predictive accuracy.27

In this context, the objective of this study was to analyze the
morphological perturbations of cells induced by DILI chemicals
that are part of the Cell Painting data released by the Broad
Institute. SpecificMoAs based on transcriptomics data for sets of
DILI chemicals that share similar Cell Painting features were
determined. Concerning the liver toxicity data, two datasets of
chemicals were considered, one based only on human data
(DILIrank)28 and a second one (eTox) which classifies DILI
versus non-DILI chemicals combining human and rat
information from clinical reports provided by pharmaceutical
companies.12 Based on selectedmorphological cell features from
the first analysis, machine learning approaches were developed
on these 2 datasets to predict chemicals with a potential risk of
DILI. Importantly, the outcome of this analysis showed that
DILI chemicals sharing similar morphological perturbation
profiles also have similar pathways associated with liver toxicity
(cell cycle, RNA splicing, ...).

■ MATERIALS AND METHODS
Steps of the complete analysis workflow of this study are summarized in
Figure 1, and each step is detailed below.

Cell Painting Data. We used a publicly available dataset provided
by the Broad Institute, containing morphological features for 30 616
chemical components tested in the Cell Painting assay15,29 using the
human osteosarcoma U2OS immortalized cell line. A total of 406 384-
well plates were used, each containing 64 placed DMSO controls. Each
compound had 4 to 12 replicates spread across different plates. The
dataset provided 1783 features at a per-well level. Features were already

extracted using CellProfiler image analysis software30 and were sorted
at three levels:

• The first is the compartment related to the measurement,
including “Cell” in its entirety, “Cytoplasm”, and “Nuclei”.

• The second is the category and type of measurement (10
categories are available: “AreaShape”, “Correlation”, “Gran-
ularity”, “Intensity”, “Location”, “Neighbors”, “RadialDistribu-
tion”, “Texture”, “Parent”, and “Number”).

• Lastly, the third level is for cell compartments and organelles
stained during the Cell Painting assay: “DNA” for the nucleus,
“ER” for the endoplasmic reticulum, “RNA” for nucleolus and
cytoplasmic RNA, “AGP” for F-actin cytoskeleton, Golgi, and
plasma membrane, and “Mito” for mitochondria.

Preprocessing. Data Curation.We excluded 9 plates from the 406
plates included in the Broad Institute dataset because more than 20% of
wells were without values. Plates with less than 20% of missing values
(30 plates) are completed with “NA” values to be normalized and used
in the study. Features without variance are also excluded from the
dataset, bringing the number of features from 1783 to 1779.

Normalization. Normalization comprises a plate-layout effect
correction and a feature transformation. R software (v4.0.4) is used
to normalize the data. The plate-layout effect is corrected using a two-
waymedian polish, also called B-Score.31 The B-Score is applied to each
plate individually. We have checked that control wells are distributed
uniformly across the plate, as this is required to apply the B-Score. The
R package platetools (v0.1.5) already provides an implemented version
of the B-Score method (Warchal Scott (Last updated: 2021, June),
Tools and Plots for Multi-Well Plates. Retrieved from https://cran.r-
project.org/web/packages/platetools/platetools.pdf). For each row of
a plate, the row median is calculated. The median of the row medians,
i.e. the row overall effect, is deduced. We subtracted the row median
from the wells for all rows and then subtracted the overall effect from
each row median and repeated all the last steps for columns. We added

Figure 1. Schematic representation of the complete study workflow. Cell Painting data were preprocessed, 6 datasets related to 6 hepatotoxicity end
points were created using annotations from the DILIrank and eTox databases, features significantly discriminative of hepatotoxicity were selected and
used to build clusters of hepatotoxicity compounds before gene enrichment, and pathway analyses were performed on them. Finally, machine learning
models were trained to test the predictive potential of Cell Painting features regarding DILI.
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the column overall effect to the row overall effect. Finally, we repeated
the loop until the global overall effect became unchanged.32

Z-Score relative normalization is commonly used in biology to put
values of all features in the same range, which is frequently necessary for
downstream analysis algorithms.33 Because it is based on mean and
standard deviation, Z-Score may be very sensitive to outliers. We chose
here a similar normalization called Median and Median Absolute
Deviation (MMAD) that centers and scales data using median and
median absolute deviation features with respect to a control
population34 (i.e., DMSO).
Finally, features were concatenated at a compound level by grouping

replicates using the median.
Hepatotoxicity Annotations. Hepatotoxicity annotations of the

Cell Painting compounds were collected from two datasets:
DILIrank.TheDILIrank dataset was provided by the Food andDrug

Administration (FDA)28 and contains annotations for 1036 FDA-
approved drugs according to their capacity to induce DILI in humans.
Drugs were classified into 4 categories: “No-DILIconcern”, “Less-
DILIconcern”, “Most-DILIconcern”, and “Ambiguous-DILIconcern”.
309 molecules from the DILIrank dataset have been tested on Cell
Painting. Respectively, 62 compounds were annotated as Ambiguous-
DILIconcern, 66 as No-DILIconcern, 125 as Less-DILIconcern, and 56
as Most-DILIconcern. The analysis on DILIrank was performed on 2
sets combining different categories: one dataset named CP_DILIs_-
most_neg, containing compounds marked as Most-DILIconcern and
No-DILIconcern. The second dataset, named CP_DILIs_pos_neg,
combined Less-DILIconcern and Most-DILIconcern (defined as
Positive-DILIconcern) and No DILIconcern. Ambiguous compounds
were excluded from this study.

eTox. eTox contains hepatotoxicity data for 3712 compounds from
preclinical reports collected by pharmaceutical industries. It includes
human and rodent findings, which were classified into different
interlocked categories from general hepatotoxicity to more specific
morphological and clinical findings.12 We focused our analysis on four
of these end points: “Human Hepatotoxicity” (H_HT), “Human
Morphological Findings” (H_MF), “Human Morphological Hepato-
biliary Injury” (H_MFHB), and “Human Morphological Hepatocel-
lular Injury” (H_MFHC), for which 498, 471, 459, and 459
compounds, respectively, were tested in Cell Painting. We built 4
datasets representing these 4 end points: CP_eTox_H_HT,
CP_eTox_H_MF, CP_eTox_H_MFHB, and CP_eTox_H_MFHC.
Definitions of the 6 end point datasets’ names obtained from

DILIrank and eTox are explained in Table 1. DILIrank and eTox
compounds’ annotations are available in Table S1 in SI (Supporting
Information).

Feature Selection. A dataset-specific feature selection was
processed. For each of the six reduced datasets (2 from DILIrank and
4 from eTox), we excluded features without variance. For each feature,
the means of the values of both the positive and negative compounds
were calculated, and aMann−Whitney test was then calculated to select
features that showed a significant difference (p-value < 0.05) between
hepatotoxic and non-hepatotoxic compounds. For each dataset,
Fisher’s Exact Tests were performed to identify among the feature
selection significantly enriched CellProfiler feature categories.

Clustering of Similar Hepatotoxic Compounds. Hierarchical
clustered heatmaps (i.e., clustermaps) were calculated with the Python
seaborn package (v0.11.2) based on features selected in the previous
step. It allowed grouping of chemicals sharing a similar cell
morphological profile. The scale was set up at 0 and calculated with
minimum and maximum, respectively, set at the 25th and 75th
percentiles.
As we were not interested in non-hepatotoxic compounds at this

stage, only DILI compounds of each dataset were selected to build the
related clustermaps. The procedure of clustering was repeated for each
of the 6 datasets. First, linkage matrices were extracted from compound
dendrograms of clustermaps and used to create clusters of DILI
compounds sharing a similar cell morphological profile. Different
clusters were formed according to the distance’s threshold considered
(going from 1 to 0.1) with an interval of 0.1, i.e. an increasingly stringent
threshold. Thus, we iterated through the initial clusters to split clusters
that were initially too wide. To obtain final clusters, a threshold cluster
size was defined as the mean size of the initial clusters at a threshold of
0.8. Initial clusters smaller than this size were kept as they were. For
larger than the initial clusters’ mean size, a continuous Tanimoto
coefficient was calculated on the features for each combination of
compounds in cluster35 (eq 1). Contrary to the classical Tanimoto
coefficient used with binary encoded chemical structures, the
continuous Tanimoto coefficient is used with the continuous values
collected from the morphological features. If the mean score of all
coefficients calculated for the cluster was superior or equal to 0.7, i.e.
70% of similarities between compounds, the cluster was then kept as it
was. Otherwise, it was split regarding the next smaller distance
threshold. This loop had a smaller size than the threshold cluster size or
until the smallest threshold distance of 0.1 was reached. Thereafter,
only clusters with at least 4 compounds were considered for further
analysis.

Equation 1. Formula of the Tanimoto coefficient (T) for continuous
data. A and B refer to two compounds of the same cluster, x is a feature
value, and n is the number of features.
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The scaling is different from one dataset compared to another one, as
it is dependent on the set of features. The scaling was used only at this
stage and not for the machine learning approaches.

Gene Enrichment and Pathway Analysis.Once the hepatotoxic
chemicals were grouped by morphological features, we were interested
to see if they also shared similar biological processes. To do so, both
gene and pathway enrichments were performed for our clusters of DILI
compounds using a list of differentially expressed genes, provided by the
publicly available L1000 mRNA profiling assay36 (https://lincsproject.
org/LINCS/tools/workflows/find-the-best-place-to-obtain-the-lincs-
l1000-data). L1000 data for 19 811 chemicals were available at different
levels of preprocessing, going from 0 for raw data to 5 for differential
gene expression signatures. In order to extract a list of differentially
expressed genes by our hepatotoxic compounds of interest, we used the
L1000 data at level 4, i.e. “gene signatures computed using Z-scores

Table 1. Term Definitions of End Point Datasets Created from DILIrank and eTox Databases

Dataset name Definition

CP_DILIs_pos_neg Compounds tested in the Cell Painting assay and annotated as Positive-DILIconcern (either Less-DILIconcern or Most-DILIconcern) or
No-DILIconcern in the DILIrank database

CP_DILIs_most_neg Compounds tested in the Cell Painting assay and annotated as Most-DILIconcern or No-DILIconcern in the DILIrank database
CP_eTox_H_HT Compounds tested in the Cell Painting assay and annotated as positive or negative regarding the “HumanHepatotoxicity” (H_HT) end point

in the eTox database
CP_eTox_H_MF Compounds tested in the Cell Painting assay and annotated as positive or negative regarding the ‘Human Morphological Findings’ (H_MF)

end point in the eTox database
CP_eTox_H_MFHB Compounds tested in the Cell Painting assay and annotated as positive or negative regarding the ‘Human Morphological HepatoBiliary’

(H_MFHB) end point in the eTox database
CP_eTox_H_MFHC Compounds tested in the Cell Painting assay and annotated as positive or negative regarding the ‘Human Morphological HepatoCellular’

(H_MFHC) end point in the eTox database
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relative to a population of controls”. All differentially expressed genes by
DILI compounds belonging to the same cluster and tested after 6 h of
treatment, in a HepG2 cell line, and at a concentration of 10 μM (the
condition for which we have the highest number of chemicals with
transcriptomics data) were collected. To get only the most perturbed
genes, only those with a Z-score below −3.00 (downregulated) and
above 3.00 (upregulated) were considered. Gene enrichment and
pathway analysis were then performed to identify gene sets and
biological pathways that could be disrupted by similar hepatotoxic
compounds. The Gene Ontology37,38 (GO) was used for the study of
gene enrichment whereas the KEGG database39−41 was used for
pathways analysis. Among all the available GO terms, we focused only
on terms dealing with biological processes (BPs) and cellular
components (CCs).
Enrichment was performed using the R package clusterProf iler

(v4.2.2).42 We selected significant GO terms and KEGG pathways with
an adjusted (with a Bonferroni correction) p-value lower than 0.05.
Heatmaps were applied to visualize pathways that were representative
of clusters regarding their adjusted p-value and to study the similarity
between clusters of hepatotoxic compounds in the same dataset.
Clusters in which only one compound had gene expression data were
excluded from the analysis.
As some clusters were not considered in the analysis because of a size

smaller than 4 or the lack of gene expression data, the final cluster
numbering used in the study, starting with 1, is not continuous.

Tanimoto Coefficient Calculation. The structural similarity
between two molecules was calculated using the Tanimoto coefficient.
To do so, we used the Open Babel program43 (The Open Babel
Package, version 3.0.0, http://openbabel.org, accessed Oct 2022) and
the MACCS fingerprints.

Comparison of Classification Models Based on DILIrank and
eTox. With the objective of assessing the relevance of morphological
features selected with the DILIrank and eTox datasets in the prediction
of DILI compounds, computational models were performed using three
machine learning models, Random Forest (RF), Linear Support-
Vector-Machine (SVM), and ElasticNet, implemented in Python
(v3.9.5). For each dataset, data were split into a training dataset (85%)
and a validation dataset (15%), keeping the same proportion of
hepatotoxic and non-hepatotoxic compounds in each dataset. For
Linear SVM and ElasticNet, the datasets were standardized before
prediction. Each model was developed using the scikit-learn package
(v1.0.1). Stratified 2 times 5-fold cross-validation was included in the
training procedure. For each model, we performed hyperparameter
tuning with Grid Search optimization. The details of the parameter
settings and model performance assessment are available in Table S2 in
SI. Model efficiency was measured with balanced accuracy (BA),
specificity (SP), and sensitivity (SN) metrics of which formulas are
available in Table S3 in SI. The entire model-fitting and validation

process was repeated on permuted datasets too. Parameter settings of
models previously optimized and trained on real data were selected
instead of a Grid Search optimization. Permutation tests were repeated
100 times. Finally, we compared the machine learning performance of
ElasticNet models for hepatotoxicity prediction based on Cell Painting
features with Recursive Feature Elimination (RFE) included in the loop
of training. We used a RF algorithm as RFE estimator. Stratified 2 times
5-fold cross-validation was included in the training procedure.

■ RESULTS
Overlapping between DILIrank and eTox Compounds

and Annotations. To account for the different information
provided by DILIrank and eTox, we created 6 different datasets
corresponding to the different end points. DILIrank gave
information on human hepatotoxicity, while eTox annotations
were collected from preclinical studies on rodents. We used
DILIrank annotations to create two datasets: CP_DILIs_pos_-
neg and CP_DILIs_most neg. CP_DILIs_pos_neg regrouped
DILIrank non-hepatotoxic compounds, and all the compounds
annotated as hepatotoxic regardless of the level of hepatotoxicity
(Less-DILI and Most-DILI). CP_DILIs_most_neg included
only the most hepatotoxic compounds (Most-DILI) in addition
to the non-hepatotoxic compounds. The eTox datasets were
nested and provided more specific information regarding the
type of hepatotoxicity, going from general hepatotoxicity
(CP_eTox_H_HT) to hepatotoxic morphological findings
(CP_eTox_H_MF) that included morphological findings at
both hepatobiliary and hepatocellular levels (respectively
CP_eTox_H_MFHB and CP_eTox_H_MFHC).
DILIrank and eTox contained annotations at all levels for 247

and 498 compounds, respectively, with 208 compounds in
common between the two datasets (Figure 2A). We checked if
DILIrank and eTox agreed on their annotations of hepatotox-
icity. To do that, we compared the common positive compounds
of CP_DILIs_pos_neg and CP_eTox_H_HT and found that
out of 188 compounds, 153 were annotated as hepatotoxic in
both DILIrank and eTox (Figure 2B). Only 1 compound was
defined as hepatotoxic in DILIrank and non-hepatotoxic in
eTox, compared to 34 compounds mentioned as hepatotoxic in
eTox and non-hepatotoxic in DILIrank. The overall agreement
in hepatotoxicity annotations between DILIrank and eTox
tallies at 81%.

Identification of Morphological Features Associated
with Hepatotoxicity. Cell Painting data initially provided

Figure 2. Venn diagrams of compounds and annotations in common between the DILIrank and eTox datasets: (A) DILIrank compounds vs eTox
compounds; (B) hepatotoxic DILIrank compounds vs hepatotoxic eTox compounds.
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1783 features per compound. After removing features without
variance, 1779 features remained. A high number of features can
frequently lead to information redundancy, over-representation
of some features, and noise, making the interpretation more
challenging.44,45 Therefore, we performed feature selection in
the workflow of Cell Painting data analysis to reduce the number
of features by keeping only the most informative ones regarding
the biological question of interest, in this case hepatotoxicity.
Feature selection, based on a Mann−Whitney test, was

processed on each dataset separately to select significant features
that discriminate between DILI and non-DILI compounds.
Morphological features with a p-value lower than 0.05 were
considered significant and selected for further investigation
(Table 2). The list of selected features per dataset is detailed in
Table S4 in SI.
The number of selected features was more stringent for the

eTox datasets (33 to 83 features) compared to the DILIrank
datasets (149 and 335 features). Among the DILIrank datasets,
the Mann−Whitney test selected the highest number of features
with the CP DILIs_most_neg dataset (335 features). The
inclusion of Less-DILIconcern compounds within the Most-
DILIconcern compounds increased the number of features that
discriminated significantly (p-value < 0.05) from the No-
DILIconcern compounds. In contrast, the observation was
different with the eTox datasets, although the number of
compounds was larger. CP_eTox_H_HT, containing the less
specific annotations of hepatotoxicity in the eTox classification,
had the smallest number of selected features (33 features). On
the contrary, CP_eTox_H_MF, CP_eTox_H_MFHB, and
CP_eTox_H_MFHC, which contained hepatotoxicity annota-
tions resulting from more specific observations at a morpho-
logical level, were less stringent in terms of feature selection (49
to 83 features).
Regarding the analysis of cell morphology features, they were

examined before and after feature selection in the function of the
cell’s compartments, i.e. “Cell”, “Cytoplasm”, “Nuclei”, and the
feature categories (Figure 3). Initially, it is clear that there is
approximately the same number of features assigned to the three
compartments (Figure 3A). Category proportion was almost the
same for each compartment. Features belonging to the
“Texture” category represented more than one-third of the
total features whereas “Location”, “Neighbors”, “Number”, and
“Parent” features were under-represented (0 to 4%) (Table S5 in
SI). The remaining categories accounted for 8% to 15% of the
features.
After feature selection and according to the dataset, the

number of selected features per compartment was of comparable
magnitude (Figure 3B). Among the measurement categories,
only 7 categories out of 10 were represented after selection:
“AreaShape”, “Correlation”, “Granularity”, “Intensity”, “Radi-
alDistribution”, “Texture”, and “Neighbors” (Figure 3B).

However, the “Location”, “Parent”, and “Number” categories
were already under-represented before feature selection (Figure
3A). The “Texture”, “Correlation”, and “Granularity” categories
were the most represented in the feature selection for both the
DILIrank and eTox datasets, as confirmed by the ratio of their
percentages in the selective features relative to the background
percentage in the complete set of features before selection
(Table S7). “Texture” measurements pertain to the general
aspect of objects, i.e. the cell in its entirety, cytoplasm, and
nuclei, and especially their roughness and smoothness.
“Correlation” measurements represent the correlation between
pixel intensities in different images. “Granularity” measurements
are texture measurements that take into account the global
image more than objects by trying to fit a granular spectrum to
the image. “Texture” measurements also appeared to be more
represented in “Cell” and “Cytoplasm” compartments, while
“RadialDistibution” and “AreaShape” were more specific to the
“Nuclei” compartment (Tables S6 and S7). The “RadialDis-
tribution” category measures the spatial distribution of pixel
intensities in cells, cytoplasm, and nuclei. “AreaShape” applies to
the image area that is occupied by objects like the cell,
cytoplasm, or nucleus and to the shape of these objects.
However, Fisher’s Exact Tests revealed that “Texture” was the
only significantly enriched feature category, in the CP_DILIs_-
pos_neg, CP_DILIs_most_neg, CP_eTox_H_MF, and CP_e-
Tox_H_MFHC datasets for the “Cells” compartment and in
every dataset except CP_eTox_H_MFHB for the “Cytoplasm”
compartment (Table S8).
In the subsequent analysis, we examined the overlap of

selected features across datasets. We first intersected features
selected in at least one of the two DILIrank datasets and those
that were selected in at least one of the eTox datasets, resulting
in 49 common features (Figure 4A). Out of these 49 features, 8
were associated with the nucleus, 23 with the cytoplasm, and 18
with the cell. The majority of these common features (30) fell
under the “Texture” category. We then compared the features
selected in each individual DILIrank dataset. It appeared that
CP_DILIs_pos_neg shared 78% of its selected features with
CP_DILIs_most_neg (Figure 4B), with the majority being cell
and cytoplasm features (respectively, 45% and 45%). The
selected features of the categories “Texture”, “Granularity”, and
“Correlation” were consistently in the majority. Conversely, we
found less similarity among the selected features in the eTox
datasets (Figure 4C). CP_eTox_H_MF and CP_e-
Tox_H_MFHC exhibited the highest similarity, sharing 38
out the 49 selected features. Interestingly, only 1 feature,
“Cytoplasm_Texture_Entropy_AGP_5_0″, was common to all
the eTox datasets.

Clustering of Compounds and Features. To investigate
the relationship between Cell Painting features and hepatotox-
icity indications from the DILI compounds of our datasets,

Table 2. Number of Features per Dataset after Feature Selection with the Mann-Whitney Test

Number of DILI-Discriminative Selected Features

Dataset CP_DILIs_pos_neg CP_DILIs_most_neg CP_eTox_H_HT CP_eTox_H_MF CP_eTox_H_MFHB CP_eTox_H_MFHC
Number of
DILI
compounds

181 56 375 321 247 286

Number of
nonDILI
compounds

66 66 123 150 212 173

Number of
selected
features

149 335 33 49 83 73

Chemical Research in Toxicology pubs.acs.org/crt Article

https://doi.org/10.1021/acs.chemrestox.2c00381
Chem. Res. Toxicol. 2023, 36, 1456−1470

1460

https://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.2c00381/suppl_file/tx2c00381_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.2c00381/suppl_file/tx2c00381_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.2c00381/suppl_file/tx2c00381_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.2c00381/suppl_file/tx2c00381_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.2c00381/suppl_file/tx2c00381_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.2c00381/suppl_file/tx2c00381_si_001.pdf
pubs.acs.org/crt?ref=pdf
https://doi.org/10.1021/acs.chemrestox.2c00381?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


hierarchical-clustered heatmaps (clustermaps) of DILI com-
pounds were built based on the morphological features
previously selected. Clustermaps are presented in Figure 5
with hepatotoxic compounds in rows and cell morphological
features in columns.

Interestingly, the features were not grouped either by

CellProfiler compartments or categories after clustering. In

addition, some features exhibited minimal variation across the

compounds, as depicted by the gray areas in Figure 5A andD−F.

Figure 3.Details of number of features per category in each compartment and dataset: (A) before feature selection and (B) after feature selection. The
figures represent the number of features in each category of CellProfiler measurements and sorted the analysis by CellProfiler compartments and
datasets. Percentages of feature categories in each compartment and dataset before and after feature selection are available in Tables S5 and S6 in SI,
and the as ratio of percentages in the selected features in Table S7.

Chemical Research in Toxicology pubs.acs.org/crt Article

https://doi.org/10.1021/acs.chemrestox.2c00381
Chem. Res. Toxicol. 2023, 36, 1456−1470

1461

https://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00381?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00381?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00381?fig=fig3&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.2c00381/suppl_file/tx2c00381_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemrestox.2c00381/suppl_file/tx2c00381_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.chemrestox.2c00381?fig=fig3&ref=pdf
pubs.acs.org/crt?ref=pdf
https://doi.org/10.1021/acs.chemrestox.2c00381?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In fact, variations of these features were linked to only a few
extreme compounds, i.e., features with extreme values.
For each dataset, clusters of compounds could be visible in the

dendrogram as well as feature patterns (red for compounds
having a higher morphological feature value than the mean and
blue for compounds having a lower morphological feature value
than the mean). It can be hypothesized that compounds of the
same cluster, i.e., compounds with close values on the same
morphological features, have similar effects on cells, i.e.,
associated in our case with hepatotoxic effects. Since DILI can
stem from different biological pathways, this could explain why
DILI compounds were not all grouped together in the
clustermap. To further investigate the mechanistic link between
liver toxicity and clusters of DILI compounds, we extracted

clusters of similar hepatotoxic compounds using the dendro-
gram performed on the compound side (on the left of the
clustermap) (see Materials and Methods) and we performed
enrichment analysis for chemicals having in vitro gene
deregulations in the HepG2 cell line under the same conditions
(when available).
From the dendrogram, we obtained 15 clusters for

CP_DILIs_pos_neg, 6 for CP_DILIs_most_neg, 32 for
CP_eTox_H_HT, 34 for CP_eTox_H_MF, 22 for CP_e-
Tox_H_MFHB, and 28 for CP_eTox_H_MFHC, with at least
4 chemicals (Table S9). The cluster sizes ranged from 4 to 20
chemicals. Further details of the number of clusters and their
mean size are provided in Table S10 in SI.

Figure 4.Venn diagrams of DILI-discriminative features in common between datasets after feature selection: (A)mergedDILIrank datasets vs merged
eTox datasets; (B) CP_DILIs_pos_neg vs CP_DILIs_most_neg; (C) CP_eTox_H_HT vs CP_eTox_H_MF vs CP_eTox_H_MFHB vs
CP_eTox_H_MFHC.

Figure 5. Clustermaps based on DILI-discriminative features of DILI-compounds of each dataset only: (A) CP_DILIs_pos_neg; (B)
CP_DILIs_most_neg; (C) CP_eTox_H_HT; (D) CP_eTox_H_MF; (E) CP_eTox_H_MFHB; (F) CP_eTox_H_MFHC. Each clustermap is
related to a dataset. Only hepatotoxic compounds of each dataset were clustered. Features are clustered in columns, and compounds are clustered in
rows. A spectrum of color is centered on zero (gray) from dark blue (negative value) to dark red (positive value) and calculated with minimum and
maximum, respectively, set at the 25th and 75th percentiles of feature values.
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Hierarchical clustering on Cell Painting features allowed us to
gather compounds that did not necessarily share structural
similarities or similar pharmacological properties but that had
similar morphological signatures on cells presumably associated
with hepatotoxicity. For example, cluster 26 extracted from the
CP_DILIs_pos_neg dataset contained 4 compounds: Paclitax-
el, Mebendazole, Etoposide, and Amlodipine. Although
Paclitaxel and Etoposide are known chemotherapeutic
agents,46,47 they are not structurally similar, as they have a
Tanimoto coefficient of 0.49 (calculated with Open Babel).
More generally, none of the compounds of cluster 26 was
structurally similar to another. Mebendazole and Amlodipine
are also used for different pharmacological purposes, as they are
anthelmintic and antihypertensive agents, respectively.48,49

However, all 4 compounds were associated with liver toxicity
in the DILIrank database and may have similar MoAs for the
induction of hepatotoxicity.

Enrichment and Pathway Analysis. Based on the
hypothesis that chemicals having similar DILI-discriminative

morphological features may have similar mechanisms of action,
we collected transcriptomics data from compounds tested in
L1000 and we performed enrichment analysis with DILI
chemicals grouped in the same clusters. As our biological
organ is the liver, chemicals tested on HepG2 cells at a
concentration of 10 μM and after 6 h of treatment were
considered. We used the GO and the KEGG databases and
focused on terms dealing with BP and CC. To visualize the
results of the pathway analysis, a heatmap per enrichment type
and per dataset was built. Results for the CP_DILIs_pos_neg
dataset are presented and discussed in Figure 6).
Based on the hierarchical clustering on the CP_DILIs_pos_-

neg dataset, 15 clusters were further investigated for gene
enrichment and pathways analysis. Interestingly, the KEGG
enrichment analysis (Figure 6) revealed that the cell cycle was
significantly impacted by DILI chemicals in clusters 13, 26, 30,
and 55. Among the genes that contribute to cell cycle
modulation, SMC1A and WEE1 are significantly deregulated
by these 4 clusters. SMC1A is a gene belonging to the structural

Figure 6. Heatmaps of pathways significantly deregulated by clusters of hepatotoxic compounds from the CP_DILIs_pos_neg dataset. A. KEGG
pathway analysis. B. GO BP pathway analysis. C. GO CC pathway analysis. Color scale is related to p−value. P−values equal or above 0.05 are in light
green.
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maintenance of the chromosome family. It is implicated in DNA
damage repair and plays a role during the mitosis stage of the cell
cycle.50 WEE1 regulates the entry in mitosis too and its
deregulation is known to be associated with several types of
cancer, including hepatocellular carcinoma.51 These 2 genes,
expressed in HepG2, are also expressed in U2OS, as reported by
the Human Protein Atlas (https://www.proteinatlas.org).
Subpathways of the cell cycle such as the p53-dependent

apoptotic pathway or the mitotic cell cycle phase also appeared
in our enrichment analysis (Figure 6). To ensure that the
deregulation of the cell cycle was not biased by the cytotoxicity
of the compounds in clusters 13, 26, 30, and 55, we examined the
cytotoxic median concentrations of available compounds using
the CompTox Chemistry Dashboard52 (https://comptox.epa.
gov/dashboard/, v2.2). Except for Mebendazole, compounds in
clusters 13, 26, 30, and 55 (Metoprolol, Omeprazole, Clomipr-
amine, Tamoxifen, Progesterone, Lovastatin, and Simvastatin)
had a cytotoxic median concentration higher than the 10 μM
concentration used in the enrichment analysis.
Compounds belonging to cluster 55 exhibited differentially

expressed genes associated with the RNA splicing (Figure 6), as
exemplified by CASC3.53 GO enrichment analysis at the cellular
component level corroborated this implication, as spliceosome
was also mentioned for this cluster (Figure 6). RNA alternative
splicing is a process that transforms pre-messenger RNAs into
messenger RNAs.
Figure 7 summarizes and illustrates the relationships between

all clusters/pathways and cellular compartments associated with
morphological perturbations.
The analysis of the remaining pathways for the CP_DILIs_-

pos_neg dataset, involving pathways related to the immune
response and kinase activity, the carbohydrate homeostasis, the

endoplasmic reticulum (ER) protein processing, the hypoxia-
inducible factor 1 (HIF-1) signaling pathway, response to
hyperoxia, proteoglycans in cancer, spindle fibers’ disorganiza-
tion, and the release of cytochrome c from mitochondria, is
described in SI. A similar exercise has also been performed with
the 5 other datasets and can be found in SI. The gene
enrichment results of each cluster are compiled in Table S9 in SI,
including the ensemble of compounds, the number of both
down-regulated and up-regulated genes, the number of KEGG
pathways perturbed by the cluster after pathway analysis, and the
number of both BP and CC terms from the GO affected by the
cluster of chemicals.

Hepatotoxicity Prediction. While the selection of
hepatotoxicity-related Cell Painting features allowed us to
determine clusters of compounds both with similar morpho-
logical profiles and known to be associated with DILI, the
pathway analysis resulting from these clusters highlighted
potential common mechanisms for liver injury. In a second
step, we hypothesized that selected Cell Painting features for
DILI compounds could enable discrimination between DILI vs
non-DILI chemicals and we developedmachine learning models
to evaluate their capability to predict potential new hepatotoxic
compounds.
We compared three different machine learning algorithms:

RF, Linear SVM, and ElasticNet. Each model was trained on
each dataset, either with the original 1779 Cell Painting features
(i.e. “complete” feature set) or with only features that were
selected for each dataset after the feature selection step (i.e.
“reduced” feature set). We built a bar chart of BAs obtained after
cross-validation runs and on the validation set for each model
and dataset (Figure 8). Exact BA, SP, and SN scores across cross-
validation runs for training and validation sets can be found in

Figure 7. Schematic representation of pathway analysis results for clusters of the CP_DILIs_pos_neg dataset and their link to different hepatic
pathologies. Cluster numbers are specified in superscript above the involved pathway or hepatic pathology. Clusters 6, 27, 31, 35, and 48 are not
included in the figure due to the lack of informative pathway analysis results. ECM, extracellular matrix; ER, endoplasmic reticulum; HCC,
hepatocellular carcinoma; NAFLD, nonalcoholic fatty liver disease. The figure was partly generated using Servier Medical Art, provided by Servier,
licensed under a Creative Commons Attribution 3.0 unported license.
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Table S11 in SI. From a technical point of view, no single
machine learning algorithm stood out from the others.
Regarding the complete set of cell morphological features, the
highest BA in the validation set reached 0.583 and 0.587 for the
CP_DILIs_most_neg and CP_eTox_H_MF datasets, respec-
tively, both using the ElasticNet model (Figure 8A−B), but with
cross-validationmean BAs of 0.511 and 0.471, respectively.With
the selected features containing only hepatotoxicity-discrim-
inating features, cross-validation mean BAs between 0.567 and
0.603 and validation set BAs between 0.646 and 0.739 were
obtained for the CP_DILIs_pos_neg and CP_DILIs_most_-
neg datasets (Figure 8C−D, Table S11). For eTox, the mean
BAs were 0.555 and 0.541 across cross-validation and 0.645 and
0.65 with the validation set for the CP_eTox_H_HT and
CP_eTox_H_MF datasets, respectively (Figure 8C−D, Table
S11). None of the models succeeded in giving correct
performances for the CP_eTox_H_MFHB and CP_e-
Tox_H_MFHC datasets. Performances were slightly better

for DILIrank datasets than for eTox ones, which could be
explained by the higher number of selected features for the
DILIrank datasets. Finally, we performed permutation tests for
each combination of model and dataset. For combinations of
model and dataset associated with BAs above 0.6 for their given
validation set (RF-CP_DILIs_pos_neg, RF/Linear SVM/
ElasticNet-CP_DILIs_most_neg, Linear SVM-CP_e-
Tox_H_HT, and ElasticNet-CP_eTox_H_MFHC), less than
2% of the permutation tests succeeded in reaching higher BAs
(Figure S6, Table S12). As ElasticNet models were the more
stable across all datasets, we also conducted a supplementary
analysis with a RFE step within the cross-validation loop, but we
did not observe improved performances (Table S13).
Looking at SP and SN scores, models based on selected

features exhibited more balanced values (around 0.6) compared
to models using the full list of Cell Painting features, which
showed either high SP (prediction of truly nonhepatotoxic
chemicals) and low SN, or high SN (prediction of truly

Figure 8.Comparison of balanced accuracies obtained before and after feature selection for the 6 datasets, during cross-validation and on the validation
set, with Random Forest, Linear SVM, and ElasticNet: (A) Mean cross-validation BAs obtained with models trained on datasets with all Cell Painting
features; (B) BAs obtained on the validation set with models trained on datasets with all Cell Painting features; (C) mean cross-validation BAs with
models trained on datasets after feature selection; (D) BAs obtained on the validation set with models trained on datasets after feature selection.
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hepatotoxic chemicals) and low SP (Table S11). In general, the
selection of Cell Painting features related to DILI/non-DILI
chemicals improved the stability of the models and slightly
enhanced performance for the DILIrank datasets and the
eTox_H_HT and eTox_H_MFHC datasets. SP and SN were
the best for the CP_DILIs_most_net dataset, using either
Random Forest or Linear SVM, with respective values of 0.78
and 0.70 on the validation set (Table S11).

■ DISCUSSION
High-Throughput Phenotypic Profiling (HTPP) and High-
Throughput Transcriptomics (HTTr) are currently highly
considered in the assessment of chemical-induced toxicity,
including for DILI.54 DILI is characterized by a variety of
mechanisms that can lead to adverse outcomes in the human
liver. Thus, it makes it challenging to assess a global hepatotoxic
risk without focusing on a particular mechanism or without
studying compounds on an individual basis.
The objective of our study was to assess DILI using a

combination of image-based information fromCell Painting and
gene expression data. Cell Painting is an HCS assay that allows
the observation of cell morphology perturbations induced by a
compound. However, it provides limited information on the
potential mechanism of action at the molecular level and
essentially informs on phenotypic changes. In this regard,
combining image-based information with transcriptomics data is
an interesting solution to explore. For example, Way et al.
recently demonstrated how Cell Painting and the L1000 mRNA
profiling assay were highly complementary in terms of capturing
the MoA.55

Based on the assumption that chemicals having similar DILI-
specific morphological features might have similar MoAs, we
exploited 2 datasets of chemicals with DILI information
(DILIrank and eTox). First, we selected features of interest for
our phenotypic end point associated with DILI categories. It has
been shown that Cell Painting can benefit from supervised
feature selection and that a smaller size of features is more
informative.56 To do the feature selection, we used a Mann−
Whitney test, which allowed us to propose sufficient
morphology features that allow discrimination between DILI
versus non-DILI chemicals. Notably, we noticed that the feature
selection was larger for DILIrank compared to eTox. One
explanation could be that eTox annotations came from
preclinical studies carried out on rodents and suggested to
cause DILI in humans whereas DILIrank annotations are
observations coming from clinical studies. As the Cell Painting
assay was carried out on human cells, it may be more challenging
to link human in vitro observations with a rodent in vivo
annotation. Interestingly, we also noted that the features
perturbed by the two sets of DILI chemicals were relatively
different (only 49 morphological features in common between
both datasets). This highlights that there is not a unique
morphological cell signature associated with DILIs and that their
mechanisms of action are multiple. It also suggests that the
mechanisms of liver toxicity could be different from human to
rodents.
Nevertheless, by clustering DILI chemicals sharing a similar

morphological profile and by analyzing transcriptomics data for
these chemicals, we managed to identify potential significant
functional signaling pathways, reported in the literature, which
can lead to hepatic injury. For example, previous studies have
demonstrated that inhibition of the cell cycle with fewer cell
divisions is associated with liver inflammation and fibrosis,57

while other studies showed evidence of RNA splicing as a
precursor of liver disease development at an early stage, as
steatosis, and at a later stage, as HCC.58 Additionally, the
transcription factor and tumor suppressor p53, expressed in the
hepatic tissue and in U2OS, has been implicated in liver disease
development.59,60 Some pathways were found across different
clusters, indicating that although the chemicals were not
categorized to the same cluster (thus having different
morphological profiles), they shared some common gene
deregulation profiles. For instance, both Metoprolol and
Quinidine were clustered separately (respectively, clusters 13
and 41) but both disrupted liver regeneration (Figure 7). Other
pathways were unique to specific clusters, suggesting that these
chemicals have a distinct mechanism of action. This is the case
for chemicals such as the Cetirizine (cluster 42), which would
impact essential proteoglycans in cancer, opposite to Amitripty-
line (cluster 17), which would rather act on spindle fibers’
organization during mitosis (Figure 7). Cluster analysis showed
that compounds of the same cluster do not necessarily share
structural or pharmacological properties but still cause DILIs
and affect cells in similar ways. We repeated our gene
enrichment and pathway analysis with randomly created clusters
of chemicals, of the same size as the mean size of Cell Painting
features-based clusters (Table S14). Pathways that showed up
were similar to the ones highlighted with the Cell Painting
features-based clusters (Figures S7−S12), which was expected,
as the same sets of hepatotoxic compounds were used to create
both types of clusters. In addition, the analysis revealed a diverse
list of deregulated pathways, with a weaker significance,
demonstrating a higher scattering and false positive associations
between randomly created clusters and deregulated pathways.
Although supplemental studies would be required to confirm an
association between the hepatotoxic MoA highlighted here and
each compound, our protocol provides hypotheses to explore
regarding Cell Painting features-based clusters and their utility
in studying chemical toxicity.
Although exploring DILI mechanisms through gene ex-

pression analysis already allowed the identification of some
adverse outcome pathways (AOPs) occurring in the liver,7,61,62

linking biological pathways with some cell morphological
features through the use of Cell Painting remains a challenge.
Indeed, contrary to features from other software such as
cellXpress,63 CellProfiler does not allow the ability to easily
connect features to precise cellular components or proteins. It is
notable that the biological pathways highlighted in our study
could not always be associated with a unique cell compartment.
For example, signaling pathways can take place in both
cytoplasm and nuclei but could also be interpreted as the cell
in CellProfiler features. Although the complete feature names
provided by CellProfiler contain the name of the dye used to
stain the corresponding compartment (mitochondria, nucleus,
ER, ...), the precise parameter measured by the feature remains
vague and difficult to interpret, thereby preventing a clear
association between cell morphological features and biological
pathways. Thus, a dedicated analysis of the selected Cell
Painting features is necessary to establish a more precise linkage
with the specific pathways highlighted in our analysis.
Integrating a quantitative metric to associate morphological
perturbations observed in the Cell Painting assay with disrupted
biological pathways would also improve our study. However, our
approach of combining Cell Painting and gene expression data
allowed us to study compound modes of action in an untargeted
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way when studies tend to focus on predicting precise targets and
MoAs.64,27

Another limitation in this analysis is that the transcriptomics
data were generated using the hepatic cell line HepG2, whereas
the Cell Painting assay was carried out using the human
osteosarcoma U2OS immortalized cell line. Although 76.7% of
HepG2 genes that were differentially expressed during the
enrichment were also known to be expressed in the U2OS cell
lines (https://www.proteinatlas.org/) (representing 2293 genes
out of 2990 differentially expressed genes in HepG2 in the
enrichment analysis), it would have been preferable to use Cell
Painting and transcriptomics data derived from the same cell
type. Some studies adapting the Cell Painting protocol to
various cell lines are ongoing, which should bring more
confidence to such analysis.65,66

In a second step, we aimed to evaluate the relevance of our
morphological feature selection in the development of a
predictive DILI model that could be used to assess the potential
of a compound to induce DILI based on its Cell Painting profile.
So far, Cell Painting data have been used for cytotoxicity or for
DILI prediction67,68 and concentration-response modeling
approaches to estimate drug bioactivity69−71 thresholds. With
the improvement of machine learning strategies observed these
past years, many studies have shown that in silicomodels can be
trained to predict the toxicity outcomes of hundreds of
chemicals using image-based profiling.45 Consequently, Cell
Painting has emerged as a promising tool in drug discovery.72,73

Previous studies that employed Cell Painting data for toxicity
prediction achieved correct performances by integrating
morphological features with for example structural information
or gene expression,18 or by employing deep learning
approaches.74 For instance in their study, Chavan et al.
processed RF models on HCI data to predict hepatotoxicity
end points, resulting in BA scores of 0.59 during cross-validation
and 0.58 on their validation set.68 Here, targeting the same end
point, we achieved similar predictive performances during cross-
validation and BAs up to 0.739 on the validation set. The next
step could be to combine both Cell Painting and gene expression
data in a deep learning model for enhanced predictive
capabilities.

■ CONCLUSIONS
In this study, we aimed to associate mechanisms of liver toxicity
with groups of chemicals with similar phenotypic profiles based
on the assumption that chemicals having similar morphological
patterns might hold similar mechanisms of action too. Through
our computational methodology, we succeeded in associating
clusters of chemicals with biological pathways such as RNA
splicing or deregulation of the cell cycle, which are known to be
related to hepatotoxicity. Furthermore, based on the cell
morphology feature selection from our analysis, we developed
machine learning models that can contribute to the prediction of
potential DILI chemicals. Such approaches could be applied for
other biological/toxicological end points providing there are
enough Cell Painting and transcriptomics data to exploit.
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