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Abstract

Biomolecular condensates are reversible compartments that form through a process called phase 

separation. Post-translational modifications like ADP-ribosylation can nucleate the formation 

of these condensates by accelerating the self-association of proteins. Poly(ADP-ribose) (PAR) 

chains are remarkably transient modifications with turnover rates on the order of minutes, 

yet they can be required for the formation of granules in response to oxidative stress, DNA 

damage, and other stimuli. Moreover, accumulation of PAR is linked with adverse phase 

transitions in neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, and 

amyotrophic lateral sclerosis. In this review, we provide a primer on how PAR is synthesized and 

regulated, the diverse structures and chemistries of ADP-ribosylation modifications, and protein–

PAR interactions. We review substantial progress in recent efforts to determine the molecular 

mechanism of PAR-mediated phase separation, and we further delineate how inhibitors of PAR 

polymerases may be effective treatments for neurodegenerative pathologies. Finally, we highlight 
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the need for rigorous biochemical interrogation of ADP-ribosylation in vivo and in vitro to clarify 

the exact pathway from PARylation to condensate formation.

Graphical Abstract

1. INTRODUCTION

The cellular response to various stresses relies upon the rapid and reversible recruitment 

of proteins, RNA, and other molecules into functional ribonucleoprotein (RNP) 

complexes.1 Unlike membrane-bound organelles, the responding biomolecules are not 

compartmentalized by lipid bilayers, exposing the RNP complex to the surrounding cellular 

milieu. Instead, it is thought that RNP complexes undergo a phase transition into liquid-

like granules, which are also called biomolecular condensates.2 Proteins with intrinsically 

disordered regions (IDRs) and multivalent RNA molecules together promote this transition 

through a process called phase separation (PS), in which the dense RNP complex is 

a discrete phase with unique viscoelastic properties from the dilute phase.3 Multivalent 

interactions allow RNP complexes to quickly form in response to cellular stimuli. PS may 

contribute to diverse biological processes such as the stress response, transcription, the DNA 

damage response, mRNA splicing, RNA degradation, and others.4

Two major challenges for the cell when assembling phase-separated compartments are (1) 

rapidly triggering PS in response to the external stimulus and (2) recruiting the correct 

biomolecules to the granule. Biomolecular condensates do not have a membrane that is 
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selectively permeable to specific proteins. Moreover, certain granules, like stress granules 

(SGs), must only assemble in response to acute stimuli, or cells cannot survive.5,6 Therefore, 

the cell needs mechanisms to direct the formation of biomolecular condensates on demand. 

One emerging hypothesis is that a molecule called PAR enables such rapid organization of 

certain cellular condensates in species that express PARPs.7–18

Poly(ADP-ribose) (PAR) is a nucleic-acid-like polymer that is synthesized by poly(ADP-

ribose) polymerases (PARPs).19 PAR is added as a posttranslational modification to target 

proteins, where it can act as a signal for various biological processes. Unlike many 

other posttranslational modifications that deposit small chemical groups to certain amino 

acids,20,21 PAR is a multivalent polymer that is synthesized directly on the protein. 

Therefore, PAR confers a unique biochemical property on the poly(ADP-ribosylated) 

(PARylated) protein: multivalency. In other words, a newly synthesized PAR chain can 

serve as a scaffold on which other proteins may assemble. Importantly, multivalency is a 

well-established universal mechanism to promote PS.22

PARP-dependent PARylation is best characterized in the DNA damage response.17,18,23 Like 

other stress-related processes that we will describe in this review, PARPs rapidly synthesize 

PAR chains in response to DNA breaks (the stress), helping direct the recruitment of DNA 

repair proteins within minutes (the response). An emerging theme is that PAR can serve as 

a molecular trigger for DNA repair or potentially other stress responses, and as such, PAR 

can promote the formation of phase-separated granules at specific foci, like a DNA damage 

site.17,18,24 Therefore, we propose that PAR-mediated interaction can serve as a unifying 

mechanism for initiating stimulus- or stress-induced granule formation. Such a mechanism 

has also been suggested by others.7,9,11–14

Here, we review recent advances in PS and PAR biology, focusing on how PAR 

drives the PS of diverse proteins in response to biological stress. First, we provide 

background information on PAR structure and synthesis. Next, we cover the covalent 

(i.e., posttranslational) and noncovalent binding of PAR to proteins, including the various 

protein domains that recognize PAR chains. With this primer, we then provide a detailed 

overview of the literature covering PAR’s role in PS, including the DNA-damage response, 

stress granule formation and dissolution, viral infections, osmotic pressure sensing, and 

other roles. Finally, we link PAR PS to clinical studies showing increased PARylation and 

PARP activity in neurodegenerative diseases like Parkinson’s disease, Alzheimer’s disease, 

frontotemporal dementia, and amyotrophic lateral sclerosis. Further mechanistic studies 

with recent technical advances in PAR biology are needed to provide a more detailed 

understanding of PAR-mediated PS, but we hope that this review will provide the scientific 

foundation and impetus for these studies to occur.

2. POLY(ADP-RIBOSE) STRUCTURE AND SYNTHESIS

PAR is covalently attached to proteins by PARPs19,25 (Table 1), and many PARPs are 

implicated in PS. PARPs use nicotinamide adenine dinucleotide (NAD+) as a substrate 

for each ADP-ribose unit added to a target protein (Figure 1). Therefore, the structure 

of an ADP-ribose unit resembles NAD+ without the nicotinamide group.26,27 Target 
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proteins can be mono- or poly(ADP-ribosylated), and PAR chains can be up to ~200 units 

long.28,29 Because PAR chains are covalently attached to proteins, long PAR modifications 

significantly impact the structure and biochemical properties of the target protein. PAR 

chains are also stiffer than RNA or DNA chains.30 This section is a primer on the enzymatic 

cycle underlying PAR synthesis and catabolism, and the catalytic activity of PARPs.

2.1. The PARylation Cycle

Unlike many other posttranslational modifications, ADP-ribosylation marks are polymerized 

and depolymerized on proteins, allowing dynamic control of PAR chain length and structure. 

The canonical PARylation cycle starts with the deposition of mono-ADP-ribose units on 

proteins through a covalent linkage to the target protein.40 Many PARPs can catalyze 

this initial mono-ADP-ribosylation (MARylation), and we discuss the covalent linkage of 

ADP-ribose to proteins in more detail below (see section ADP-Ribosylation of Proteins). 

The MARylation reaction uses a single NAD+ molecule: the covalent linkage between the 

ribose sugar and the nicotinamide molecule is cleaved in a rate-limiting step, which allows 

the ribose sugar to be attached to the acceptor amino acid of the target protein. Many target 

proteins are MARylated under basal conditions;41 stress events or other stimuli usually 

direct the PARylation reaction.16

Once a mono(ADP-ribose) (MAR) unit is added to the target protein, certain PARPs may 

further modify the protein to synthesize a polymerized ADP-ribose chain.42 It is unclear 

whether MARylation added by one PARP may act as a substrate for PARylation by other 

PARPs. The formation of a 2′–1′′ ribose–ribose glycosidic bond underlies the PARylation 

reaction, which can be sequentially catalyzed on each terminal ADP-ribose unit.43 Every 

ADP-ribose unit requires a new NAD+ molecule.42 PAR chains range in length from ~2–200 

units,28,29 meaning that PAR chains act as an NAD+ sink during extensive PARylation 

events.44 Moreover, branching of the PAR chain may be initiated by PARP1/2; here, the 

PARP catalyzes the formation of a 2″–1′′ ribose–ribose bond in addition to the usual 

2′–1′′ linkage.27,45 PAR branching is spaced every ~20–50 units,26,28 allowing further 

PARylation at new terminal ADP-ribose units. Branching allows highly PARylated targets 

to adopt a “starfish” morphology with huge PAR chains emanating from a single initiating 

chain.46 For more on the structural heterogeneity of PAR chains, we refer the reader to a 

recent review in ref 47.

Depolymerization of PAR is mediated by PAR glycohydrolases (PARGs), which act through 

endo- or exoglycosidic cleavage of PAR chains (Table 2).48 Exoglycosidic cleavage is 

generally more common, meaning that individual ADP-ribose units are typically released 

as the PAR chain is depolymerized from the end of the modification.49 Certain PARGs 

may release intact PAR chains via endoglycosidic cleavage,50 but free PAR is readily 

catabolized by basal expression of PARGs in cells. Release of the initial ADP-ribose unit 

(i.e., MARylation) is mediated by specific PARGs that recognize the unique protein-ADP-

ribose linkage.51 Thus, dePARylation and deMARylation are functionally decoupled and 

usually occur independently.
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Therefore, a dynamic cycle of MARylation, PARylation, dePARylation, and deMARylation 

defines the PAR cycle. Each of these steps regulates the recruitment of proteins to PAR foci 

and the formation of phase-separated condensates.

2.2. Mechanism of PAR Chain Synthesis

The canonical PARP active site consists of a histidine–tyrosine–glutamate (H–Y–E) triad, 

which is essential for polymerization (Figure 2). All PARylating PARP enzymes contain 

the H–Y–E triad.52 However, the H–Y–E-containing PARP3 and PARP4 are unable to 

synthesize PAR chains, indicating that the triad is not sufficient on its own for PARylation.52 

Natural variations of the H–Y–E triad in other PARPs (e.g., H–Y–I, H–Y–L, etc.) can still 

engage in MARylating activity.52 Many structural studies use PARP1, the main nuclear 

PARP enzyme, and the founding member of the PARP family, as their model, but homology 

between PARP1 and other PARylating PARPs implies that many of the catalytic activities 

are similar.53,54 For a more complete review on PARP1 synthesis of PAR chains, we refer 

the reader to ref 55.

In PARP1, triad amino acids His-862 and Tyr-896 are required for NAD+ binding.56 

His-862 contacts the 2′-OH of the adenosine–ribose of NAD+, and Tyr-896 stacks with 

the nicotinamide ring.56 These two residues are essential for proper catalysis: the PARPs 

without His-862 and Tyr-896 equiv, PARP9 (Q-Y-T) and PARP13 (Y–Y–V), are either 

weakly active or completely inactive, respectively.52,57 By contrast, the last triad residue 

Glu-988 is required for destabilizing NAD+ and covalently attaching the remaining ADP-

ribose molecule to the target protein or ADP-ribose.43 Glu-988 performs this activity 

by hydrogen bonding with the 2′-OH of the nicotinamide ribose, which allows the 

target protein side chain to perform a nucleophilic attack on the ribose–nicotinamide 

bond.43 Glu-988 primarily serves to position NAD+ and the acceptor site in the correct 

orientation.43,58 Other structural elements, such as the donor and acceptor loops, further 

modulate the catalytic activity of PARP enzymes.52,59 Mutations at nearby residues impact 

PAR branching efficiency of PARP1.45,60 Finally, accessory factors may help terminate 

PARylation reactions, shifting the PAR cycle toward dePARylation.61 Before dePARylation 

occurs, many proteins may noncovalently bind to the covalently bound PARylated protein, 

as we discuss in the next section.

3. PROTEIN-POLY(ADP-RIBOSE) BINDING

Poly(ADP-ribose) chains are added as a posttranslational modifications to proteins. 

Therefore, there are two main modes of protein–PAR binding: (1) covalent attachment of the 

ADP-ribosylation modification to the target protein and (2) noncovalent binding of the PAR 

chain to a PAR-binding protein (Figure 3). Together, these two interactions provide exquisite 

specificity; PAR chains can be synthesized on certain proteins in response to stimuli, which 

then recruit binding partners to the new PAR chains. PARG and PARG-like enzymes disrupt 

both interactions by degrading the PAR chain from the target protein. Given the remarkably 

transient nature of ADP-ribosylation, the covalent and noncovalent PAR interactions can be 

brief, only occurring when the correct biological stimulus promotes PAR synthesis.
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In the context of PS, the synthesis of the PAR chain provides a multivalent scaffold for the 

assembly of PAR-binding proteins on the target protein. A naked, newly synthesized PAR 

chain can be recognized by proteins with PAR-binding domains, also known as PAR readers. 

If the PAR chain is of a sufficient length, multiple PAR readers can assemble on a single 

target protein, which then promotes a phase transition. In this model, the PARylated protein 

is recruited into the phase-separated condensate, even if it cannot undergo PS on its own. An 

alternative mechanism is that PAR can induce conformational changes in proteins by freeing 

IDRs, which then promote PS, perhaps independently of PAR.

This section will review the biochemistry underlying the ADP-ribosylation modification 

and recognition of the PAR modification by other proteins. In particular, we will focus 

on how PARPs target certain proteins for ADP-ribosylation, which amino acids accept 

ADP-ribosylation modifications, and cofactors that may alter ADP-ribosylation activity of 

PARP enzymes. Then, we will discuss various domains that interact with PAR chains, 

the enrichment of PAR-binding domains in disordered regions of proteins, and how PAR 

binding aligns with other binding interactions.

3.1. ADP-Ribosylation of Proteins

ADP-ribosylation modifications are added by PARPs, as discussed in section Poly(ADP-

ribose) Structure and Synthesis above. There are 17 PARP enzymes in humans, of which 

16 are catalytically active52 (Table 1). Only 4 of the 16 PARP enzymes can synthesize 

PAR chains: PARP1, PARP2, PARP5a, and PARP5b.52 The first two enzymes, PARP1 

and PARP2, are predominantly nuclear, though PARP2 has been identified in puncta in 

the cytoplasm.62 PARP2 mediates branching of PARP1-synthesized PAR chains.33 PARP5a 

and PARP5b have high sequence similarity,63 and they are localized to the cytoplasm.16,62 

PARP5a and PARP5b cannot synthesize branched PAR chains,64 so it is thought that most 

cytoplasmic PAR modifications are linear chains.

The remaining 12 PARPs only add mono(ADP-ribosylation) modifications. The exact 

interplay between MARylating PARP enzymes and the PARylating PARP enzymes is 

unknown; MARylating PARPs may target unique proteins for ADP-ribosylation, which 

could then be targeted for PARylation by other PARPs, although the evidence for this theory 

is lacking.65,66 Certain MARylating PARPs may also modulate the PARylation activity of 

other PARPs. For example, PARP3 can stimulate PARP1 activity in the absence of DNA.67 

Because ADP-ribosylation-mediated PS appears to rely on the multivalency of PAR chains 

(see section Molecular Interactions Underlying PAR-Mediated Phase Separation below), we 

will focus our discussion on PARylating PARPs.

PARP1 and PARP2 synthesize the vast majority of PAR in cells,68 and they predominantly 

initiate ADP-ribosylation at serine residues.69–74 Serine targeting is mediated by the 

cofactor histone PARylation factor 1 (HPF1). Structural studies of PARP1-HPF1 binding 

demonstrate that HPF1 completes the active site of PARP1, biasing PARP1 toward serine 

ADP-ribosylation.61 HPF1 also sterically hinders automodification of PARP1, and HPF1 

binding blunts the length of PAR chains synthesized by PARP1.61,72,75 The exact motif 

targeted by the PARP1/2-HPF1 complex is unknown, although likely involves nearby 

basic residues.70,76 The ADPriboDB tool maintains a list of ADP-ribosylated targets.77 

Rhine et al. Page 6

Chem Rev. Author manuscript; available in PMC 2024 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Notably, PARPs are themselves major targets of ADP-ribosylation through automodification 

reactions.78

ADP-ribosylation may also occur at other residues, including arginine,40,74,79–95 

aspartate,52,96 cysteine,52,82,97–99 glutamate,52,96 histidine,74 lysine,52,100 and tyrosine.74,101 

PARPs appear to have different preferred targets; for example, PARP8 may prefer modifying 

cysteine residues.52 Therefore, MARylating PARPs may target proteins or sites that are 

otherwise not recognized or efficiently modified by the PARylating PARP enzymes.

PARP activity is promoted by environmental stimuli such as oxidative stress and DNA-

damaging agents.16,34,102 These perturbations activate biological responses that require the 

activity of PARP1, PARP5a, or both, but the exact mechanism of how ADP-ribosylation 

activity increases in response to this stimulus is unclear. PARP1/2 activity is directly 

stimulated by DNA damage, which is recognized by DNA-binding domains of PARP1/2.103 

Notably, the surge in ADP-ribosylation mediated by environmental stress is fast, increases 

in PAR levels can be detected within minutes.60 Recent studies have indicated that PARP 

activation is upstream of stress-mediated PS,17,18,34 so the exact molecular mechanism of 

how ADP-ribosylation is stimulated by stress should be of intense interest to the field.

3.2. Free PAR Chains

PARPs require a protein target for their ADP-ribosylation activity, so free PAR is not 

directly synthesized by PARPs. However, dePARylating enzymes like PARG can release free 

PAR chains via endoglycosidic cleavage of the PAR chain on an ADP-ribosylated protein 

(Figure 4).48–50,104–106 The preferred enzymatic activity of PARG is exoglycosidic cleavage, 

but endoglycosidic cleavage occurs in ~20% of cleavage events.49 TARG1 can also release 

free PAR by cleaving the ADP-ribosylation linkage.51

The basal expression of PARG and ARH3, which also has robust exoglycosidic activity, 

suggests that free PAR is rapidly degraded.107–111 Indeed, H2O2-stimulated PAR chains 

were observed to rapidly degrade within 20 min of oxidative stress.60 Branched PAR chains 

may be more resistant to PARG/ARH3 activity.60 Despite the widespread use of purified 

PAR chains in many biochemical studies, direct evidence of appreciable free PAR in cells is 

limited.

Evidence for free PAR chains primarily comes from nuclear PARP1 exerting influence over 

cytoplasmic biological processes; some studies have suggested that PARP1 activity may 

regulate localization of cytoplasmic PAR-binding proteins. For instance, PARP1 activity 

mediates the translocation of apoptosis inducing factor 1 (AIF1) from the mitochondria to 

the nucleus.112,113 PARP1 regulates the localization of predominantly nuclear proteins like 

TAR DNA-binding protein 43 (TDP-43) and hnRNPA1 to cytoplasmic stress granules.31,114 

Indeed, PARP1 inhibitors promote nuclear retention of TDP-43 and prevents formation 

of cytoplasmic TDP-43 aggregates.114 It is possible that TDP-43 and hnRNPA1 are ADP-

ribosylated in the nucleus and exported to the cytoplasm. Other studies have suggested 

that PARP1 has little role regulating G3BP1 or FUS localization to cytoplasmic stress 

granules.34 Given that PARP1 is a predominantly nuclear protein, its PARylation activity 

should be limited to the nucleus; data suggesting that it exerts an effect on cytoplasmic 
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PAR-binding proteins may imply the release of free PAR that is exported to the cytoplasm. 

Further studies are needed to clarify whether free PAR can be stably maintained in cells 

without inhibiting PARG activity.

3.3. PAR Readers

Noncovalent interactions with PAR chains are mediated by a variety of protein domains, 

including monofunctional domains that only bind PAR and multifunctional domains that 

engage with other binding partners (for a more comprehensive review of the subject, please 

see ref 10). PAR readers recognize PAR chains through the diverse functional groups 

on the ADP-ribose polymer, including the adenosine base (PAR binding zinc fingers), 

the iso-ADP-ribose linkage (WWE domains), and the entire ADP-ribose unit (Macro 

domains). Other domains like RGG repeats engage in more nonspecific interactions with the 

highly negatively charged backbone. Therefore, even proteins without defined PAR-binding 

domains may interact with PAR chains. This section will give an overview of identified 

PAR-reader domains (Figure 5).

The most common PAR-reader domain is the PAR-binding motif (PBM), which was 

identified in a proteomics study of PAR-binding proteins.115 Recognition of PAR is 

mediated by a mixture of basic and hydrophobic residues stretching ~20 amino acids: 

[HKR]1-X2-X3-[AIQVY]4-[KR]5-[KR]6-[AILV]7-[FILPV]8. The trio of KR motifs are the 

most important constituents of the PBM because they likely recognize the negatively 

charged PAR backbone.116 The strong electrostatic attraction allows some PBMs to achieve 

affinities in the nanomolar range.117 Multiple PBM regions can contribute to a multivalent 

protein–PAR interaction; for instance, the ALS-associated TDP-43 has two distinct PBMs 

embedded in its nuclear-localization sequence (NLS), which together promote strong 

association with PAR chains in vitro and in vivo.118,119 Notably, many hnRNP proteins, 

which undergo PS, contain PBMs, but these do not always appear in the NLS.120

WWE domains, consisting of a pair of conserved tryptophan residues and glutamate, 

are found in PARPs and ubiquitin ligases.121 The WWE pocket binds to the iso-ADP-

ribose linkage (i.e., the ribose–ribose sugar linkage in a PAR chain) with micromolar 

affinity,122–126 but it has much weaker binding to the monomeric ADP-ribose unit. 

Therefore, WWE proteins mostly recognize poly(ADP-ribosylation), not mono-(ADP-

ribosylation). WWE domains enable certain MARylating PARPs (e.g., PARP11, PARP12, 

and PARP14) to bind PAR chains, recruiting them to PAR foci. As discussed below, PARP12 

translocation from the Golgi to the stress granule relies upon its WWE domain interacting 

with PAR chains synthesized upon oxidative stress.37 WWE domains are also found in 

several E3 ubiquitin ligases, suggesting a functional connection between PARylation and 

ubiquitination, perhaps to target PAR-binding proteins for degradation.122,127–130 Indeed, 

PARP1, which itself is one of the main targets of PARylation in cells, is targeted for 

degradation when it is autoPARylated, and the WWE-containing E3 ubiquitin ligases Iduna 

and TRIP12 mediate this action.131,132

Macro domains are also present in PAR metabolic enzymes, including PARP9, PARP14, 

PARP15, PARG, TARG1, MacroD1, and MacroD2.51,104,133–135 The Macro domain is a 

conserved ~100–200 amino acid domain with nanomolar affinity for PAR chains.134,136 
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Unlike other PAR readers, Macro domains only recognize the terminal ADP-ribose 

unit. Macro domains are found in many viral proteins, including the nsP3 protein of 

SARS-CoV-2, and are often paired with glycohydrolase activity.133,137–140 As discussed 

below, viral Macro domain-linked glycohydrolase activity is linked with turnover of stress 

granules.133 Interestingly, some histone variants also contain Macro domains, and these 

Macro domains can help localize histone variants and chromatin remodelers to regions with 

PARP1 activity, i.e., double-stranded DNA breaks (DSBs).141–143

Some DNA damage response proteins contain a modified zinc finger that binds PAR 

molecules: PAR binding zinc fingers (PBZ).144–151 The PBZ domain consists of a 

conserved amino acid motif that resembles canonical zinc fingers:145 [K/R]xxCx[F/

Y]GxxCxbbxxxxHxxx[F/Y]xH. Recognition of PAR chains by the PBZ domain hinges on 

adenine bases.145 The specificity of PBZ for PAR chains allows efficient recruitment of 

diverse DNA damage response proteins like Ku, Chk2, RAD17, APLF, CHFR, and others. 

As with other zinc fingers, PBZ requires zinc for nanomolar affinity to its binding partner.

RNA-recognition motifs and other nucleic acid binding domains may also recognize PAR, 

albeit with lower affinity than for their preferred substrate.117,152–155 This bifurcated binding 

ability leads to a competitive interaction between the protein, PAR, and DNA/RNA, which 

can tune the biophysical properties of condensates or regulate the biological function of the 

protein–PAR interaction.24,34

Finally, some of the most highly enriched PAR readers do not contain a canonical PAR-

binding domain per se; instead, they have repeats of positively charged residues, such as 

RGG repeats, KR-rich motifs, or SR repeats.102,156,157 Like the PAR-binding motif, the 

positively charged arginine residues contribute to a strong electrostatic interaction with 

negatively charged PAR chains. For example, the arginine residues of FUS, which are 

clustered in three RGG repeats, are required for localization of FUS to DNA damage foci 

and to stress granules.17,24,34

Importantly, RGG domains can independently promote PS, and the toxic dipeptide repeat 

protein, poly(GR), is linked with neurodegeneration in c9ALS/FTD.158–161 Because both 

PAR binding and PS propensity are encoded within RGG repeats, the two biochemical 

interactions may regulate each other. PAR binding may prevent or promote individual 

RGG domains from interacting with other disordered regions, inhibiting or promoting 

PS, respectively. For example, PAR associates with poly(GR) in vitro and in post-mortem 

brain tissue, and appears to promote poly(GR) condensation, suggesting a role of PAR in 

promoting dipeptide repeat toxicity in c9ALS/FTD.162 Furthermore, tandem RGG domains, 

such as those observed in FET family proteins, can coordinate PS by binding PAR with 

some RGG repeats and other proteins with other RGG repeats. Indeed, proteins with tri-

RGG domains are particularly enriched among PAR readers.156

More broadly, the other types of proteins that contain PAR-binding domains also skew 

toward phase-separation-related processes. Several recent studies using proteomics-based 

approaches identified and quantified the relative binding of PAR readers to ADP-ribosylated 

proteins.102,115,156,163 RNA-binding proteins, RNA helicases, and RGG-containing proteins 
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were among the most enriched PAR readers.156 Many of these proteins undergo, regulate, 

or are implicated in PS events.3,164–173 PAR readers also tend to be enriched in biological 

processes that are thought to involve PS, including DNA repair, RNA splicing, glycolysis, 

and translation.17,168,174–176 Therefore, there is a strong link between noncovalent protein–

PAR interactions and PS.

4. POLY(ADP-RIBOSE)-MEDIATED PHASE SEPARATION (PS)

Membrane-bound organelles are surrounded by lipid bilayers that confer several advantages: 

first, they allow cells to compartmentalize various reactions; second, they protect or 

sequester certain proteins and nucleic acids through their semipermeable membranes; third, 

organelles have carefully controlled internal environments. However, canonical organelles 

are inefficient at responding to external stimuli, and the cell expends a lot of energy to 

maintain their specialized environments. For instance, the cell must establish and sustain a 

Ran-GTP/-GDP gradient to direct nucleocytoplasmic transport.177

Membraneless granules circumvent these shortcomings by using the physical properties 

of PS to reversibly generate dynamic compartments. Granules are not protected by a 

membrane, so constituent biomolecules can readily diffuse in and out. They are also 

more easily dissolved by enzymes or changes in cellular salt concentrations. However, the 

dynamism of membraneless granules allows the cell to respond to stress or damage by 

quickly compartmentalizing proteins, RNAs, and other molecules.178

PAR is uniquely positioned to support PS in PARP-expressing cells. Because PAR chains 

are readily synthesized and then rapidly degraded, they can direct the formation of phase-

separated granules and assist with the dissolution of granules, too. The chemical nature of 

the PAR chain also potently promotes PS: it is a negatively charged multivalent polymer able 

to bind many PAR readers at once. As previous reviews have noted,7,9–14 PAR is involved in 

several biological processes that are associated with PS (Figure 6). In this section, we will 

discuss the biophysics of PS, the mechanisms of protein–PAR PS and review the literature 

that describes the role of PAR in biomolecular condensates.

4.1. The Biophysical Principles of Phase Separation

Phase separation (PS) occurs when it is more energetically favorable for multivalent 

polymers to coalesce into a dense condensate within a dilute liquid phase. The coexistence 

of two phases is the hallmark of a phase-separated system. When the condensate is a 

liquid phase, it is formally referred to as a coacervate, and a coacervate usually consists 

of biological polymers like polypeptides and nucleic acids.179 Coacervation occurs when 

the dense liquid phase exists in thermodynamic equilibrium with the surrounding dilute 

phase, and the coacervation thermodynamics can be described by the Flory–Huggins 

model180 (see ref 181 for a review on the subject). Biological coacervates often form 

via associative interactions between biopolymers, which is a type of coacervation called 

complex coacervation.182 Importantly, the dilute phase retains some of the molecules that 

are concentrated within the complex coacervate; in a biological context, this means that a 

significant fraction of proteins or RNAs that are concentrated within a granule also exists in 

the cytoplasm or nucleoplasm.183
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A key element of complex coacervation is the associative interactions between biopolymers. 

In practical terms, one molecule may act as a scaffold, which recruits clients into the 

coacervate.22 The valency of the scaffold is a critical part of the associative polymer 

model: if a scaffold can accommodate many clients, it can increase the local concentration 

of the of the biopolymers into the dense phase.3,184 The network that arises from these 

interactions drives the formation of the coacervate, thereby causing PS. The conditions that 

support PS can be clearly delineated in a phase diagram, in which the concentration of the 

dense biopolymer is usually plotted versus changes in another environmental factor.185 The 

coexistence line on the phase diagram denotes the transition from the one-phase system to 

the two-phase system. Crossing the coexistence line begins the nucleation process, allowing 

the formation of new condensates. Recent reports have indicated that nucleation may also 

initiate in the one-phase system.186,187

Importantly, biological PS is often triggered by changes in the concentration of biopolymers 

like the release of mRNA during stress or the translocation of proteins from one region 

of the cell to another. Environmental changes can also mediate PS, including shifts in 

pH, salt concentration, temperature, or pressure. Such changes may lead to reentrant phase 

transitions, in which the two-phase system devolves back into a single-phase, well-mixed 

system. This may occur if the valency of the scaffold is too high, which will disperse the 

client to such an extent that it cannot form a dense coacervate.173

4.2. Phase Separation in Biology

In biology, one of the first descriptions of PS was the P granule in Caenorhabditis 
elegans.169 Many groups have since reported biological PS for a variety of cellular granules, 

including stress granules,188,189 P bodies,190,191 TIS granules,192,193 G bodies,174,194 the 

nucleolus,195,196 paraspeckles,197,198 histone locus bodies,199 DNA repair granules,17,18 

and others.4 In cells, phase-separated condensates are generally called granules; in vitro 

condensates are usually referred to as droplets. Condensate is a generic term to refer to 

biomolecular structures that does not presuppose the material state of the structure. Other 

terms, such as aggregate or amyloid, describe solid-like condensates that adopt distinct 

structural patterns. By contrast, liquid-like condensates (i.e., coacervates) demonstrate 

wetting, fusion, and other characteristics reflective of true liquids, and these parameters 

can be quantified by physical characteristics like viscosity and elasticity (for a review 

of the liquid properties of condensates, please see ref 200 and in addition, ref 201 

discusses the differences between liquid–liquid PS and PS in more detail). Liquid-like 

granules can mature into gel-like or solid-like condensates through a process termed 

percolation,202,203 which may contribute to disease pathology (see section Accumulation 

of Poly(ADP-ribose) in Neurodegenerative Pathologies below). In this review, we generally 

refer to any phase-separated body as a condensate or granule so that we do not presume the 

material properties of the condensate. Granules have been proposed to accelerate enzymatic 

reactions, concentrate biomolecules, buffer the internal environment, sense environmental 

changes, among other roles.185 Given the ubiquitous presence of phase-separated granules in 

the cytoplasm and nucleus, there is intense interest in understanding the regulation, function, 

and dissolution of condensates.
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Multivalent interactions between biopolymers drive the formation of the dense condensate 

phase (for a thorough review of the physical processes underlying PS, please see ref 181). 

The associative polymer model posits that proteins and other biomolecules are composed 

of so-called “sticker” and “spacer” regions,166,204 which together determine the relevant 

parameters of PS, including the protein concentration at which PS occurs (Csat). Stickers 

are regions of the polymer that can associate with other polymers; examples include 

residues that form cation–π and π–π interactions, like arginine or tyrosine, and domains that 

promote multivalent binding interactions like RNA-binding domains or PAR readers.22,205 

Meanwhile, spacers are the residues or domains that do not participate in PS although they 

may control percolation.206,207 By definition, all regions that are not stickers are spacers and 

vice versa. Not all stickers are equally strong at promoting PS, though; for instance, lysine is 

a weaker sticker than arginine.166

What determines whether a protein may undergo PS? In general, the presence of enough 

sticker regions to promote multivalent assembly of a dense phase is required. Proteins with 

certain amino acids tend to self-associate and multimerize into condensates. For example, 

arginine and tyrosine can promote PS,166,204 and other charged residues also support PS by 

electrostatic interactions.208 IDRs may also engage in multivalent interactions that drive PS 

(for a review on IDRs, see ref 209). Prediction software like IUPred help determine whether 

a protein is disordered or not.210,211 As mentioned above, binding domains can also function 

as stickers by promoting multivalent interactions.

4.3. Molecular Interactions Underlying PAR-Mediated Phase Separation

The associative polymer model helps explain why biomolecules like PAR can promote PS. 

If we consider PAR readers to be sticker domains, then PS propensity is directly correlated 

to the number of PAR readers and PAR chains present in the system. PAR chains may 

also act as stickers, in which a minimal PAR length (n) is sufficient for protein binding 

and each multiple of this minimal requirement (2n, 3n, etc.) increases the multivalency of 

the protein–PAR interaction. Therefore, PAR chains will directly increase the PS propensity 

and decrease the observed Csat, a phenomenon that has been observed in vitro.31,34,118 

Consistent with this observation, mono(ADP-ribose) is usually insufficient to promote 

PS.31,34,118

The minimal PAR chain length required for protein binding depends on the PAR reader. 

The tumor suppressor protein p53 can form monomers with 16-mer PAR but requires longer 

PARs of >40 units for stronger, multimeric binding.212 A similar dependence of 40+-unit 

PAR was observed for the oncoprotein DEK.213 Biological processes mediated by PAR 

chains such as the parthanatos cell death pathway and inhibition of cell cycle progression 

via activation of Chk1 are also promoted by longer PAR chains of >40 units.112,113,146 

Likewise, PARP1 binding increases with longer PAR chains,156 which may provide a 

positive feedback loop to promote robust and rapid formation of PAR chains. Some proteins, 

such as NONO, XRCC1, and PARG, appear to bind shorter PAR chains with higher 

affinity.156

A recent study examining FUS condensation with PAR more directly linked PAR length 

with PS.34 FUS multimerization increased as a function of PAR length, and PAR chains 
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of 16 units or longer enabled the formation of FUS multimers.34 The apparent binding 

affinity of FUS for PAR also increased by ~20-fold for 32-mer PAR compared to 8-mer 

PAR.34 Increased PAR binding directly correlated with increased PS in vitro,34 indicating 

that longer PARs more strongly promote condensation of PAR readers. Other studies have 

likewise shown FUS PS in response to DNA damage-mediated PARP1 activity, which 

forms long PAR chains of >30-mer.17,18,24 Therefore, the multivalent scaffolding afforded 

by a long PAR chain supports PS, a similar phenomenon to what has been observed 

with RNA.214–217 PARylation of multiple sites on the same protein may also achieve 

multivalency.

Less is known about the effect of PAR branching on PS. The branching of PAR chains 

may be considered analogous to secondary structures like hairpins and stem loops in RNA 

molecules, which affect the affinity of proteins for RNA.218–220 Indeed, a few studies have 

shown that certain PAR readers may prefer branched PAR chains.123,221,222 Branched PAR 

modifications may increase PS through a few distinct mechanisms: (1) incorporation of new 

proteins that otherwise would not easily interact with linear PAR, (2) added multivalency by 

increasing the local concentration of minimal PAR chains (n), or (3) increasing the stability 

of condensates through a more complex binding network. In line with the last hypothetical, 

branched PAR chains likely impact the material properties of PAR-mediated condensates by 

forcing PAR readers into unique conformations or more highly concentrated oligomers. It is 

important to note that branched PAR chains are only formed by nuclear PARPs,64 indicating 

that branched PARylation likely is not a major factor in cytoplasmic PS. However, there are 

some instances in which PARP1 is mislocalized to the cytoplasm,223 and it is also possible 

that branched PAR on target proteins may be exported.224

Other posttranslational modifications also regulate PS.20,21,225,226 For instance, arginine 

methylation can reduce PS by dampening sticker contacts of arginine residues or binding to 

RNA.227–233 However, arginine methylation of TDP-43 allows PS but disfavors pathological 

aggregation.233 Phosphorylation of serine and threonine residues can either inhibit or 

promote phase transitions.232–238 By contrast, PARylation of proteins usually promotes 

PS, likely because PARylation introduces a new scaffold for PAR-reader binding and 

multimerization. Instead of modifying the biochemical properties of existing stickers like 

arginines, PARylation provides creates a multivalent sticker, enabling quick and reversible 

formation of condensates. We do note that very high concentrations of PAR chains may 

buffer PS by diluting the multivalency of protein–PAR binding networks.34,173

Therefore, given the transient nature of PARylation and its inclination to promote PS, several 

biological processes appear to rely on PAR chains for efficient condensation. The following 

sections will discuss biological examples of PAR-mediated PS in more detail.

4.4. The DNA Damage Response Requires Phase Separation of PAR Readers

The role of poly(ADP-ribose) and PARP1 in the DNA damage response is well established. 

PARP1 activity is essential for the identification of single- and double-stranded breaks, 

recruitment of DNA damage repair proteins, and resolution of the DNA lesion (for a 

comprehensive review of PARP1 in the DNA damage response, we refer the reader to 

ref 239). Poly(ADP-ribosylation) modifications are rapidly added to histones, DNA, and 
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PARP1 itself.73,240–242 Single- or double-stranded breaks are required for PARP1-mediated 

synthesis of PAR chains.23,103,243–246 In fact, increased PARP1 activity is often observed 

in cancer;223,247–249 enhanced PARP1 expression is needed so that the higher rate of DNA 

damage can be addressed, but PARP1 activation also upregulates other inflammation-related 

and oncogenic factors and can initiate error-prone DNA damage repair pathways.250–252 

Small-molecule inhibitors of PARP1 activity are approved for clinical use with certain 

cancers.253–255 PARP1 acts upstream of both nonhomologous end-joining (NHEJ) and 

homologous recombination (HR),239 highlighting its essentiality in resolving DSBs.

An important finding in the field was the formation of PARP1-dependent phase-separated 

compartments in the DNA damage response (Figure 7).17 PAR synthesis by PARP1 is rapid 

(occurring on the order of seconds), and turnover of PAR chains is equally quick (within 

minutes).256 The PS-prone FET family proteins are recruited shortly after PAR synthesis 

(within seconds to minutes), strongly interacting with PAR.17,18,24,257,258 The FET family 

consists of three related tri-RGG proteins: FUS, EWSR1, and TAF15.259 Each of these 

proteins can form droplets in vitro,18,166,260 and PS characteristics were observed at the 

DNA damage foci to which FET family proteins are adsorbed.17,24 The RGG domains of 

FET proteins are critically important for this association with the DNA damage site.17,24 

Moreover, the prion-like domain of FUS is also required for DNA repair initiation.261 The 

individual FET family proteins appear to direct the formation of the phase-separated DNA 

damage compartment.

PAR-mediated FUS recruitment is required for proper resolution of the DNA damage 

site.261 PAR chains robustly promote the formation of FUS condensates,17,18,34 and 

FUS recruitment to the DNA damage site is PARP1-activity dependent.24 Loss of FUS 

significantly delays recruitment of proteins required for the DNA damage response, 

including 53BP1, NBS1, Ku80, and SFPQ.261 Importantly, disruption of these FUS 

interactions leads to cytoplasmic mislocalization of FUS and subsequent neurodegenerative 

phenotypes.262,263 The formation of the γH2AX histone variant is also dependent on 

FUS.261 Transcriptional-associated DNA damage resolution may also require FUS.264 

Therefore, it is reasonable to hypothesize that PAR-mediated FUS PS is essential for proper 

progression of the DNA damage response.

Although several models have been proposed for PARP1 ejection from DNA damage sites 

following repair,265 recent evidence suggests that EWSR1 binding is required for efficient 

PARP1 displacement.266 Depletion of EWSR1 leads to hyperaccumulation of PARP1 at 

DNA damage foci,266 indicating that the DNA damage response is stalled. It is also possible 

that EWSR1 is essential for the recruitment of other proteins that eventually eject PARP1. 

The role of the final FET protein family member, TAF15, in the DNA damage response is 

not known. Following ejection from the DNA damage site, PARylated PARP1 is targeted 

for proteasomal degradation by the WWE domains of the E3 ubiquitin ligases Iduna and 

TRIP12.131,132

Other RG- and IDR-containing proteins likely contribute to PAR-mediated PS. A recent 

study identified that the splicing factor USP39 directs NHEJ in response to PARP1 

activity.267 Like FET proteins, USP39 PS is RG-motif dependent.267 Recruitment of 
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XRCC4, LIG4, APTX, and PAXX, all of which are required for NHEJ, follows USP39-PAR 

PS.267 Excessive recruitment of USP39 may eventually downregulate HR by depleting 

BRCA mRNA through its role in the spliceosome.267,268

Moreover, PAR binding and PS have been observed in a decoupled manner for other 

proteins. For example, p53 is known to oligomerize on PAR chains,212 p53 can be 

PARylated,269 and PS of p53 was recently described in vitro and in vivo.270,271 Thus, 

PAR may mediate condensation of additional proteins, perhaps working in tandem with 

the highly PS-prone FET family proteins. PARP1 activity is also enriched in the phase-

separated nucleolus,272 where it regulates ribosome biogenesis and DDX21 activity.152,273 

PARylation-independent PS also contributes to the DNA damage response through the 

protein 53BP1, which is recruited to damage foci independently of PARP1 activity.274,275

A recent report suggests that PARylation plays a role in antagonizing transcription, 

especially in response to DNA damage at the transcriptional locus (Figure 8).32 If 

PARP1 senses DNA damage at a transcriptional locus, it PARylates the elongation factor 

P-TEFb.32 Importantly, PARylation of P-TEFb inhibits its PS.32 Although PAR chains 

usually promote PS, PARylation of P-TEFb neutralizes the self-association of nearby 

positively charged P-TEFb residues, indicating that the effect of PAR on PS is context-

dependent.32 This disruption prevents P-TEFb from hyperphosphorylating RNAP II, which 

is required for elongation of mRNA.276 Other reports indicate that PARylation regulates 

transcription,277–282 and it is hypothesized that PS augments transcriptional activity.283–287 

Therefore, an interplay between transcriptional PS and the DNA damage response PS may 

exist in which the factors involved in each process are mutually exclusive.

The exact spatiotemporal relationship between the various proteins contributing to PAR-

dependent PS at DNA damage foci is unclear. It is likely that the synergistic effect of many 

PAR readers with PS-prone domains (e.g., prion-like domains of FET proteins) contributes 

to the formation of a dynamic,288 reversible DNA damage compartment that is a bona fide 

phase-separated granule. In addition, the phase-separated DNA damage foci may also direct 

exactly which type of DNA repair occurs at double-stranded breaks: NHEJ or HR. It is 

possible that PAR chain structural heterogeneity (i.e., branched versus linear, short versus 

long chains) encodes regulatory input for the DNA damage response. Nevertheless, an 

abundance of evidence supports the notion that the phase-separated DNA damage response 

is seeded by PAR chains in a PARP1 activity-dependent manner.

4.5. Stress Granules Are Nucleated by PAR Readers and PAR Chains

Stress granules are cytoplasmic phase-separated condensates that form in response to 

environmental stressors, such as temperature changes or the presence of oxidative 

agents.289 RNAs and IDR-containing proteins contribute to the rapid formation of stress 

granules,215,290 and it is thought that stress granules protect certain mRNAs from 

degradation until the stress event recedes. A pair of related IDR-containing proteins are 

required for stress granule formation: G3BP1 and G3BP2.167,234,291 In addition, multiple 

PARPs localize to stress granules in PARP-expressing cells, including PARP5a, PARP12, 

PARP13, PARP14, and PARP15.16 PAR is also enriched within stress granules,34 although 

stress granule PARG enzymes may counteract some PARP activity.16 PAR chains readily 
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interact with many stress granule components, including G3BP1, hnRNPA1, TDP-43, and 

FUS (for a more extensive review on PAR in stress granules, we refer the reader to ref 292). 

Moreover, PAR production is stimulated by some of the same stresses that promote stress 

granule formation.34

Recent studies have suggested that PAR synthesis is required for the localization of IDR-

containing proteins to stress granules (Figure 9a). G3BP binding to PAR is necessary 

for stress granule formation under most conditions.102 The PBMs of the stress granule 

protein TDP-43 lie within its NLS.118 This finding indicates that TDP-43 localization 

may be differentially regulated by competition in binding to the NLS between PAR and 

nuclear-import receptors.118,293–296 In fact, interactions between PAR and TDP-43 are 

required to solubilize and effectively localize TDP-43 into stress granules;118,297 moreover, 

PAR binding to TDP-43 through its PBM antagonizes neurodegeneration-linked TDP-43 

aggregation.114,119,298 Likewise, hnRNPA1 localization to stress granules is promoted by 

PARylation and PAR binding of hnRNPA1, which also promote co-condensation with 

TDP-43.31 TIA-1 and other stress granule proteins are likely PARylation targets.16 FUS 

recruitment to stress granules is dependent on PARP5a-mediated PAR synthesis, and PAR 

likely interacts with the arginines in the RGG domains of FUS.24,34

However, one major question is the source of PAR that is localized in the stress granule. 

An obvious choice would be the stress granule-associated PARPs, especially the PARylating 

enzymes PARP5a and PARP5b, which also interact with TDP-43 via its tankyrase-binding 

motif in RRM1.297 Indeed, some recent evidence suggests that PARP5a/b inhibition 

destabilizes stress granules, as mentioned above,34,102,118,297 and PARP5a activity is 

sufficient for homotypic and heterotypic droplet formation in vitro.34 Yet other studies 

indicate that PARP1/2 inhibition prevents localization of IDR-containing proteins to stress 

granules,31,114 which is paradoxical given that PARP1/2 are nuclear in nearly all cases. It is 

also unclear what would activate PARP1, although certain stresses may trigger both DNA 

damage and one of the four eIF2α kinases, likely HRI.299

One hypothesis to explain this observation is that free PAR is produced by PARP1, which 

translocates to the cytoplasm through an unknown mechanism (we discuss this possibility 

in the section Free PAR Chains, above). Although there is some evidence to support 

the notion of free PAR chains, endogenous PARG activity likely degrades any exposed 

PAR chains nearly immediately. The basal degradation of PAR chains is supported by 

biochemical experiments often requiring PARG inhibition to isolate and detect PAR by 

Western blot.34 Another hypothesis is that nuclear stress granule proteins are PARylated by 

PARP1/2, exported to the cytoplasm, and incorporated into stress granules. Again, a major 

problem with this hypothesis is that PAR chains attached to proteins will also be targeted 

for degradation by PARG, which is observed in real-time dispersal of proteins to the DNA 

damage response machinery within minutes in cells.17,18

One possible explanation is that a PAR reader may shield another PARylated protein from 

PARG through oligomerization. For instance, a protein could be PARylated by PARP1 in the 

nucleus, and another protein could then bind to the attached PAR chain, preventing PARG 

from degrading the chain. Furthermore, if a protein is a PAR reader and a substrate for 
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PARylation, one could imagine that dimerization of the protein could lead to safe shuttling 

of the protein–PAR complex from the nucleus to the cytoplasm. However, evidence for such 

a mechanism is currently lacking.

Given the rapid nature of PAR synthesis and the transient nature of PAR chains in vivo, 

it is also plausible that poly(ADP-ribosylation) of proteins acts as a molecular trigger for 

stress granule formation in species that express PARPs and utilize PAR.8 PAR readers can 

rapidly assemble on newly synthesized PAR chains. The incorporation of RNA could be a 

downstream event in PAR-mediated stress granule assembly; recent evidence suggests that 

RNA can supplant PAR from preformed protein–PAR droplets.34 However, further studies 

are needed to determine exactly how PAR contributes to stress granule assembly.

4.6. Viral nSP3 Proteins Dissolve Stress Granules via Glycohydrolase Digestion of PAR

Stress granule dissolution is a hallmark of viral infection.300 The initial stages of viral 

infection promote stress granule assembly through a viral RNA-mediated signaling cascade: 

protein kinase R phosphorylates eIF2α,301–304 which stalls translation and releases mRNA 

from polysomes for stress granule formation (Figure 9b).305 Cessation of translation is a 

survival strategy initiated by the infected cell to inhibit the production of viral proteins. 

Later stages of infection cause the disassembly of stress granules, presumably bypassing the 

translational arrest imparted by stress granule formation.306–308 Importantly, recent studies 

demonstrate that stress granule dissolution is at least partially driven by PAR recognition and 

glycohydrolase activity embedded in viral nsP3 proteins.36,133,137–139,309–313

nsP3 genes are conserved, encoding multifunctional proteins that are essential for viral 

replication.314 Macro domains are a shared component among nsP3 proteins, enabling 

robust PAR reader activity.134 Weak PARG activity is also present within the Macro domain 

of some viral proteins.137,312,315 Indeed, a recent report demonstrated that this PARG 

activity serves a vital role in viral infection: the PAR glycohydrolase domain of nsP3 

proteins targets G3BP1 PARylation,309 and loss of G3BP1 ADP-ribosylation leads to stress 

granule disassembly (Figure 9c).102 Other studies have suggested that PARG activity within 

the SARS-CoV2 nsP3 protein reverses PARP9 activity,36 indicating a potential therapeutic 

avenue. PARP9 has also been shown to oligomerize the E3 ubiquitin ligase DTX3L.316 

The regulation of stress granules via the catalysis of poly(ADP-ribosylation) on G3BP1 

highlights the relevance of PAR in maintaining the structure of phase-separated stress 

granules.

4.7. PAR Chains Arrest Golgi Processing of Proteins by Sequestering PARP12 in Stress 
Granules

In a concomitant pathway with nsP3-mediated dissolution of stress granules, infected cells 

are attempting to shut down translation.300 A recent study highlighted a separate PAR-

dependent mechanism that affects PARP12,37 a Golgi-associated MARylating PARP.52,62 

The WWE domain of PARP12 recognizes PAR produced during the viral infection;37 

this PAR reader activity drives the localization of PARP12 from the Golgi to the stress 

granule (Figure 9b).37,317,318 The Golgi complex simultaneously loses its canonical ribbon 

morphology, and posttranslational processing of proteins is halted.37 It is possible that 
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PARG activity by nsP3 proteins during viral infection reverses incorporation of PARP12 

into stress granules, countermanding the cell’s attempt to arrest translation. However, this 

hypothesis has not been tested.

4.8. Osmotic Pressure Sensing Requires Basal PAR to Maintain Liquid-Like Condensates

Yet another stress response appears to depend on PAR: osmotic pressure sensing.319 The 

apoptosis-related protein ASK3 is reversibly phosphorylated when cells are exposed to 

osmotic stress.320 At the same time, ASK3 condenses into liquid-like droplets.319 Unlike 

other biological processes discussed, PAR is not required to form the condensates; instead, 

basal PAR levels appear to be required to maintain the liquid-like properties of the ASK3 

condensates in vitro and in vivo.319 Mutations of ASK3′s PBM or degradation of PAR 

by PARG leads to the formation of solid-like condensates that cannot be resolved through 

ASK3 phosphorylation,319 indicating that the presence of PAR may help facilitate the 

enzymatic phosphorylation of ASK3 in condensates.

4.9. PARP5a Phase Separation May Impact Cytoskeletal Polymerization

The PARP enzymes may also undergo PS, especially PARP5a/b and their ankyrin repeats.62 

Indeed, recent evidence suggests that PARP5a undergoes PAR-independent condensation,34 

although PAR may enhance the degree of PS. In cells, PS of PARP5a/b may enable 

actin cytoskeletal branching by competing with Arp2/3 for binding to Arpin,321 which 

antagonizes Arp2/3-mediated branching.322,323 Indeed, PARP5a localizes to the mitotic 

spindle and is required for proper cytoskeletal polymerization during mitosis.62,324–326 

PARP5a is also required for the separation of telomeres during mitosis.326,327 Given recent 

reports that PS occurs at telomeres, PARP5a activity may regulate the condensation at 

telomeres through PARylation.328,329 A direct link between PARP5a-dependent PARylation, 

PS of PARP5a, and regulation of cytoskeletal activity has not yet been made.

5. ACCUMULATION OF POLY(ADP-RIBOSE) IN NEURODEGENERATIVE 

PATHOLOGIES

Dysregulation of PARPs or accumulation of PAR chains can have profoundly negative 

consequences for neurons. Hyperactive PARP1 may help cells overcome copious DNA 

damage sites, but this increased activity can drive error-prone repair, trigger cell death 

pathways, or possibly contribute to deleterious phase transitions of IDR-containing proteins. 

The role of PAR in cancer is well documented, and we refer the reader to recent reviews 

for more on this subject (refs 330, 331). Here, we will focus on how PARylation may 

lead to neurodegeneration by coarsening phase-separated condensates or mislocalizing IDR-

containing proteins (we also refer the reader to a recent review on this subject, ref 332).

Abnormal expression of PAR metabolic enzymes is linked with a variety of rare 

neurological disorders. Recessive Mendelian mutations in the glycohydrolases ARH3 

and TARG1 are associated with early onset neurodegeneration.51,333 Single nucleotide 

polymorphisms at the MacroD2 glycohydrolase locus have also been identified in epilepsy, 

autism, multiple sclerosis, and schizophrenia.334–338 Given that these mutations target 

PAR-degrading enzymes, it is likely that the accumulation of PAR chains is inherently 
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neurotoxic. This notion is further supported by a recent report linking hyperactivation of 

PARP1/2 to aggregation of thousands of proteins, causing the neurodegenerative disorder 

ataxia-telangiectasia.339 PARylation is of course not entirely deleterious. PAR is required for 

proper development: PARP1/2−/− mice embryos die during gastrulation, and PARP5a/b−/− 

mice embryos die prior to formation of the blastocyst.63,340 Therefore, the moderate 

expression level maintained by careful regulation of PARP and PARG activity is essential for 

healthy development and cellular homeostasis.

In neurodegeneration, the accumulation of PAR has been linked with Parkinson’s disease, 

Amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD), and Alzheimer’s 

disease. Importantly, aberrant phase transitions are detected in each of these diseases: α-

synuclein in Parkinson’s disease,341 RNA-binding proteins with PrLDs, including TDP-43, 

FUS, hnRNPA1, hnRNPA2, TAF15, EWSR1, and TIA1 in ALS/FTD,18,120,342–346 and 

tau in FTD and Alzheimer’s disease.347 Dysregulation of the DNA damage response 

and apoptosis are also associated with neurodegeneration, and PAR is essential for these 

biological processes. In this section, we will review the clinical and primary research 

concerning the role of PAR in each of these diseases, especially in the context of the 

condensation of proteins.

5.1. Premature Cell Death Is Driven by PAR Accumulation in Parkinson’s Disease

Parkinson’s disease is driven by the pathological accumulation of misfolded α-

synuclein.348,349 The exact mechanism of Parkinson’s disease progression is debated, but 

it is likely a confluence of α-synuclein aggregation, prion-like transmission of α-synuclein 

aggregates, and activation of cell death pathways.350 Recent studies have indicated that PS 

of α-synuclein can seed Parkinson’s-associated aggregates,341 and it is certainly plausible 

that PAR chains contribute to this PS event. However, the strongest evidence for a role 

of PARylation in Parkinson’s disease involves its contribution to the cell death pathway 

parthanatos.

Parthanatos is triggered by high concentrations of free PAR, which is highly cytotoxic.112 

Higher concentrations of longer PAR chains are especially damaging.112 PAR initiates 

cell death through a caspase-independent mechanism.112 Instead, free PAR induces the 

translocation of apoptosis inducing factor (AIF) from the mitochondria to the nucleus, where 

it shears DNA and triggers cell death.113,351 Depletion of NAD+ levels by hyperactive 

PARP1 also likely drive AIF recruitment to the nucleus.

In Parkinson’s disease, α-synuclein aggregation and PARP1 activity promote each other, 

eventually driving parthanatos activation. It is thought that overactivation of PARP1 through 

DNA damage may initiate extensive PARylation.352 PAR chains can then induce aggregation 

of α-synuclein.352 Importantly, α-synuclein fibrils drive PARP1 activity in a devastating 

feedback loop, which triggers parthanatos and causes cell death of dopaminergic neurons 

in mice.352,353 Moreover, transfection of human neuronal cells in culture with purified 

PAR chains elicits formation of toxic, cytoplasmic α-synuclein inclusions.354 Therefore, 

deleterious phase transitions of α-synuclein, possibly through aberrant PAR-mediated PS, 

increases PARP1 activity, which eventually induces cell death through the parthanatos 

pathway, leading to a Parkinson’s-like pathological phenotype.
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Elevated PAR levels were found in the cerebrospinal fluid of Parkinson’s patients,352 

indicating that this PAR-mediated mechanism is a plausible course of the disease in 

humans. Small-molecule inhibitors of PARP1 activity have shown promising results in 

cell models.354 It may also be plausible to supplement cells with NAD+, which appears 

to inhibit translocation of AIF and activation of the parthanatos cell death pathway.355,356 

Other approaches may limit PAR-mediated PS of α-synuclein, which is one of the most 

upstream components of the pathway.

5.2. Elevated PAR Levels Are Linked with Alzheimer’s Disease

The exact cause of Alzheimer’s disease is still unclear, but it is thought that amyloid-β 
peptides elicit tau tangles, which lead to the aggressive form of dementia observed in 

patients.357 Amyloid-β fibers are required to transform tau protein into a neurotoxic 

state.358,359 Tau is required for Alzheimer’s pathology because amyloid-β toxicity alone 

is not sufficient for the dementia-like outcomes in mouse models.360 Moreover, the toxicity 

of tau protein may arise from PS-mediated phase transitions.361

A clear mechanism between increased PAR activity and Alzheimer’s disease is lacking, but 

evidence suggests that PAR may promote amyloid-β toxicity in a similar manner as it does 

with α-synuclein in Parkinson’s disease. Increased PAR levels and PARP1 activity were 

observed in Alzheimer’s patients.362–364 Moreover, loss of PARP1 appears to ameliorate 

some of the canonical Alzheimer’s phenotypes in mice.365 Treatment with PARP1 inhibitors 

has a similarly protective effect on amyloid-β toxicity.366–368 The inflammatory response or 

mitochondrial defects may be associated with PARP1 activity.369,370 However, the exact link 

between how PAR chains may directly interact with tau and amyloid-β during aggregation 

or if the parthanatos pathway is directly involved in Alzheimer’s disease remains to be 

tested.

5.3. PAR-Mediated Phase Separation of ALS/FTLD-Linked Proteins May Drive Disease 
Progression

Perhaps the clearest link between PAR-mediated PS and neurodegeneration is in ALS/

FTD. Mutations in several RNA-binding proteins with PrLDs and expansions of repetitive 

RNA are linked with the formation of neurotoxic aggregates in patients.371 ALS and 

FTD exist on a pathological spectrum; some patients display symptoms of both diseases, 

whereas other cases more closely align with only one of the diseases. The proteins that 

are linked with ALS/FTD, TDP43, FUS, hnRNPA1, and others, participate in biological 

processes that rely on PAR-mediated PS, especially the DNA damage response and stress 

granule formation.332 Poly(ADP-ribose) chains promote in vitro PS of FUS, TDP-43, and 

hnRNPA1.17,18,31,34,118,119

PARylation may play both neuroprotective and neurotoxic roles in ALS/FTLD. For TDP-43, 

PAR-driven PS is initially protective, as it helps TDP-43 retain a liquid-like status in stress 

granules.118 PARP5a activity is also required for FUS localization to stress granules.34 

Importantly, stress granules are distinct from the disease-associated aggregates formed by 

TDP-43 and FUS in ALS/FTD disease models.118,346,372,373 Therefore, initial association 

with PAR may help solubilize ALS/FTD-linked proteins.
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However, sustained incubation with PAR has a negative effect on ALS/FTD-linked proteins. 

Previous studies have noted that liquid-like granules may transition to solid- or gel-like 

material states through aging or percolation.172,189,374,375 EWSR1, FUS, and TAF15 all 

transition to solid-like aggregates after prolonged interactions with PAR chains.17 High 

concentrations of long PAR chains promote aggregation of FUS, and PAR can help disease-

associated FUS mutations mature into gel-like condensates.34 In the context of C9ORF72-

related ALS/FTLD, PAR directly binds to arginine-rich dipeptide repeats (R-DPRs), which 

in turn increases their deleterious interactions with other RNA-binding proteins, including 

TDP-43. In fact, PAR increases poly(GR)-induced TDP-43 aggregation, contributing to the 

overall toxicity.162,376 Consistent with the notion of PAR’s neurotoxic effect, inhibitors of 

PARP1 or PARP5a activity appear to not only prevent TDP-43 aggregation and toxicity but 

also suppress R-DPR toxicity.114,119,162,297,377

As discussed above in section Stress Granules Are Nucleated by PAR Readers and PAR 

Chains, the source of neurotoxic PAR in ALS/FTLD is unclear. It is possible that, like in 

Parkinson’s disease, PARP1 activity initiates the parthanatos pathway, driving cell death. 

Indeed, FUS and other ALS/FTLD-linked proteins are required for prompt resolution of 

DNA damage and cessation of PAR synthesis by PARP1.17,266 In ALS/FTD, the parthanatos 

response may be driven by the sustained activity of PARP1, consuming NAD+ and activating 

AIF.263 PARP5a/b may simultaneously supply cytoplasmic PAR for oligomerization of 

ALS/FTD-linked proteins, suggesting that both PARP1 and PARP5a/b inhibition will be 

effective in ALS/FTD.332

It is important to note that FDA-approved PARP1 inhibitors are not ideal as therapeutics 

for ALS/FTD or other neurodegenerative disorders. First, FDA-approved PARP1 inhibitors 

are not brain-penetrant, which may limit their efficacy in ALS/FTD; and second, they are 

designed to kill cancer cells by trapping PARPs on DNA, which leads to cytotoxicity.378 

For applications to ALS/FTD, these properties are undesirable, and instead we seek brain-

penetrant PARP1 inhibitors with minimal cytotoxicity. There is also concern that inhibiting 

DNA repair pathways via PARP1 inhibition in ALS/FTD patients may also be detrimental. 

Thus, it may be beneficial to focus on brain-penetrant PARP5a/b inhibitors for ALS/FTD, 

which can effectively mitigate TDP-43 neurotoxicity297 and would not impair DNA repair 

pathways.

6. NEW METHODS TO STUDY THE ROLE OF PAR IN PHASE SEPARATION

An emerging theme from the literature explored in this review is that PARylation is a unique 

promoter and regulator of PS, especially in the context of the stress response and at DNA 

damage foci. In vitro experiments demonstrate that purified PAR chains directly promote 

PS through protein–PAR interactions,18,34,118 and biochemical studies further show that 

many PS-prone proteins accept PARylation modifications.31 In cells, PARylation activity 

of PARP1/2 and PARP5a/b, which synthesize the nuclear and cytoplasmic PAR chains in 

the cell, are required for PS at DNA damage foci and at stress granules, respectively.17,297 

The assembly of these granules appears to be temporally coordinated with PARP activation, 

indicating that PAR may act as a seed for PS.18
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However, the exact role of PARylation in many of these processes is unclear. There 

are several major questions that the field needs to address: (1) What is the molecular 

mechanism of how PAR promotes PS in cells, especially which proteins are accepting 

PARylation modifications and which proteins are recruited by these PAR chains? (2) What 

exactly is the role of PARP1 in regulating cytoplasmic PAR PS processes, and is PAR 

a messenger to direct cytoplasmic PS in response to DNA damage stress? (3) What is 

the functional relevance of PAR-mediated PS, and does this PS serve a protective role in 

stressed conditions for the cell? (4) Are PARPs or PAR chains a therapeutic target for 

neurodegenerative diseases caused by pathological aggregation of PS-prone proteins?

One major challenge to study the role of PARylation in PS and neurodegeneration is the lack 

of commercially available tools to monitor, synthesize, and manipulate PAR chains. Unlike 

DNA and RNA, PAR chains of discrete lengths or with specific chemical modifications are 

not available for purchase from commercial sources. It is also difficult to track or target PAR 

in cells. These technical challenges preclude efficient and rigorous studies on PAR-mediated 

PS. Fortunately, recent advances in PAR technology are poised to help researchers overcome 

many of the obstacles that have impeded PAR-mediated PS research to date. In this section, 

we review exciting new PAR tools, which are summarized in Table 3.

For in vitro studies, commercially available PAR products currently consist of a mix of 

“long” (80–200-mer), unmodified PAR chains. However, several recent studies demonstrate 

that PAR chains of discrete lengths can be purified and then modified for biochemical and 

biophysical studies. To isolate PAR chains, the catalytic domain of PARP5a is purified and 

combined with NAD+ to generate large amounts of PAR chains. After dissociating PAR 

from the catalytic domain with 1 M KOH, PAR chains of distinct lengths are isolated via 

high-performance liquid chromatography.379 PAR chains can be further modified using 

copper-catalyzed alkyne–azide cycloaddition to azide-modified polymers or enzymatic 

labeling of the terminal ADP-ribose (ELTA) with the protein OAS1.34,380 Because PARP5a 

generates linear PAR chains, these methods enable more detailed studies of cytoplasmic 

PAR.

One major challenge is to generate discrete versions of branched PAR, which is synthesized 

by PARP1.26 A recent study demonstrated that point mutations in PARP1 alter the extent 

of PAR branching,60 but this finding has not yet been leveraged to create branched PAR 

chains with the desired branching in a reproducible manner. Such a technology would enable 

biophysical and mechanistic interrogation of PARP1-mediated PS at the DNA damage site.

In PAR-mediated PS, there are proteins that accept PAR chains as modifications (hubs) and 

proteins that recognize PAR chains (readers) (Figure 3). Recent advances have furthered 

our understanding of which proteins inhabit each group. To identify PAR readers, a 

recent report created PAR photoaffinity probes called PARprolink by using the ELTA 

technology.156 The PARprolink system enabled the robust pulldown and identification of 

PAR binding proteins in cells. PARprolink was added to HeLa nuclear extract in this 

study, but it would be more physiologically relevant to introduce the PARprolink probe 

into living cells. Combined with mass spectrometer studies that identify PARylated amino 

acids on proteins,74,93,97,101,115,136,382,388 these two techniques can identify the PAR hubs 
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and readers. The main experimental challenge will be matching and mapping the hubs and 

readers in a robust and reproducible way, especially because there is still uncertainty about 

which amino acids truly accept PARylation modifications.

The difficulties in studying PAR also extend to visualization of PAR in cells. Although there 

are several commercially available antibodies for detection of PAR, there is wide variability 

in the efficacy and reproducibility of the antibodies, and they tend to recognize PAR much 

more efficiently than MAR. A recent report created an antibody-like protein fusion that 

identifies PAR chains for a variety of biochemical applications.383 Moreover, several groups 

are advancing technologies to track PAR in live cells.384–390 The recently reported PAR 

Tracker uses an oligomerization-dependent split nano luciferase with PAR-reading WWE 

domains to allow live tracking of PAR chains, which can also detect changes in PARylation 

levels in response to DNA damage and other stimuli.384 Other versions of PAR-Ts can also 

be used to recognize certain types of PAR chains. Importantly, PAR Tracker could be used 

to identify whether PARylation is accumulated at cellular granules like stress granules and 

DNA damage foci. Clickable PAR probes have also been used to visualize PAR chains in 

cells.385–387

One important strength of the technologies to study PAR is the many enzymatic inhibitors 

available for PARP1, PARP5a/b, and PARG. A variety of potent small molecules have been 

developed that reliably inhibit these proteins, and the PARG inhibitor in particular is quite 

important for halting PAR degradation in cellular lysates while performing biochemical 

assays.34,156 This is a unique asset in studying PAR-mediated PS, as it is difficult to inhibit 

other PS implicated posttranslational modifications in a similar manner.

7. CONCLUSIONS AND FUTURE DIRECTIONS

PARylation is emerging as a mechanism through which the cell can organize the response to 

various cellular stimuli, including DNA damage, oxidative stress, viral infection, osmotic 

pressure changes, and others. Synthesis of PAR chains allows the rapid assembly of 

IDR-containing PAR readers into phase-separated granules. By targeting certain proteins 

for PARylation, including PARPs and the stress granule protein G3BP1, the cell can 

nucleate a new granule within minutes. Importantly, the control of PAR concentration 

in cells through basal PARG expression allows the equally quick dissolution of granules 

once the stimulus has passed or resolved. Dysregulation of PAR levels is linked with a 

variety of neurodegenerative disorders that are thought to be caused by aberrant protein 

oligomerization, indicating that clinical intervention that corrects PAR levels may be 

effective.

Moving forward, the field should make use of new advances in PAR biology and 

biochemistry to further interrogate the mechanisms underlying PAR-mediated PS. Once 

the PAR biology toolkit is more widely available to the research community, more in-depth 

experiments of PAR in PS will be possible. In the context of ALS/FTD, it would be 

of interest to explore the effects of PAR length and PAR branching on TDP-43 PS and 

aggregation. While PARP inhibitors are promising potential therapeutics, there is a plethora 

of essential roles for PAR in cellular physiology. A better understanding of PAR-mediated 
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TDP-43 condensation will therefore allow us to design more specific targeted therapies to 

combat neuro-degeneration.
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DSB double-stranded break

FET FUS/EWSR1/TAF15

FTLD frontotemporal lobar dementia

HR homologous recombination

IDR intrinsically disordered region

MAR mono(ADP-ribose)

NAD+ nicotinamide adenine dinucleotide

NHEJ nonhomologous end joining

PAR poly(ADP-ribose)

PARG poly(ADP-ribose) glycohydrolase

PARP poly(ADP-ribose) polymerase

PBM poly(ADP-ribose) binding motif

PBZ poly(ADP-ribose) binding zinc finger

PS phase separation

RGG arginine–glycine–glycine

RNP ribonucleoprotein

SG stress granule
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Figure 1. 
The PAR cycle. Target proteins are mono- and poly-(ADP-ribosylated) (MARylated and 

PARylated, respectively) with nicotinamide adenine dinucleotide (NAD+). All PARPs 

except PARP13 can MARylate targets, but only PARP 1/2/5a/5b can PARylate proteins. 

PARP1/2 are the only PARPs with reported branching activity. Proteins are dePARylated 

and deMARylated by PAR glycohydrolase (PARG) and PARG-like enzymes, releasing free 

ADP-ribose. The protein ribbon structure in this figure is the catalytic domain of PARP1 

(PDB 7KK2).39

Rhine et al. Page 49

Chem Rev. Author manuscript; available in PMC 2024 January 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
H–Y–E triad of PARP1. The PARP1 ribbon structure is in light blue, H–Y–E residues are 

red line structures, and the NAD+ analogue is a yellow line structure. The PDB structure is 

6BHV.245
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Figure 3. 
Covalent and noncovalent PAR interactions. Proteins can accept PAR modifications 

(covalent binding, i.e., PARylation) or interact with PAR chains (noncovalent binding of 

PAR readers). The dashed line denotes a noncovalent PAR reader interaction.
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Figure 4. 
A model for the production of PAR chains. In theory, PARG or TARG1 endoglycosidic 

cleavage of a covalently attached PAR chain may release free PAR with which other proteins 

may interact.
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Figure 5. 
PAR-reader recognition sites. The WWE domain recognizes the iso-ADP-ribose linkage, 

the PBZ domains recognizes a pair of ADP-riboses, and the Macro domain recognizes 

the terminal ADP-ribose. Other domains (e.g., PBM and RGG repeats) may recognize the 

negatively charged phosphate backbone.
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Figure 6. 
The role of PAR in biological PS. (a) PARylation mediates the assembly of stress granule 

proteins FUS, TDP-43, G3BP1, and hnRNPA1. (b) Free PAR signals the release of AIF, 

which causes cell death in Parkinson’s disease and other neurodegenerative pathologies. (c) 

PAR binding directs the translocation of Golgi-associated PARP12 to the stress granule, 

inhibiting Golgi function. (d) PAR chains synthesized by PARP1 initiate PS of DNA damage 

response proteins, including FUS, TAF15, NONO, EWSR1, and USP39. (e) PARG activity 

encoded in viral nsP3 proteins causes dissolution of stress granules in response to viral 

infection. (f) ASK3-PAR condensates respond to osmotic stress, and PAR is required for the 

liquid-like properties of ASK3 granules. PAR chains are pink linear or branched rods.
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Figure 7. 
The PAR-driven PS model of the DNA damage response. Recognition of double-stranded 

breaks by PARP1 stimulates PAR synthesis. FET family proteins (FUS, TAF15, EWSR1) 

and possibly USP39 are simultaneously recruited to the DNA damage site by new PAR 

chains, driving PS at the DNA damage site. After resolution of the DNA damage, 

EWSR1 and possibly FUS help eject PARP1 from the repaired DNA and dissolve the 

phase-separated granule. Branched pink rods are PAR chains.
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Figure 8. 
Control of PS by PARylation at transcriptional DNA damage sites. If a double-stranded 

break is recognized near a transcriptional focus, PARP1 recruitment will antagonize 

transcription by PARylating P-TEFb. This action dissolves P-TEFb condensates, which stops 

phosphorylation of RNAP II and thus transcription. Meanwhile, a DNA damage condensate 

likely forms until the break is repaired. Pink rods are PAR chains.
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Figure 9. 
PAR drives stress granule (SG) assembly. (a) PARylation of PARPs and other proteins 

(G3BP1 and hnRNPA1) promotes SG assembly with other proteins like FUS and TDP-43. 

Free PAR released from PARP1 may also contribute to SG formation. (b) Viral infection 

leads to simultaneous PAR production and eIF2α phosphorylation by protein kinase R, 

leading to Golgi arrest and SG assembly, respectively. (c) Production of viral nsP3 proteins 

with PARG domains degrades SGs through loss of PAR. Pink rods are PAR chains.
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Table 1.

PARP Family in Humans

PARP
other
names catalytic activity implicated in PS?

a

PARP1 PARP,
ARTD1

PARylation (+ branching) DNA damage foci,17 stress granules,31 transcriptional
loci32

PARP2 ARTD2 PARylation (+ branching) DNA damage foci?33

PARP3 ARTD3 MARylation

PARP4 vPARP,
ARTD4

MARylation

PARP5a TNKS1,
ARTD5

PARylation stress granules16,34

PARP5b TNKS2,
ARTD6

PARylation stress granules?34

PARP6 ARTD17 MARylation

PARP7 tiPARP,
ARTD14

MARylation unidentified nuclear granule35

PARP8 ARTD16 MARylation

PARP9 BAL1,
ARTD9

MARylation stress granules (viral response)36

PARP10 ARTD10 MARylation

PARP11 ARTD11 MARylation

PARP12 ARTD12 MARylation stress granules16,37

PARP13 ZAP,
ARTD13

stress granules16,38

PARP14 BAL2,
ARTD8

MARylation stress granules?16

PARP15 BAL3,
ARTD7

MARylation stress granules?16

PARP16 ARTD15 MARylation

a
PARP2 has not been directly implicated in the DNA damage foci PS, but it is required for proper PARP1 activity. PARP14 and PARP15 are both 

stress granule proteins, but it is unclear what, if any, function they might have in forming, regulating, or disassembling stress granules.
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Table 2.

PARG Family in Humans

PARG substrate catalytic activity amino acid selectivity

PARC
a PAR partial

TARG1 MAR/PAR complete D/E

MacroDl MAR complete D/E

MacroD2 MAR complete D/E

ARH1 MAR complete R

ARH3 MAR/PAR complete S

ENPP1 MAR/PAR partial

NUDT9 PAR partial

NUDT16 MAR/PAR partial

a
PARG has an alternatively spliced isoform that is primarily cytoplasmic.
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Table 3.

New PAR Technologies to Study Phase Separation

method description ref

HPLC fractionation of 
synthesized PAR

PAR is synthesized in vitro by the catalytic domain of PARP5a, released with a strong 
base, and fractionated into discrete lengths by high-performance liquid chromatography

379

enzymatic labeling of 
the terminal ADP-ribose 
(ELTA)

The protein OAS1 and dATP analogues (e.g., fused to a fluorophore or affinity tag) are 
used to label the terminal end of the synthetic PAR chain

380

PARprolink photoaffinity probe is attached to a synthetic PAR chain using ELTA to enable cross-
linking and pulldown of PAR binding proteins in cell lysate

156

controlling PARP1 
branching with active site 
mutations

site-directed mutagenesis of PARP1 to bias PAR chain synthesis toward short/
hypobranched PAR (G972R), short/hyperbranched (Y986S), and long/hyperbranched 
(Y986H)

60

Click-ChIP-Seq clickable NAD+ analogue is used with an analogue-sensitive PARP to synthesize PAR 
chains that can be cross-linked, immunoprecipitated, and sequenced

279,381

mass spectrometry of 
PARylated peptides

there are several approaches to isolate and fragment PARylated peptides, which can lead 
to biases toward which residues appear to be PARylated

74,76,101,115,136,382

chimeric PAR antibodies PAR recognizing domains are fused to the Fc domain of rabbit antibodies to better 
recognize PAR chains

383

PAR tracker PAR-binding WWE domain is fused to each half of a split nano luciferase to enable live 
cell tracking of PAR chains

384

AO-alkyne probes PAR-binding probe recognizes cellular PAR and contains an alkyne handle for click 
chemistry with a reporter

385–387
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