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Abstract
The future of medical diagnostics calls for portable biosensors at the point of care, aiming to
improve healthcare by reducing costs, improving access, and increasing quality—what is called
the ‘triple aim’. Developing point-of-care sensors that provide high sensitivity, detect multiple
analytes, and provide real time measurements can expand access to medical diagnostics for all.
Field-effect transistor (FET)-based biosensors have several advantages, including ultrahigh
sensitivity, label-free and amplification-free detection, reduced cost and complexity, portability,
and large-scale multiplexing. They can also be integrated into wearable or implantable devices
and provide continuous, real-time monitoring of analytes in vivo, enabling early detection of
biomarkers for disease diagnosis and management. This review analyzes advances in the
sensitivity, parallelization, and reusability of FET biosensors, benchmarks the limit of detection
of the state of the art, and discusses the challenges and opportunities of FET biosensors for future
healthcare applications.
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1. Introduction

Biosensors are devices that detect the presence and measure
the quantity or concentration of biological analytes in sam-
ples, with broad and critical applications in healthcare, food
safety, and environmental monitoring [1, 2]. However, tra-
ditional biosensors in healthcare often require specialized
technical staff and expensive equipment, leading to long wait
times for test results and limited accessibility in resource-

limited areas. To address these challenges, point-of-care
(POC) biosensors are being developed that are easy to use,
portable, and rapid. POC improves healthcare by reducing
costs, increasing efficiency, and minimizing the time between
diagnosis and treatment.

Electronic biosensors offer several advantages in POC
applications. First, they can detect biomolecules without
labeling or amplification, simplifying the assay and reducing
both time and cost. Second, they can be made small, portable,
and mass-produced at a low cost. Third, they can be inte-
grated with signal processing and wireless data transmission
units on a single chip, enabling seamless integration with
electronic health records and telemedicine platforms for
remote monitoring and decision-making. Fourth, they can
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provide continuous, real-time monitoring of analytes, allow-
ing early detection of changes in biomarker levels indicative
of disease progression or response to treatment.

Field-effect transistor (FET)-based biosensors, also
known as FET biosensors or bioFETs, are widely used in
electronic biosensing. Compared to impedance-based and
electrochemical biosensors, bioFETs have the advantage of
significantly lower detection limits [3].

In this review, our focus is on the advances in sensitivity,
parallelization, and reusability of bioFETs. We begin by
discussing the trends in field-effect biosensing, and briefly
review the basic device structure and working principles of
bioFETs. We then elaborate on the advantages and limitations
of nanobioFETs. Next, we benchmark the limit of detection of
state-of-the-art bioFETs for nucleic acids, proteins, small
biomolecules, and ions. From there, we take a fundamental
and unified perspective to analyze key innovations that
enhance the sensitivity and limit of detection of bioFETs,
irrespective of the analytes. We also review various strategies
to overcome the Debye limit at physiological ionic strength.
Afterwards, we elucidate the benefits of parallelization with
two examples of million-bioFET arrays, followed by discus-
sions on advances in reusable biosensors. Finally, we identify
the challenges and opportunities to commercialize bioFETs
for future healthcare applications. This review does not
address the topic of cell sensing using FET biosensors. Pre-
vious reviews have already covered the detection of cells
(bacteria, tumor cells, etc) [4–6], as well as the interfacing of
cells (particularly neurons) [7] with bioFETs, and these topics
are not covered here in this review.

Figure 1(a) shows the trend in the limit of detection
(LoD) of field-effect biosensing, using the detection of
nucleic acids and proteins as an example. Over the past two
decades, the LoD of nucleic acids (DNA or RNA) has
improved from ∼10 fM in buffer and >10 pM in serum to
17 zM in buffer and 500 zM in serum [8]. In the case of
proteins, the LoD has improved from >1 pM in buffer and
serum to ∼20 zM in buffer [9, 10] and 250 zM in serum [9].
For comparison, the gold standard test in nucleic acid sensing
—polymerase chain reaction (PCR)—can detect nucleic acid
down to 1 copy per 100 μl [11], i.e. 17 zM. The gold standard
in protein detection—enzyme-linked immunosorbent assay
(ELISA)—can detect proteins down to ∼0.1 fM [12, 13].
Therefore, state-of-the-art bioFETs are now as sensitive as
PCR in nucleic acid detection and even more sensitive than
ELISA in protein detection.

We caution that the various measurements reported in
figure 1(a) are for different detection time—the time elapsed
from the introduction of the sample to the biosensor until the
detection signal reaches a predefined threshold. Achieving a
lower LoD with a longer detection time does not necessarily
indicate better performance than achieving a higher LoD with
a shorter detection time. This is because a longer detection
time can lead to a lower LoD when mass transport limits the
LoD, a topic we will address in detail later.

Figure 1(b) shows the number of bioFETs per chip for
various channel materials over the years. Planar silicon-based
bioFETs have achieved an impressive integration of over a

million bioFETs on a single chip [14–18]. Carbon nanotube
(CNT)-based bioFETs have also shown a significant progress
in packing density, reaching ∼10 000 bioFETs per chip [19].
On the other hand, the number of bioFETs per chip for silicon
nanowire (SiNW) has been limited to 100–1000 over the past
two decades [20–25]. At the same time, the packing density
of graphene-based bioFETs [26–29] has increased from ∼10
bioFETs per chip to 256 bioFETs per chip.

In general, the degree of parallelization of bioFETs made
from a particular channel material is higher if the integrated
circuit (IC) technology of that material is more mature. As the
device stability, repeatability, reproducibility, and device-to-
device variation of nanomaterials such as silicon nanowires,
carbon nanotubes, and graphene continue to improve, their

Figure 1. Trends in field-effect biosensing. (a) Limit of detection of
nucleic acid and protein in buffer and in serum versus year for
bioFETs [8–10, 24, 30–65]. As a benchmark, PCR and ELISA
technologies could detect nucleic acid and protein down to 1 copy
per 100 μl [11] and ∼0.1 fM (∼60 million proteins with a molecular
weight of 50 kDa per μl) [12, 13], respectively. (b) Number of
bioFETs per chip versus year for four different channel materials:
planar silicon [14–18, 66], silicon nanowire (SiNW) [20–25], carbon
nanotube (CNT) [19, 67], and graphene [26–29]. For each data
point, the reference is shown in brackets. This figure contains key
developments in sensitivity and parallelization and is by no means
exhaustive.
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degree of parallelization is expected to eventually match that
of planar silicon.

2. Device structure and working principles

Figure 2 illustrates the basic device structure and working
principle of a bioFET. As shown in figure 2(a), the basic
device structure of a bioFET consists of a source electrode, a
drain electrode, a semiconductor channel that connects the
source and drain, and a reference electrode that couples to the
semiconductor channel via the electrolyte. Receptors that
selectively capture the analyte are immobilized on the semi-
conductor channel. A dielectric layer insulates the bioFET
from the substrate.

The bioFET operates on the principle that the binding of
the target analyte to the receptors on the channel surface alters
the surface potential and consequently the channel con-
ductance. Specifically, a drain-source bias Vds drives the
current flow in the semiconductor channel, which is con-
trolled by the surface potential of the channel. When a
reference electrode applies a bias Vref in the electrolyte, it
generates a potential drop between the channel surface and
some distance into the electrolyte. When the target analyte
binds to the receptors on the channel surface, the surface
potential of the channel changes, which in turn alters the
channel conductance (figure 2(b)).

Ideally, the charges of the analyte captured by receptors
on the channel surface are balanced by changes in the charges
of the charge carriers in the semiconductor channel. However,
we must consider the role of ions in the electrolyte in main-
taining charge balance. As illustrated in figures 3(a) and (b),
when a bias is applied between the electrolyte and a 2D
crystal, ions in the electrolyte re-arrange and build up near the
charged surface to form an ‘electric double layer (EDL)’.
Most of the voltage drop occurs within the EDL at the 2D
crystal/electrolyte interface [68]. This EDL limits the per-
formance of any bioFET as the analyte must penetrate it to be
detected by the semiconductor channel. The thickness of EDL
can be estimated by Debye length, which is the distance over
which the electrostatic potential drops by 1/e. In figures 3(c)
and (d), experimental results show that the field-effect
response of a SiNW sensor decreases as the DNA moves
away from the SiNW surface [69], demonstrating the impact
of charge screening on the sensing performance of bioFETs.

Before FET sensors were used to detect biomolecules,
they have been applied to measure the pH of solutions in
commercial products for decades. In pH sensing, the sensor
surface presents hydroxyl or amino groups [70], which act as
receptors for hydrogen ions by undergoing protonation and
deprotonation reactions that modulate the charge density of
the sensor surface. The isoelectric point (pI) marks the
pH where the sensor surface has no net charge. At higher
pH (>pI), the sensor surface has a more negative charge, as is
the case for SiO2 or Si3N4 dielectrics, whereas at lower
pH (<pI), the sensor surface has a more positive charge.
Minute pH changes occur in many biological processes due to
proton release or uptake by the biochemical reactions

involved [71]. Therefore, pH sensing is useful for monitoring
numerous biochemical processes, as discussed in [5], and
these FET based pH sensors are commonly used as com-
mercial pH meters.

3. Advantages and limitations of nanobioFETs

NanobioFETs have become popular since the first report on
using silicon nanowires for detecting biological species [37].
Nanostructured channels offer three advantages over planar
silicon channel in field-effect biosensing. First, nanos-
tructured channels have a better geometry of diffusion.
Cylindrical nanowires and nanospheres facilitate faster dif-
fusion, resulting in enhanceddetection sensitivity compared to
planar surfaces (figure 4(a)). For a settling time of 100 s, the
cylindrical system can detect picomolar concentrations, while
the planar system can only detect in the nanomolar range [72].
Second, nanostructured channels have a higher surface-to-
volume ratio, leading to (i) improved electrostatic control of
the channel conductance, (ii) a higher density of surface-
bound analyte binding sites, and (iii) enhanced accessibility

Figure 2. Basic device structure and working principle. (a)
Schematic of an electrolyte-gated bioFET. The channel surface is
functionalized with bio-receptors. Drain-source bias Vds is applied
and drain current is measured. A reference electrode applies a bias
Vref to gate the semiconductor channel via the electrolyte. (b)
Schematic of an electrolyte-gated bioFET for the detection of the
analytes. Analytes bind to the receptors immobilized on the channel
surface and changes the surface potential of the channel, which in
turn changes the current of the FET.
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and analyte binding with convex surfaces [73] and reduced
Debye screening with concave surfaces [74]. Figure 4(b)
shows that 350 nm wide In2O3 ribbons are much more sen-
sitive than 20 μm wide ribbons [75]. Third, nanostructured
channels enable single-molecule detection [76–80]. Analytes
of interest, such as nucleic acids and proteins, are typically
1–10 nm in size. To characterize these individual biomole-
cules, biosensors need to have comparable feature sizes.
Figure 4(c) shows the electrical detection of individual DNA
molecules using a silicon nanowire FET-nanopore sensor
[76]. As DNA molecules pass through a ∼10 nm nanopore
one molecule at a time under a trans-membrane electric field,
it blocks the nanopore channel, inducing a temporary drop in
the ionic current. Meanwhile, the local electric field near the
nanopore is altered, resulting in a decrease in the FET
conductance.

Unlike integrated circuits where smaller transistors indi-
cate better electronic performance, smaller bioFETs do not
necessarily result in higher detection sensitivity than larger
ones. This is because the volume of sample fluids typically
ranges from μl to ml, corresponding to mm to cm length
scales. Analyte molecules, such as nucleic acids and proteins,

move slowly, with a diffusion length of 10–100 μm within
hours. For instance, when the analyte concentration is 1 fM, it
takes over one hour for a 10 μm long, 100 nm in radius hemi-
cylindrical sensor to accumulate even the first analyte mole-
cule by diffusion only (figure 5(a)). Flow-enhanced transport
does not significantly improve the accumulation rate of ana-
lyte molecules by nanobiosensors (figure 5(b)). Consequently,
within a detection time of minutes to hours, the sensing
performance of nanobiosensors is limited by mass transport,
not by signal transduction [81]. Large-area interfaces (μm2

–

mm2) are needed to overcome mass transport limitations and
achieve sub-fM LoD [81, 82]. Recent studies have shown that
bioFETs with mm-sized channels are able to detect proteins
with an LoD down to tens of zM [9, 10, 47]. In summary, a
large-area but nanostructured channel maximizes the detec-
tion sensitivity of bioFETs.

4. Benchmarking the state-of-the-art bioFETs

Benchmarking is essential for evaluating the performance of
bioFETs. However, assessing all the figures of merit of a

Figure 3. Debye screening limited field-effect sensing. (a) Schematic of electrolyte top-gating. The voltage is applied between the ionically
conducting electrolyte and 2D crystal. (b) Potential profile for electrolyte gating. Most of the voltage drop occurs within the electrical double-
layer (EDL) at the 2D crystal/electrolyte interface. (c) Schematic of silicon nanowire FET biosensors with different hybridization sites of
target DNA to PNA. (d) Plots of the relative change in resistance |ΔR/R0| versus calculated distance of DNA strands to the silicon nanowires
dDNA-SiNW. The filled circles are the experimental data, and the solid line is the least-squares fit to the data. The Debye length λD was
∼10 nm. Figures reproduced with permission from: (a)–(b) [68], © 2021 American Chemical Society (ACS); (c)–(d) Reprinted with
permission from [69]. Copyright (2008) American Chemical Society.
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biosensor [83] is nearly impossible. In this review, we focus
on the benchmark of the limit of detection (LoD), as shown in
figure 6, which includes the detection time in parentheses.

Overall, the state-of-the-art bioFETs could detect nucleic
acids down to 1 copy per 100 μl in buffer [8] and 30–1000
copies per 100 μl in serum [8, 33]. Similarly, they can detect
proteins down to 1 copy per 100 μl in buffer [9, 10, 47] and
15–30 copies per 100 μl in serum [8, 9]. Small biomolecules
like dopamine, serotonin, and cortisol can be detected with an
LoD of 10–100 aM [49, 84–89], while Hg2+ can be detected
with an LoD of ∼0.5 aM [8, 90], and Cu2+ and K+ with an
LoD of ∼10 fM [91–93]. To our knowledge, no bioFET has
achieved a sub-aM LoD for detecting small biomolecules at
physiological ionic strength.

Innovations in bioFETs that have led to the sub-aM
detection of analytes include: (1) the use of millimeter-sized
crumpled graphene channels with 30 nm surface roughness
[33, 49]; (2) millimeter-sized biofunctionalized gate [9, 10,
47]; (3) an increased chance of analyte recognition and
binding using Y-shaped DNA dual probes [35] or multi-
antibodies [50]; (4) the use of DNA nanostructures that bring
captured analyte molecules within the Debye length upon

negative liquid biasing for efficient signal transduction [8]; (5)
the use of CRISPR-Cas13a coupled with graphene FETs that
are stabilized with a hydrophobic coating [94]. We will dis-
cuss the physical mechanisms behind these innovations in the
subsequent section.

It is noteworthy that 2D materials like graphene have
achieved sub-aM LoD in field-effect biosensing for the
detection of nucleic acids, proteins, and ions, whereas 1D
materials such as SiNW and CNT have not yet reached sub-
aM LoD, regardless of the analyte. Possible advantages of 2D
materials over 1D materials in field-effect biosensing include
atomically thin channel for superior electrostatic control by
surface charges, and millimeter-sized channel for enhanced
analyte capture.

We hypothesize that a useful detection time in point of
care or point of use settings is less than 10 min, e.g. in a
doctor’s office to wait for results. Even within this 10 min
detection window, it is important to note that reported state-
of-the-art bioFETs could detect nucleic acids down to 17 zM
in artificial saliva [8], proteins down to 20 zM in 1× PBS and
250 zM in serum [9], dopamine [85] and cortisol [88] down to

Figure 4. Advantages of nanostructured channels in field-effect biosensing. (a) Geometry of diffusion. Trade-off between the settling time ts
and detectable concentration ρ0 for planar ion-sensitive field-effect transistor (ISFET), cylindrical nanowire (NW), and nanosphere. For a
settling time of 100 s, the cylindrical system can detect picomolar concentrations while the planar system can detect only in the nanomolar
range. (b) Surface-to-volume ratio. Calibrated responses for complementary DNA hybridization for 350 nm versus 20 μmwide In2O3 ribbon
bioFETs. (c) Single-molecule characterization. Top left: schematic of the nanowire–nanopore measurement set-up. Inset: zoom-in view
around the nanopore. NW–NP, nanowire–nanopore. Top right: high-resolution TEM image of a silicon nanowire with the nanopore off-axis
at the nanowire edge. Inset: larger-scale TEM image of a nanowire–nanopore FET device showing the central silicon nanowire connected to
darker NiSi contacts, which are indicated by the white dashed line. Scale bar (inset), 50 nm. Bottom: simultaneously recorded ionic current
and FET conductance signals with 6 nM pUC 19 dsDNA in the cis chamber. Figures reproduced with permission from: (a) Reprinted from
[72], with the permission of AIP Publishing; (b) Reprinted with permission from [75]. Copyright (2021) American Chemical Society; (c)
Reproduced from [76], Copyright © 2011, Springer Nature Limited.
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0.1 fM in 1× PBS, serotonin down to 10 fM in 1× aCSF [84],
Hg2+ down to 0.5 aM [8] and Cu2+ down to 10 fM [91, 92].

5. Improving sensitivity and limit of detection

According to IUPAC [100], sensitivity is the slope of the
calibration curve, which represents the ratio of the change in
signal to incremental change in analyte concentration or
quantity. Limit of detection is recommended to be defined as
the analyte concentration or quantity at which the signal
equals three times the standard deviation of the signal from a
suitable blank [101]. By this practice, limit of detection cL is
directly related to sensitivity S as three times the standard
deviation of the blank measures σB over sensitivity, i.e.
cL = 3σB/S. In this section, we will first discuss ways to
improve the sensitivity of bioFETs, which in turn enhances
the limit of detection. Then we will briefly discuss methods to
reduce the background noise to improve the limit of detection.

Next, we will discuss strategies to overcome the Debye limit
at physiological ionic strength. Lastly, we will discuss the use
of crumpled graphene bioFETs for detecting nucleic acids,
proteins, and dopamine at physiological ionic strength and
detecting DNA and SARS-COV-2 virus amplification.

5.1. Improving sensitivity by enhancing electrostatic control

Since bioFETs rely on the response of FET conductance to
changes in surface potentials for signal transduction, it is
intuitive to improve the sensitivity of bioFETs by enhancing
the electrostatic control, as shown in figure 7. First, dual-
gating has a broader window than a single gate for electro-
static control of channel conductance, which could be used to
optimize the device sensitivity [102, 103]. For instance, the
apparent sensitivity of a dual-gated silicon nanowire FET to
pH can go beyond the Nernst limit of 60 mV pH−1 at room
temperature [104]. The enhanced sensitivity increased the
sensor’s signal-to-noise ratio, allowing the device to resolve
smaller pH changes (figure 7(a)) [105]. A recent study used
dual gating in ionic liquid to generate strong enough electric
field with a strength up to 4.0 V nm−1 to modulate the
bandgap of 2D materials [106], which could potentially be
exploited to create ultrasensitive 2D bioFETs.

Second, operation in the subthreshold regime has the
optimal sensitivity for bioFETs. Figure 7(b) shows the rela-
tive changes in conductance, ΔG/G, for a p-type silicon
nanowire FET in real-time pH sensing. The FET operated in
the subthreshold regime (gate bias Vg = 0.2 V) has better
sensitivity than in the linear regime (Vg = −0.4 V) and near
the threshold regime (Vg = 0 V) [107]. The subthreshold
regime optimizes the gating effect of surface charges because,
in this regime, the carrier density of silicon is low enough for
the Debye screening length to be larger than the radius of the
nanowire. Consequently, the entire volume of the nanowire is
influenced by surface charges. Other studies on SiNW [65],
CNT [108], and MoS2 [109] bioFETs also found optimal
sensitivity in the subthreshold region.

Third, reducing the thickness of channel body, such as
shifting from a planar silicon channel to atomically thin 2D
material channel, enhances the electrostatic control. 2D
materials are essentially surfaces and thus could be more
sensitive than bulk 3D semiconductors to surface potential
changes due to analyte binding. Another example is reducing
the diameter of nanowires. Figure 7(c) shows the device
sensitivity of silicon nanowire bioFETs for the detection of
human immunoglobulin G proteins with different nanowire
diameters. Narrower SiNWs achieve higher device sensitivity
because a larger portion of the nanowire body is gated by
surface charges when the nanowire is narrower.

Fourth, tunneling FET based biosensors could enable
sub-thermionic sensing. Figure 7(d) (left) shows the poten-
tial of tunneling FET to improve sensitivity by up to four
orders of magnitude over conventional FET [110]. Smaller
subthreshold swing indicates a more significant change
in drain current in response to variations in gate voltage,
resulting in higher sensitivity to changes in surface
charges. Conventional FET biosensors, limited by the

Figure 5. Limitations of nanometer-sized channels in field-effect
biosensing. (a) Time required for a 10 μm long hemi-cylindrical
sensor to accumulate 1, 10, and 100 molecules by diffusion only.
The inset shows the sensor geometry. The sensor lies at the bottom
of a channel. The channel is 10 μm wide and filled with a 1 fM
analyte solution. (b) Total flux of molecules onto a hemi-cylindrical
sensor in a microchannel under forced flow of analyte solutions. The
sensor is 800 μm long and with the stated radius, and the channel is
800 μm wide and 100 μm high. The analyte concentration is 1 fM.
The points and the lines are the results of finite element analysis and
analytical calculation, respectively. Figures reproduced with per-
mission from: Reprinted with permission from [81]. Copyright
(2005) American Chemical Society.
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thermionic carrier injection mechanism, are unable to
achieve a subthreshold swing below 60 mV dec−1 at room
temperature. In contrast, tunneling FET biosensors utilize
band-to-band tunneling as a different current injection
mechanism, allowing them to achieve a subthreshold swing
below 60 mV dec−1. Consequently, tunneling FET bio-
sensors overcome the sensitivity limitations of conventional
FET biosensors. Figure 7(d) (right) shows the experimental
demonstration of a silicon nanowire tunneling FET for the
detection of CYFRA21-1 protein [55]. In this work, the
subthreshold swing was 76 mV dec−1 and the LoD was
13 aM. Sub-aM LoD is possible by further reducing the
subthreshold swing of the tunneling FET. In addition, sub-
threshold swing in heterojunction tunneling FETs is pre-
dicted to follow the trend of 3D–3D > 3D–2D > 2D–2D,
because 2D confinement along the tunneling direction con-
serves momentum and energy and increases the tunneling
probability [111]. Thus, 2D heterojunction-based tunneling
FET biosensors are promising to deliver the smallest sub-
threshold swing [112] and, therefore, the highest device
sensitivity.

5.2. Improving sensitivity by enhancing mass transport

Mass transport also affects the sensitivity of biosensors
because it determines the amount of analyte detected by the
biosensor within the detection time. Mass transport of ana-
lytes is typically limited by diffusion, which can be enhanced
with increased fractal dimension of the channel [114]. For
instance, planar microchannels can be nanostructured [89] or
decorated with conducting nanoparticles or nanostructures
[115], to increase their fractal dimension. Figure 8(a) shows
aptamer-functionalized nano-porous multilayer MoS2 FET
biosensors for the detection of cortisol. Planar multilayer
MoS2 was shaped into a nanoporous structure using block
copolymer lithography. The dangling groups on the nanoring
edges of the nanopores were used for functionalization.
Analyte molecules preferentially adsorbed onto the edge sites
of the nanopores rather than on the basal plane exposed
between them. This approach achieved a LoD of 1 ag mL−1

for cortisol with a detection time of 30 min. Figure 8(b) shows
a graphene FET biosensor decorated with Au nanoparticles
(AuNP) for the detection of DNA. The AuNP-decorated
graphene sensor demonstrated high sensitivity to target DNA,

Figure 6. Benchmarking the limit of detection of bioFETs for different channel materials for the detection of (a) nucleic acids [8, 25, 31–
35, 64, 94–96], (b) proteins [8–10, 24, 46–50, 55–59, 97, 98], (c) small biomolecules (dopamine [49, 84–86], serotonin [84, 87], and cortisol
[88, 89]), and (d) ions (Hg2+ [8, 90, 99], Cu2+ [91, 92], and K+ [93]). For each data point, the detection time is shown in parentheses and the
reference is shown in brackets. Only data points with sub-pM limit of detection were included. aCSF, artificial cerebrospinal fluid; CNF,
cabon nanofiber; ZnO NR, ZnO nanorod. As a reference, PCR and ELISA technologies could detect nucleic acid and protein down to 1 copy
per 100 μl [11] and ∼0.1 fM [12, 13], respectively.
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detecting concentrations as low as 1 aM, while bare graphene
remained insensitive to such low DNA concentrations. In
addition, electrostatic pre-concentration is an effective way to
overcome the diffusion limit and enhance the mass transport
of analyte molecules [116]. Figure 8(c) (left) shows the
electric field distribution at a gate bias Vg = 0.5 V. The
electric field near the gate extends over 1 mm, which enriches
the suspended charged analytes at the gate electrode. Figure
8(c) (right) shows the field-effect response of a graphene FET
biosensor to thrombin of increasing concentrations at
Vg = 0 V and Vg = 0.5 V. Electrostatic pre-concentration at
Vg = 0.5 V results in several times higher sensitivity and over
three orders of magnitude improvement in LoD.

Other ways to enhance mass transport in electronic bio-
sensors include droplet evaporation to reduce the diffusion
distance using nanotextured superhydrophobic electrodes
[117], replacing analyte macromolecules by small molecules
or ions via chemical reactions to increase the diffusion
coefficient [14, 118], and dispersing magnetic nanoparticles
throughout the sample solution to capture the analyte and then
collecting the nanoparticles with a magnet for detection [119,
120]. For instance, graphene bioFETs have been combined

with enzymatic reaction to detect urease and the gastric cancer
pathogen Helicobacter pylori at physiological ionic strength
[118]. It overcame the limitation of Debye screening by
detecting ammonia as an enzymatic reaction product from
urease. Two hundred seventy zeptomoles of biotinylated
urease and Helicobacter pylori corresponding to 0.04 bacterial
cells were successfully detected within 30 min. Convection is
not an effective means of enhancing mass transport for sur-
face-based biosensors [121], such as bioFETs, and is thus not
recommended.

5.3. Improving sensitivity by enhancing biorecognition and
binding

In addition to signal transduction and mass transport, bior-
ecognition and binding also affect the sensitivity of bio-
sensors. A higher biorecognition ratio and stronger binding
can result in more binding events and a larger signal. For
instance, peptide nucleic acid (PNA) probes exhibit a stronger
binding affinity to analyte nucleic acid than DNA probes,
resulting in higher sensitivity [34]. This is due to the absence
of electrostatic repulsion between the charge-neutral

Figure 7. Improving sensitivity with enhanced electrostatic control. (a) Dual gating. Schematic showing the sensing setup of a dual-gated
silicon FET biosensor, with the electrical connections for the source-drain (S–D, Vds), fluid gate (FG, Vfgs), and poly gate (PG, Vpgs) (Left).
ILD denotes silicon dioxide interposing dielectric layer. Signal-to-noise ratio versus pH under tailored dual-gate (FG + PG) operation and
standard single gate (FG only) operation (Right). (b) Subthreshold sensing: Relative changes in conductance, ΔG/G, for a p-type silicon
nanowire FET in real-time pH sensing. (c) Reducing the diameter of nanowires. Device sensitivity of silicon nanowire FET biosensors for the
detection of human immunoglobulin G proteins with different nanowire diameters (n = 6 for each group; *p < 0.05). (d). Tunneling based
sensing. Sensitivity as a function of subthreshold swing for both conventional FET (CFET) and tunneling FET (TFET) based biosensors
(Left). Relative changes in current,ΔID/I0, as a function of the logarithm of CYFRA21-1 concentration for a silicon nanowire tunneling FET
(Right). The limit of detection (LOD) and limit of quantitation (LOQ) equal to three and ten times of the standard deviation of blank response
(σblank). Figures reproduced with permission from: (a) Reprinted with permission from [105]. Copyright (2014) American Chemical Society;
(b) Reprinted with permission from [107]. Copyright (2010) American Chemical Society; (c) Reprinted with permission from [113].
Copyright (2011) American Chemical Society; (d) (Left) Reprinted from [110], with the permission of AIP Publishing; (d) (Right)
Reproduced from [55]. CC BY 4.0
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backbone of PNA and the negatively charged backbone of
analyte nucleic acid. In figure 9, we present two recent
examples of how biorecognition and binding can be enhanced
to improve sensitivity.

Figures 9(a) and (b) show the use of graphene bioFETs
functionalized with Y-shaped DNA dual probes for detecting
SARS-COV-2 nucleic acid [35]. Y-shaped DNA probes offer

a higher biorecognition ratio than ssDNA probes because the
latter tend to aggregate and entangle due to their structural
flexibility and lie flat on graphene surface due to π−π

stacking interactions between nucleosides and graphene
[122]. In contrast, the rigid stem structure of Y-shaped DNA
probes keeps them upright at the surface without aggregation,
as confirmed by atomic force microscopy (AFM) in fluid in

Figure 8. Improving sensitivity with enhanced mass transport. (a) Nano-structuring of micro-channels. Schematic of aptamer-functionalized
nano-porous multilayer MoS2 FET biosensor for the detection of cortisol (Top Left). Cross-sectional STEM image showing the nanohole
edge of multilayer MoS2 (Bottom Left). Device sensitivity as a function of the cortisol concentration for a pristine and a nano-porous MoS2
FET biosensor (Right). (b) Decorating micro-channels with conducting nanostructures. Schematic of a graphene FET biosensor decorated
with Au nanoparticles (AuNP) for the detection of DNA (Left). The shift of charge-neutral point ΔVCNP for AuNP decorated (black squares)
and bare (red circles) graphene FET biosensors as a function of the concentration of complementary DNA (cDNA) to the aptamer (Right). (c)
Electrostatic pre-concentration. Simulation of the electric field distribution at a gate bias Vg = 0.5 V (Left). Relative changes in drain-source
current ΔIds/Ids,0 of a graphene FET biosensor as a function of time upon addition of thrombin of increasing concentrations at Vg = 0 V and
Vg = 0.5 V (Right). Figures reproduced with permission from: (a) Reprinted with permission from [89]. Copyright (2022) American
Chemical Society; (b) Reprinted from [115], © 2020 The Authors. Published by Elsevier B.V; (c) Reprinted with permission from [116].
Copyright (2021) American Chemical Society.
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figure 9(a). Other rigid DNA nanostructures, such as tetra-
hedral DNA, also show improved biorecognition compared to
ssDNA probes [8, 116, 123]. Moreover, Y-dual probes with
two different recognition sites have a higher sensitivity than
Y–A probes with two identical recognition sites (figure 9(b)),
suggesting dual probes facilitate biorecognition and binding.

Figures 9(c) and (d) show the use of graphene bioFETs
modified with multi-antibodies for the detection of SARS-
COV-2 spike S1 proteins with sub-aM LoD [50]. Multi-
antibodies (CR3022, n3021 and S1) can bind not only to the
receptor binding domain (RBD), but also to adjacent sites of
the spike protein, as illustrated in figure 9(c). This cooperative
recognition enables binding with different spatial configura-
tions and increases the binding affinity, thus improving the
sensitivity.

5.4. Improving limit of detection by minimizing background
noise

To achieve a low limit of detection, especially in physiolo-
gical fluids, a biosensor with high sensitivity should also
minimize the background noise, as follows. First, minimize
non-specific binding of parasitic molecules to receptors that
are immobilized on the sensor surfaces. Sequence-specific

hybridization can discriminate single nucleotide polymorph-
isms in nucleic acid detection with an LoD of 25 aM [32].
Second, block un-passivated regions of the channel surface to
minimize adsorption of parasitic molecules. Ethanolamine,
bovine serum albumin (BSA), and 6-mercapto-1-hexanol
(MCH) are commonly used as blocking agents after immo-
bilization of receptors [124]. Third, block non-sensing region
of the sensor surface. If target molecules are captured by the
receptors on the surrounding substrate rather than at the
channel surface, the sensitivity will be dramatically reduced
[125]. The contact region also needs to be passivated for
electrostatic gating dominated sensing, which is a more reli-
able sensing mechanism [126]. Fourth, reduce sensor drift
[127]. One notable example is that hydrophobic graphene
often has poor adhesion to hydrophilic oxide surfaces and
results in significant sensor drift. Coating the substrate with a
hydrophobic layer can effectively mitigate the drift [94].

5.5. Overcoming Debye limit at physiological ionic strength

Debye screening is a fundamental limit to field-effect bio-
sensing [128, 129]. The Debye length at physiological ionic
strength (∼0.1 M) is just 1 nm, whereas aptamers are about
25–80 bases long [130] (i.e. 3–5 nm in radius of gyration

Figure 9. Improving sensitivity with enhanced biorecognition and binding. (a) AFM images of graphene modified with ss-DNA probes
(probe A) or Y-shaped DNA probes (Y–A probe) and schematics of the sensing interface of a graphene FET biosensor modified with ss-
DNA probes or Y-shaped DNA probes. (b) Dirac point shift ΔVDirac of a graphene FET biosensor with different probes as a function of
SARS-CoV-2 cDNA concentration from 0.03 to 500 copy μl−1 in 100 μl of full artificial saliva. (c) Schematic of SARS-CoV-2 virus binding
events on the graphene surface. The spike protein is present in three spatial orientations, including the ‘RBD up’, ‘one RBD down’, and ‘two
RBD down’ configurations. (d) Comparison of the device sensitivity using multi-antibodies and single antibody CR3022 (red), n3021
(green), and S1 (blue). Figures reproduced with permission from: (a)–(b) Reprinted with permission from [35]. Copyright (2021) American
Chemical Society; (c)–(d) Reprinted with permission from [50]. Copyright (2021) American Chemical Society.
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[131]), and antibodies are about 10 nm in size [132]. While
one can dilute clinical samples to lower the ionic strength and
hence increase the Debye length, it also lowers the analyte
concentration, making it more difficult to detect analytes of
low abundance. Another approach is to extract and purify
analytes from clinical samples and measure in a dilute buffer.
However, significant sample preparation is needed, and some
loss of analytes cannot be avoided. Moreover, molecular
affinity and specificity are reduced without stabilizing salts
[3]. Finally, it is important to monitor biological processes in
physiological fluids because these processes are highly
dependent on the presence and concentration of ions in the
environment [133].

Over the past decade or so, four general approaches have
emerged to overcome Debye limit at physiological ionic
strength. First, electrolytes near concave surfaces have
increased Debye length compared to near flat surfaces.
Figure 10(a) (left) illustrates that concave surfaces have
smaller electrolyte capacitances than flat surfaces [74], sug-
gesting a larger Debye length near concave surfaces. Figure
10(a) (right) shows that the detection of DNA hybridization 3
nt (1 nm) away from the flat graphene surface is not possible
since the Debye length near the flat surface is 1 nm in 1× PBS
[33]. However, DNA hybridization can be detected with
crumpled graphene, because the Debye length near the con-
cave surfaces of the graphene crumples is larger than 1 nm.

Second, coating the channel surface with a dense, par-
tially hydrated nano-porous film, such as polyethylene glycol
(PEG) [134] or polyelectrolyte multilayers (PEM) can over-
come Debye limit at physiological ionic strength [135]. The
entropic cost of confining ions inside the film increases the
screening length [135]. Figure 10(b) illustrates the use of PEG
coated SiNW bioFET for the detection of 100 nM prostate-
specific antigen (PSA) in 100 mM buffer, which is not pos-
sible without PEG coating [134].

A third approach is to disrupt the electric double layer
through high-frequency perturbation. At direct current or low
frequencies (<1MHz), ions in solution migrate under electric
field and form the EDL; at high-enough frequencies
(�10MHz), the alternative current driving force can no longer
overcome the solution drag and hence ions do not have suffi-
cient time to form the EDL to screen [136]. Figure 10(c) shows
the detection of streptavidin binding to biotin in 100mM buffer
at a frequency of 10MHz using a CNT bioFET [136]. However,
by disrupting the EDL, high-frequency signals can penetrate
deeper into the solution [137], which potentially increases the
background noise and limits the LoD and selectivity of bioFETs.

Fourth approach is to live with Debye screening and sense
within the electric double layer. For instance, while the size of
aptamers exceeds 1 nm, they can be designed to reorient
toward the sensor surface within or near the Debye length
upon analyte binding, leading to electrostatic depletion of the
channel (figure 10(d)) [84]. Another example uses size-
reduced antibody fragments as receptors [138]. While the
whole IgG antibody measures 9–10 nm in size, the Fab frag-
ment, comprising only the antigen-binding part, has a reduced
size of 2–3 nm. By carefully engineering the linker’s flexibility
and density, size-reduced antibody fragments enable

biorecognition events to occur in closer proximity to the
nanowire surface, falling within the Debye screening length.
Furthermore, if the analyte generates reaction products that
freely diffuse and reach the sensor surface, then the detection is
independent of Debye screening, as seen in the case of the
urease-ammonia gas reaction used for bacteria detection [118].

5.6. Crumpled graphene FET biosensors

Among the techniques to surpass the limit of Debye screening,
creating rough sensor surfaces and hence concave surfaces is a
universal solution that can be applied to detect various ana-
lytes. Rough surfaces also facilitate analyte transport by
improving diffusion with increased fractal dimension [114] and
by enhancing evaporation-induced convection [139]. Figure 11
shows the use of crumpled graphene bioFETs for the detection
of nucleic acids, proteins, and dopamine under physiological
ionic strength. The crumpled graphene was obtained by
annealing flat graphene on a pre-strained polystyrene substrate,
which caused buckling of graphene due to the shrinkage of the
substrate [140]. Figure 11(a) shows the detection of target
RNA let-7b in human serum sample, down to 20 aM,
corresponding to ∼600 nucleic acid molecules [33]. Simula-
tion results in figure 11(b) show that the effective Debye length
increases with the crumpling ratio [49]. Figure 11(c) shows the
Dirac point shifts by ssDNA absorption on graphene FET
sensors with various crumpling ratios. As expected, more
crumpled graphene FET sensors produce larger Dirac point
shifts. Figures 11(d) and (f) show the detection of IL-6 protein
and COVID-19 N-protein in 1×PBS, down to 4 aM and 10
aM, respectively. Finally, figure 11(e) shows the detection of
dopamine in artificial cerebrospinal fluid, down to 25 aM.

Crumpled graphene FETs can also be used to detect
enzymatic amplification by monitoring the reduction in primer
(ssDNA) concentration in a reaction. Figure 12(a) shows
unidirectional and distinct Dirac point shift of crumpled gra-
phene with increasing ssDNA concentrations from 2 aM to
2 μM, while dsDNA induces negligible Dirac point shift, as
shown in figure 12(b). This is because ssDNA binds strongly
onto graphene due to the π−π stacking interactions between
graphene and the aromatic ring structure of unpaired nucleo-
bases, whereas dsDNA lacks unpaired nucleobases for such
strong interactions [141]. Figure 12(c) shows that negative
samples can be clearly distinguished from positive samples
after amplification, with an LoD down to 4 aM [142]. More-
over, crumpled graphene FETs, combined with reverse tran-
scriptase loop-mediated isothermal amplification (RT-LAMP),
can detect the SARS-CoV-2 virus in clinical samples ranging
from 10 to 104 copies/μl [143]. Based on the Dirac point shift,
these devices can differentiate between positive and negative
clinical samples in 30–50min (figures 12(d) and (e)).

6. BioFET array

In addition to ultrahigh sensitivity, parallelized and multi-
plexed detection is yet another promise of bioFETs. First, the
use of large bioFETs array can improve the sensitivity of the

11

Nanotechnology 34 (2023) 492002 Topical Review



Figure 10. Overcoming Debye limit at physiological ionic strength. (a) Plot of electrolyte capacitance density versus radius of curvature of
electrode (Left). The radius is normalized to the Debye length, and the capacitances are normalized to that of the flat electrode. Dirac point
shift of a crumpled graphene FET biosensor versus flat graphene for the detection of a 19 nt target DNA by DNA hybridization with 22 nt
probe DNA (Right). Hybridized dsDNA was 3 nt away from the surface. (b) Schematic of a SiNW FET biosensor without (top) and with
(bottom) a porous and biomolecule permeable polymer polyethylene glycol (PEG, green) modification (left). Nanowires are modified with
APTES receptors (magenta) to capture prostate-specific antigen (PSA). Signal amplitude versus time for APTES modified SiNW FETs
following the addition of 100 nM PSA and pure buffer (Right). (c) Schematic of a mixing current measurement setup of a carbon nanotube
FET biosensor with an amplitude-modulated (AM) high-frequency input signal at the source electrode (Left). Sensor response with varying
background ionic strengths at f = 500 kHz and f = 10 MHz (Right). (d) Stem-loop aptamers reorient closer to FETs within or near the Debye
length to deplete channels electrostatically (Left). Exposure of dopamine aptamer–FETs to dopamine (1× aCSF) led to concentration-
dependent reductions in source-drain currents (Right). Figures reproduced with permission from: (a) (Left) Reproduced with permission from
[74]; (a) (Right) Reproduced from [33]. CC BY 4.0; (b) Reprinted with permission from [134]. Copyright (2015) American Chemical
Society, © 2015 ACS; (c) Reprinted with permission from [136]. Copyright (2012) American Chemical Society, © 2012 ACS; (d) From [84].
Reprinted with permission from AAAS.
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assay. By collecting large, statistically meaningful data sets
from multiple sensors on each analyte, it is possible to
increase the signal-to-noise ratio and improve measurement
accuracy through cross validation of data [15, 16]. Second,
massive parallelization also improves the reliability of the

assay by providing redundancy. If one or more sensors in the
array fail or give anomalous readings, the data from the other
sensors can be used to compensate and ensure the accuracy of
the overall assay result. Additionally, it is possible to desig-
nate a specific region of the array as a negative control to

Figure 11. Crumpled graphene FETs for the detection of nucleic acids, dopamine, and proteins at physiological ionic strength. (a) Schematic
of a crumpled graphene FET biosensor (Left), SEM image of crumpled graphene (Middle), and Dirac point shift of a crumpled graphene FET
biosensor for the detection of the target miRNA let-7b in human serum by DNA hybridization (Right). (b) Molar concentration of ions
(sodium and chloride) and the backbone of COVID-19 RNA strand segment along with the screening factor of ions as a function of the
distance from the graphene surface with different crumpling ratios. (c) Dirac point shift by ssDNA adsorption on graphene FET sensors with
various crumpling ratios in 1× PBS. Dirac point shift of the sensor with the detection of (d) IL-6 protein in 1× PBS, (e) dopamine in artificial
cerebrospinal fluid (aCSF), and (f) COVID-19 N-protein in 1× PBS. Figures reproduced with permission from: (a) Reproduced from [33].
CC BY 4.0; (b)–(f) [49] John Wiley & Sons. © 2021 Wiley-VCH GmbH.
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monitor real-time drift. This negative control can then be used
to compensate the drift effects of the entire array [15, 17].
Third, the use of bioFETs array allows for simultaneous
detection of multiple analytes in a single sample [20, 144–
147], increasing the throughput of the assay. This is parti-
cularly important in clinical applications, where it is neces-
sary to analyze large number of samples quickly and
accurately.

Figure 13 shows an example bioFET array platform with
one million dual-gated ion-sensitive field-effect transistors
(ISFETs), which was fabricated with a complementary metal-
oxide-semiconductor (CMOS) process by TSMC [105]. As
illustrated in figure 13(a), each transistor has an individually
addressable back gate and a gate oxide that is directly
exposed to the solution [16]. Utilizing on-chip integrated
circuits for row and column addressing and a PXI IC tester to
measure signals (figures 13(b) and (c)), the drain current of
each dual-gated ISFET sensor in the array can be serially
acquired in just 90 s [16]. Figure 13(d) shows the detection of
different concentrations of target nucleic acid molecules in the
array based on this one million biosensor array platform [17].
A PDMS well with 9 holes provided isolated reaction
chambers, with each chamber containing ∼15 000 bioFETs.
All the p-values from t-tests between each concentration are
less than 0.0001, demonstrating that this array sensor is

highly reliable and robust against noise artifacts. Figure 13(e)
shows the effect of transistor count on the p-value based on
randomly selected pixels. For experiments with low number
of transistors, the p-value is high and variable. However, as
the transistor count per reaction increases, particularly above
a few hundred transistors, the p-value becomes very low for
all tests, suggesting that the system becomes highly reliable
and robust. Figures 13(f)–(i) demonstrate parallel detection of
foodborne pathogens using the same bioFETs array platform
[15]. The raw differential current distribution data in figure
13(g) shows non-statistically significant results between
samples. By using redundancy techniques to minimize the
overall standard deviation, the Grubbs test to eliminate
measurements outside the expected normal distribution, and
reference micro-chambers to subtract the common noise, new
current distributions presented in figure 13(i) show statisti-
cally significant differences (p < 0.05) between invA and the
other two groups.

Another notable example of bioFETs array is the CMOS
integrated circuit-based DNA sequencing, used by Ion Tor-
rent [14], as illustrated in figure 14. Each chip contains 1.2
million individual wells, allowing for parallel and simulta-
neous detection of independent sequencing reactions. As
shown in figure 14(a), each well contains one bead functio-
nalized with DNA templates and one ISFET pH sensor at the

Figure 12. Crumpled graphene FET based detection of DNA and SARS-COV-2 virus amplification. (a) Dirac point shift of the FET sensor
for ssDNA adsorption on flat and crumpled graphene. (b) Dirac point shift of the crumpled graphene FET for dsDNA adsorption. (c) Box and
whisker plot for the normalized Dirac point shift for amplified and non-amplified DNA samples. (d) Bar plot of the Dirac point shift of 10
known positive and 10 known negative COVID-19 clinical samples (RT-LAMP; 65 °C, 50 min) on crumpled graphene FETs. (e) Bar plot of
the Dirac point shift of 3 known positive clinical samples with the lowest viral load (RT-LAMP; 65 °C, 30 min) on crumpled graphene FETs.
Figures reproduced with permission from: (a)–(c) [142] John Wiley & Sons. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim;
(d)–(e) Reprinted with permission from [143]. Copyright (2021) American Chemical Society.
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Figure 13. Dual-gated ISFET biosensor in one-million array. (a) Cross section of the sensing element. (b) Top view of pixel schematic in the
array. (c) Photograph of the dual-gate ISFET array, showing the 7 × 7 mm2 sensing area, decoding portions, and wire-bonds to PCB. (d)
Heat map of drain current with different concentrations of target miRNA-let7 in the array. (e) p-value graph comparing the drain current of
1 nM target miRNA-let7 against that of negative control as a function of transistor count. The error bars are the maximum and the minimum.
The exact range of p-values is shown in brackets in red. (f) Differential drain current map for parallel detection of foodborne pathogens. Eae
and invA are the target genes for the detection of E. coli O157 and S. typhi respectively. Neg denotes negative control. (g) Unfiltered drain
current distributions for the sensing bioFETs in each group of chambers. (h) Differential drain current map with discarded sensors in pink and
non-sensing devices (outside the wells) in white. (i) Filtered drain current distributions for each group of chambers. The inset bar plots in (g)
and (i) show mean, standard deviation, and statistical significance between data groups. Figures reproduced with permission from: (a)–(c)
Reprinted from [16], © 2017 Elsevier B.V. All rights reserved, (d)–(e) Reproduced from [17], Copyright © 2018, Springer Science Business
Media, LLC, part of Springer Nature; (f)–(i) Reproduced from [15] with permission from the Royal Society of Chemistry.
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bottom. Sequencing primers and DNA polymerase are bound
to the templates. During ion torrent sequencing, all four
nucleotides are introduced sequentially into the wells in an
automated run. When the incoming nucleotide complements
the template base downstream of the sequencing primer, it is
incorporated into the nascent strand by the bound polymerase,
increasing the primer length by one base. The hydrolysis of
the incoming nucleotide triphosphate releases a single proton,
causing a proportional pH shift (0.02 pH units per base
incorporation) detected by the FET pH sensor at the bottom of
the well. This shift is digitized and converted to voltage by
off-chip electronics. The signal generation and detection
occur over 4 s, as shown in figure 14(c). A wash (∼0.1 s) is
used after each flow to eliminate remaining nucleotides. A
typical 2 h run using an Ion Torrent chip with 1.2 million
sensors generates approximately 25 million bases.

7. Reusable bioFETs

While bioFETs can be made for single uses, reusable bioFETs
would be much more cost-effective, making them more
commercially viable for clinical or research applications.
Furthermore, real-time reusable (or reversible) bioFETs could
be incorporated into wearable or implantable systems to
monitor analyte concentrations continuously in vivo [148–
154], with potential applications for disease diagnosis, drug
discovery, and personalized medicine.

BioFETs can theoretically be regenerated by either dis-
sociating captured analyte from receptors (as shown in
figure 15(a)) or removing surface-immobilized receptors alto-
gether (as shown in figure 15(b)). The latter approach is less
favourable as it adds cost and effort to re-functionalize sensor
surfaces with receptors every time. Table 1 summarizes

Figure 14. Ion Torrent sequencing. (a) Schematic of a well, a bead containing DNA template, and the underlying sensor and electronics.
Protons (H+) are released when nucleotides (dNTP) are incorporated on the growing DNA strands, changing the pH of the well (ΔpH). This
pH change induces a change in surface potential of the metal-oxide-sensing layer, and a change in potential (ΔV ) of the source terminal of
the underlying field-effect transistor. (b) Sensors are arranged in a two-dimensional array. A row select register enables one row of sensors at
a time, causing each sensor to drive its source voltage onto a column. A column select register selects one of the columns for output to
external electronics. (c) 1-nucleotide incorporation signal from an individual sensor well; the arrow indicates start of incorporation event,
with the physical model (red line) and background corrected data (blue line) shown. (d) The first 100 flows from one well. Each coloured bar
indicates the corresponding number of bases incorporated during that nucleotide flow. Reproduced with permission from [14]. Copyright ©
2011, The Author(s) CC BY-NC-SA 3.0.
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reusable bioFETs that have been reported in the literature.
With reversible analyte–receptor binding, bioFETs can operate
continuously without regeneration [152, 155], or they can be
restored with a simple buffer or DI water rinse [37, 156, 157]
or a mild electrolyte (1–10mM) bath [158, 159]. However,
reversible binding limits sensitivity and makes sub-pM
detection challenging [160]. For sensors with strong analyte-
receptor binding, the solvent environment can be altered to
weaken the interaction to allow for dissociation and regen-
eration, with reagents such as acid buffers (pH = 2–4) [161,
162] and detergents [163]. In particular, aptamers can be
denatured with 6M guanidinium chloride and refolded mul-
tiple times without loss of activity [164, 165]. Strong acid
buffers (pH = 1–2) [166, 167] and solutions such as 8M urea
[168, 169] and 0.5M DTT [170] can completely remove the
biofunction layer.

8. Guidelines for reporting bioFETs with clinical
results

8.1. Reporting receiver operating characteristic (ROC) curves

The ROC curve of a biosensor plots true positive rate (sen-
sitivity) versus false positive rate (1−specificity) for various

thresholds [177]. The area under the ROC curve (AUC)
provides a single metric to evaluate the diagnostic accuracy of
a biosensor [178]. A higher AUC indicates better dis-
crimination between positive and negative samples. An ideal
biosensor achieves an AUC of 1 while a random guess has an
AUC of 0.5. As a rule of thumb, AUC > 0.8 suggests a
reliable diagnostic test [179]. Notably, the state-of-the-art
bioFETs have achieved an AUC of ∼1 for the detection of
SARS-COV-2 viruses in clinical testing due to their ultrahigh
sensitivity [50, 143].

The ROC curve offers a standardized approach to com-
pare the performance across biosensors and hence is impor-
tant in assessing the performance of biosensors in new
diagnostic tests [178]. Additionally, it helps determine the
optimal threshold for a biosensor, based on the desired bal-
ance between sensitivity and specificity for clinical purposes
[180]. Thus, when testing clinical samples with bioFETs, it
could be important to report the ROC curve.

8.2. Establishing proportional bias to gold standard
measurements

There are two types of systematic errors that may arise in
biosensor measurements: fixed and proportional bias. Fixed
bias refers to biosensor readings deviating from true values by

Figure 15. Examples of reusable bioFETs. (a) Schematic for the reversible binding of protein-GST association on a silicon nanowire bioFET
(Left). The nanowire is first modified with APTMS and MBS linkers, and then immobilized with GSH. A particular protein-GST binds with
GSH for protein detection. At the end of each measurement, captured protein-GSTs are removed with 10 mM GSH solution to retrieve the
bioFET. Real-time detection of the binding of biotin-aGST to GST/GSH/SiNW bioFET and subsequent sensing of streptavidin (Right). (b)
Schematic of the aptamer graphene-Nafion bioFET for cytokine detection (Left). Detection of IFN-γ protein using the biosensor with
different regenerative cycles (Right). Ethanol was used to dissolve the Nafion film to regenerate the bioFET. Figures reproduced with
permission from: (a) Reprinted from [158], Copyright © 2009 Elsevier Ltd. All rights reserved; (b) [171] John Wiley & Sons. © 2020 Wiley-
VCH GmbH.
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Table 1. Reusable bioFETs.

Channel Analyte Receptor
Regeneration
technique # cycles

Signal loss between
cycles LoD Sensing media References

Without removal of receptors

SiNW protein-GST
association

GSH 10 mM GSH 6 ∼5% 0.5 nM 0.1× PS [158]

SiNW protein-GST
association

GSH 1 mM GSH 2 — 7 nM 0.1× PS [159]

SiNW biotin; Ca2+ m-antibiotin; calmodulin buffer — — — 5 mM NaCl [37]
SiNW glucose glucose oxidase liquid gating — — 0.15 mM 1× PBS; blood [150]
CNT dopamine carboxyphenyl boronic acid 10 mM HCl 5 4.8% 1 pM 10 mM PBS [161]
P3HT Na+ Na+ selective membrane reversible 5 ∼3% 1 μM salt solution [155]
diamond PDGF protein aptamer surfactant 4 — — 1 mM NaCl [163]
graphene thrombin protein aptamer buffer — — 10 nM 5 mM MES [156]
graphene MMP-9 protein IgG reversible — — 8 pM tear [152]
graphene glucose AAPBA 0.1 mM HCl 20 0.63% 1.9 μM 1× PBS; urine [162]
graphene PSA aptamer 6 M guanidinium

chloride
2 — 2 nM 1× PBS with 2 mM

Mg2+
[165]

WSe2 glucose glucose oxidase DI water 2 35% 1 mM DI water [157]

With removal of receptors

planar Si dopamine Fe3O4@AuNPs ultrasonication 15 0.33% 3.3 nM 100 mM PBS [172]
SiNW streptavidin biotin β-CD solution 5 — — 1 mM Na2CO3 [173]
SiNW HbA1c protein aptamer DTT redox agent 4 <3% 0.2 nM 1× PBS [170]
SiNW streptavidin PLL-biotin copolymer pH = 2 buffer 2 — — — [166]
CNT IL-4, IL-10 proteins antibody-functionalized magnetic

beads
repulsive magnetic field 2 — 10 pM 1× PBS [174]

diamond HIV-1 Tat protein aptamer 8.3 M urea 3 <15% 1 nM 1 mM PBS [168]
Gr-Nafion IFN-γ protein aptamer ethanol 80 <8.3% 0.74 pM human sweat [171]
Gr-hydrogel glucose glucose oxidase removing hydrogel 10 <5% 200 nM 1× PBS [175]
graphene Cu2+ L-phenylalanine 0.1 M HCl 3 — 0.17 pM — [167]
rGO dopamine aptamer grinding 100 0.15% 370 pM 0.1× PBS [176]
rGO DNA PNA 8.3 M urea 3 8.3% 0.1 pM 1× PBS [169]
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a consistent amount, whereas proportional bias entails bio-
sensor readings deviating from true values by a consistent
percentage.

Establishing proportional bias between biosensor mea-
surements and gold standard measurements is important in
assessing the accuracy and reliability of the biosensor. If a
biosensor exhibits notable proportional bias, it may not be
suitable for direct substitution with the gold standard. By
comprehending the degree and direction of proportional bias,
users can make well-informed decisions and take appropriate
actions to enhance the biosensor’s performance. Linear
regression analysis is a commonly utilized method to identify
and distinguish fixed and proportional bias between the bio-
sensor and gold standard measurements [181].

9. Summary and outlook

9.1. Major takeaways

In summary, significant progress has been made in field-effect
biosensing over the past two decades, with the limit of
detection advancing from the picomolar range to the atto-
molar range. The current state-of-the-art bioFETs have
achieved an impressive LoD of 1 copy per 100 μl (17 zM) in
1× PBS [8–10, 47], and 15–30 copies per 100 μl (0.25–0.5
aM) in serum [8, 9] for the detection of nucleic acids and
proteins. Some of these ultrasensitive bioFETs with sub-
attomolar LoD also had a detection time of ten minutes or less
[8, 35], meeting the demand for POC.

Such progress has been achieved by enhancing mass
transport, biorecognition and binding, and electrostatic con-
trol, and minimizing background noise. 2D materials based
bioFETs have achieved lower limit of detections than 1D
materials, owing to their superior electrostatic control with an
atomically thin body and a millimeter-sized channel for
enhanced analyte capture.

The Debye limit is overcome by increasing the Debye
length with concave surfaces, or nanoporous PEG/PEM
coating, or disrupting the formation of the electric double
layer by using high-frequency (>MHz) perturbation. Alter-
natively, analytes can be brought within the electric double
layer to surpass the Debye limit.

In terms of parallelization, planar silicon has been used to
achieve a packing density of over one million bioFETs per
chip, while the packing density of CNT, SiNW, and graphene
has reached 10 000, 1000, and 256 bioFETs per chip,
respectively. Parallelization can improve the sensitivity,
reliability, multiplexing, and throughput of detection.

Additionally, reusability of bioFETs could help to lower
cost even further or to enable new applications in real time
physiological or biological sensing. BioFETs with reversible
binding can be regenerated by a buffer, DI water rinse, or a
mild electrolyte bath. For those with strong binding, sensors
can be recycled by pH treatment, detergent, or a strong
electrolyte bath. The LoD of reusable bioFETs is still limited
to 0.1–1 pM, compared to sub-aM LoD benchmark.

9.2. Current status of commercialization

Over the past few decades, ISFET based pH sensors have
been successfully commercialized since Bergveld reported the
invention of the ISFET in 1970 [182]. Today, many compa-
nies such as Thermo Fisher Scientific, Sentron, Microsens
SA, and Honeywell offer commercial handheld ISFET
pH sensors. Additionally, Ion Torrent [183] (now a division
of Thermo Fisher Scientific) and DNA Electronics [184] have
employed massively parallelized ISFET arrays for next-gen-
eration sequencing by detecting pH changes during DNA/
RNA synthesis.

Recently, many companies around the world are
attempting to develop commercial FET biosensor products for
intrinsic molecular charge detection (e.g. charge of DNA,
proteins, and small biomolecules). For instance, Molsentech
has launched a COVID-19 testing platform using FET bio-
chips that deliver results in a few minutes with accuracy
comparable to PCR tests [185]. IMEC has presented finFET-
based biosensors for high-sensitivity molecule detection [186,
187]. Helios Bioelectronics is developing bioFETs for cancer
biomarker detection, miRNA profiling for neurodegenerative
diseases, and rapid diagnosis for sepsis [188]. Grapheal is
making graphene bioFETs for continuous wound care mon-
itoring and in vitro diagnostics [189].

9.3. Barriers to translation

Despite significant progress in literature in enhancing sensi-
tivity, parallelization, and reusability of field-effect bio-
sensors, there remains a significant gap between academic
research and practical point-of-use applications beyond
pH sensing. We discuss here the gaps and major barriers, in
our opinion, to translate FET biosensors from the lab to the
marketplace.

• Reliability. A reliable biosensor should maintain its
performance over time (stability) and produce similar
results when the same sample is tested multiple times
with the same biosensor (repeatability) and with different
biosensors (reproducibility). Reliability is crucial in
biosensing as it directly impacts diagnostic accuracy.
One of the major challenges with field-effect biosensors
is their stability. The immobilization of bio-receptors on
the sensor surface can degrade over time [190], leading to
reduced sensitivity and reliability. Additionally, un-
passivated semiconductor channels made from nanoma-
terials can also degrade in biological fluids. For example,
MoS2 undergoes slow hydrolysis in aqueous solutions
[191]. Furthermore, SiO2 is a commonly used dielectric
but it is less than ideal for biosensing, as there could be
charge traps that accumulate over time in salt solution
[192]. Coatings SiO2 surfaces with SiNx can block the
passage of ions [193]. Stoichiometry plays a crucial role
in determining the stability and lifetime of SiNx; SiNx

with a higher silicon content exhibits reduced stability
when exposed to a salt solution [194, 195]. In
comparison, high-k dielectrics such as Al2O3 and HfO2

are much more durable in salt solutions, leading to
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reduced measurement drift, leakage, and noise of
bioFETs [196, 197]. Repeatability and reproducibility
depend on minimizing variability in sensor fabrication,
surface functionalization, and measurement protocols. To
increase reliability even for the sensing of a few analytes,
bioFETs arrays are needed to provide redundancy and
should use negative controls to compensate for sensor
drift. For example, a practical design would include a
small panel with 5–20 markers, each having hundreds of
sensors within the same chip. This approach would
increase reliability and provide robustness to the
biosensing process.

• Direct interface to biological fluids. Biological fluids may
contain various interfering components, such as cells,
proteins, or enzymes, that can affect the accuracy and
reliability of the assay or even damage the sensing
surface of the device. Antifouling measures are typically
necessary for sensors to function effectively over time
with unprocessed biological fluids [198–200]. Blood
analysis has traditionally been the gold standard for
diagnostics, as blood is perhaps the most information-
rich biological fluid in the body [200]. However, blood-
based devices need some form of sample processing
before analysis. Sample processing may involve clotting,
centrifugation, and filtration to remove unwanted species,
inactivation of inhibitors, etc as well as sample dilution to
optimize the concentration of target molecules. Saliva
and sweat have a lower potential for biofouling compared
to blood, due to their simpler constituents and lower
concentrations of biomolecules [201, 202]. Notably,
unprocessed saliva testing has been achieved using
aptamer-based graphene FET biosensors for detecting
SARS-COV-2 at levels as low as 7 to 10 viruses [203].
Furthermore, a wearable aptamer-based In2O3 thin-film
FET biosensing system has been developed for non-
invasive cortisol monitoring [151].

• Sensor preparation time. Except for direct pH sensing,
every sensor needs preparation (functionalization) before
actual use, in which a capture agent is attached to the
sensor surface. Generally, it takes several hours to days
to functionalize sensor surfaces with bioreceptors [8, 9,
25, 31–33, 35, 49, 58, 59, 96–98, 204]. For instance,
while a type of graphene bioFETs could detect SARS-
COV-2 cDNA in artificial saliva down to 17 zM in
6.5 min, it takes 14.5 h to functionalize the graphene
FETs before use [8]. Since ELISA plates and DNA
microarrays have been commercialized, which take at
least a few hours to functionalize, bioFET sensor surfaces
can also be functionalized with antibodies, aptamers, and
DNA probes within acceptable preparation time.

• Reusability. For continuous monitoring of analyte
concentration in vivo, from skin, or for analysis of
ex vivo tissues in real time, bioFETs need to be reversible
or regenerative, miniaturized, multiplexed, energy-effi-
cient, and integrated with data processing and wireless
transmission units. At the cost of LoD, receptors can be
engineered to exhibit fast binding kinetics, facilitating
reversible binding for continuous biosensing [205].

Alternatively, real-time monitoring can be accomplished
by regenerating the biorecognition layer following each
measurement. Ideal regeneration for process monitoring
would remove the captured target in situ using a
chemical-free approach and preserve the biorecognition
layer for subsequent measurements [206]. One possible
solution is to apply a repelling gate voltage to weaken the
electrostatic attraction between the probe and the analyte
for fast desorption [150].

9.4. Commercial viability

We assess here the commercial viability of field-effect bio-
sensors by considering cost implications and comparative
advantages, assuming successful resolution of all technical
impediments to translation.

If the FET biosensor is for one-time use, then its cost
must be low enough to justify the use of the sensor in that
application. For sequencing applications, users are willing to
pay higher costs � $1000 per genome, hence justifying the
cost of one large array of FET sensors per assay. For perso-
nalized diagnostics, the cost per test must be low ∼$10–$100
or less, depending on reimbursement costs and the value of
the test. For example, for point of care PCR or LAMP tests
for COVID-19, the kits are on the order of a few $100. For
additional context, recent COVID-19 antigen tests typically
cost $10–$30 per kit, and home pregnancy tests generally run
anywhere from $8 to $15.

To estimate the fabrication cost of large FET sensor
arrays, we take a baseline number of $10 per square cen-
timeter for 180 nm CMOS lithography performed at a foundry
at production scale [207]. At such technology nodes, over 13
million FET sensor array units can be integrated on a chip
with a size of 15 mm × 15 mm [18]. This capacity is more
than sufficient to host tens of biomarkers, with hundreds of
FET biosensors allocated to each biomarker. Therefore, the
cost of one large array of FET sensors per assay below ∼$10
is justified if they can be manufactured at production scale.

Electrochemical biosensors stand as formidable con-
tenders to FET biosensors, harnessing the full array of ben-
efits offered by electrical chips for point-of-care applications.
Moreover, electrochemical biosensors offer a cost advantage
over FET biosensors due to their simpler design and easier
fabrication.

However, the decisive edge that FET biosensors possess
over their electrochemical counterparts lies in their capability
of ultralow limit of detection. In practice, electrochemical
biosensors typically operate within LoD ranges of the
micromolar to nanomolar levels, with potential extensions
into the picomolar to femtomolar range [3, 208, 209].
Meanwhile, FET biosensors could achieve significantly lower
LoD. For instance, an organic electrochemical biosensor
using field-effect transduction achieved a LoD of 10 pM for
the detection of ATP, which is four orders of magnitude lower
than the LoD (106 nM) achieved when using electrochemical
transduction for the same sensor [210]. This stark contrast
underscores the potential of FET biosensors to seamlessly
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complement electrochemical sensors in contexts demanding a
lower LoD.

While electrochemical sensing has demonstrated its uti-
lity in wearable sweat sensors for detecting ions and small
molecules [211–213], the realm of detecting DNA, proteins,
and larger biomolecules in sweat remains a challenge due to
their exceedingly low concentrations [214, 215]. Herein lies
an area where FET biosensors may assert a distinct advantage
over their electrochemical counterparts.

Furthermore, as our comprehension of the intricate
interplay between biochemistry and physiology advances, the
potential to establish nuanced links between trace levels of
biomarkers and overall health becomes increasingly viable.
This evolving understanding paves the way for the strategic
deployment of FET biosensors in the early detection of dis-
eases, capitalizing on biomarkers present at the femtomolar to
attomolar levels.

9.5. Considerations around portability

Traditional FET biosensor setups typically rely on complex
and bulky measurement instruments for data acquisition and
processing, such as off-the-shelf semiconductor parameter
analyzers. These systems are often nonportable and hard to
use. For true point-of-care use, it is important to develop low-
power, miniaturized analyzers that can operate on battery or
energy harvesting systems [216, 217]. For instance, 300 CNT
FET sensors were integrated with CMOS electronics on a
chip using 0.25 μm very-large-scale-integration technology
for sensor control, calibration, and signal processing, with a
total power consumption of 62.5 μW [218]. Moreover, a
portable CNT-FET based COVID-19 testing system was
developed with a size of 12.45 cm × 14.9 cm × 10.4 cm. It
consists of a raspberry Pi, two 16-bit digital to analog to
converters (DACs), a 24-bit analog to digital converter
(ADC), a biosensor array, a trans-impedance amplifier (TIA),
and low-pass filters [219]. The final test results could be read
directly from the display screen of the test instrument.

The widespread availability of smartphones with pow-
erful processing capabilities offers an excellent platform for
point-of-care analyzers. Researchers are exploring ways to
leverage smartphones for data acquisition, analysis, and
wireless communication, making the systems more portable
and user-friendly [220]. In a recent study, a FET biosensor
array for urine analysis was integrated with a device control
panel for data acquisition, conversion, and transmission, and a
smartphone was used for data analysis and display [147]. The
overall dimension of this portable integrated system was
15.2 cm × 6.5 cm × 2.4 cm. The operation processes are as
follows: the micro-controller unit (MCU) in the data con-
version module reads instructions from the smartphone via a
wireless Bluetooth unit and transfers the instructions to
voltage signal through a DAC. The voltage following module
then amplifies the voltage signal and applies voltage toward
the FET biosensor array. Subsequently, the MCU sequentially
accesses the measured current signal from the FET biosensor
array and converts the signal into readable information by an
8-to-1 multiplexer, a TIA, and an ADC. The Bluetooth unit

exports the readable information to a smartphone. The
application program, which incorporates neural network
algorithm and a diagnosis interface, analyzes the received
information to display the diagnosis results.

In the era of the internet of things, sensors can operate
autonomously without relying on other devices (e.g. PC,
tablets, or smartphones) [221]. The developed hardware can
be integrated into a cloud-based platform, leveraging the
computational power of the cloud to perform innovative
algorithms for calibration. Results and configurations can be
accessed through a web page without the need to install
dedicated application programs or software.
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