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Abstract

Socioeconomic status (SES) is associated with children’s brain and behavioral development
Several theories propose that early experiences of adversity or low-SES can alter the pace

of neurodevelopment during childhood and adolescence. These theories make contrasting
predictions about whether adverse experiences and/or low-SES are associated with accelerated

or delayed neurodevelopment We contextualize these predictions within the context of normative
development of cortical and subcortical structure and review existing evidence on SES and
structural brain development to adjudicate between competing hypotheses. Although none of these
theories are fully consistent with observed SES-related differences in brain development, existing
evidence suggests that low-SES is associated with brain structure trajectories more consistent with
a delayed or simply different developmental pattern than an acceleration in neurodevelopment.
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SES, adversity, and the pace of neurodevelopment

Adverse childhood experiences and access to resources in childhood, as measured

by socioeconomic status (SES), have been consistently linked to children’s
neurodevelopment[1-5]. Recent theories have proposed that experiencing adversity or low-
SES early in life may alter the pace of neurodevelopment[6-9]. While most of these models
focus on adversity broadly[6-8], they have been expanded to include SES[9], given that SES
likely impacts neurodevelopment via similar pathways[5,9,10] (although note that adversity
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and low-SES are related but not interchangeable constructs, see Box 1). Importantly, these
theories make contrasting predictions about whether adverse environmental experiences are
associated with an acceleration or delay in the pace of neurodevelopment While some
models propose that adversity and/or low-SES may lead to an acceleration in the pace of
brain maturation, another recent model argues that delayed development is also a possibility.
Empirically testing these predictions has been challenging as a clear articulation of specific
evidence that would align with either acceleration or delay has not been provided. Further,
most studies have relied on cross-sectional designs that cannot be leveraged to investigate
these questions.

To adjudicate between these competing hypotheses, we first contextualize theoretical
predictions within the context of normative structural neurodevelopment during infancy,
childhood, and adolescence. We then review extant evidence from longitudinal studies to
ascertain whether low-SES is associated with an accelerated, delayed, or a simply different
trajectory of neurodevelopment We find that while none of these theories completely explain
observed SES-related differences in structural neurodevelopment, current evidence indicates
that low-SES is linked to brain structure trajectories that are more in line with a delayed

or simply distinct developmental pattern rather than an acceleration in neurodevelopment.
We suggest that low-SES may be associated with a distinct pattern of brain maturation that
is less about the timing of the attainment of milestones (i.e., acceleration or delay) but the
milestones themselves.

Evolutionary Development Theories

Theoretical models of how early experience might alter the pace of development are rooted
in evolutionary developmental frameworks, which suggest that alterations in the pace of
development may help children adapt to harsh and unpredictable environments[11-16].
These frameworks posit that evolution selected for enhanced plasticity during development
such that early experiences could shape the pace of development to allow an individual to
adapt to the demands of their current and future environment[15-17]. Resource-allocation
trade-offs between growth, reproduction, and survival determine the pattern and timing

of /ife history traits, including age of sexual maturation and reproduction, number of
children, and investment in parenting. For example, in a harsh or threatening environment,
faster development that results in earlier pubertal onset may be advantageous to maximize
chances of reproduction prior to potential mortality[16,17]. In contrast, a slower and
protracted developmental strategy may be adaptive in a safe and enriching environment
with high parental investment[14]. The idea that early-life experiences may alter the pace
of development has influenced developmental cognitive neuroscience, where it has been
theorized that adversity is associated not only with the pace of pubertal development, but
also with the pace of brain development

Neurodevelopmental frameworks

Numerous theoretical models make predictions about how early-life adversity and low-SES
may influence the pace of neurodevelopment The Stress Acceleration Hypothesis (SAH)
posits that adverse early-life experiences accelerate neurodevelopmental processes to reach
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‘adult-like” functioning earlier, specifically in brain circuits involved in emotion processing
and regulation[6]. This model stipulates that early environments characterized by high levels
of stress activate neural circuits underlying emotional learning and reactivity prematurely,
accelerating the development of amygdala and medial prefrontal cortex (mPFC) functional
connectivity. This acceleration of amygdala-mPFC circuit development is thought to be
adaptive to allow for a faster transition from reliance on parents for emotion regulation

to self-regulation[6]. The SAH focuses specifically on experiences of stress in caregiver-
child relationships. Children from low-SES backgrounds are more likely to experience
many forms of caregiving stress than their higher-SES peers, including parental separation,
harsh parenting, family conflict, and low parental warmth and support[10,18-20]. Further,
while the SAH refers specifically to caregiver-adversity and the acceleration of amygdala-
mPFC circuit development, numerous studies have evaluated whether brain development

is accelerated among children experiencing other types of adversity as well as low-SES[21—
24].

A recent model extends the ideas of the SAH and applies them directly to SES, describing
the types of experiences that may lead to accelerated neurodevelopment based on the
valence and frequency of early experiences[9]. This model hypothesizes that negative

and chronic childhood experiences, such as low-SES, are associated with faster brain
development and reduced plasticity, while negative but uncommon experiences such as acute
trauma are not[9]. This model posits that higher-SES is linked to a prolonged trajectory of
neurodevelopment and enhanced plasticity that facilitates a longer trajectory of functional
network segregation, ultimately resulting in more effective and refined neural circuits.
Empirical studies testing these predictions are currently lacking.

Other theoretical models rooted in the Dimensional Model of Adversity[17,25-27], which
distills adverse experiences into core underlying dimensions such as threat, deprivation,
and unpredictability (see Box 1), make predictions about whether adversity is associated
with accelerated or delayed development based on the dimension of adversity experienced.
In the original dimensional model, reductions in social, cognitive, sensory, and linguistic
stimulation associated with deprivation are argued to lead to excessive and exaggerated
synaptic pruning, which leads to greater cortical thinning[7], a pattern typically interpreted
to reflect accelerated cortical development More recent elaborations of these models,
however, note that it is unclear whether a thinner cortex reflects acceleration or delay

in neurodevelopment[15]. Rooted in the same conceptual framework, Colich et al.[24]
hypothesized that threat, but not deprivation, would be associated with an acceleration

in the pace of neurodevelopment specifically in cortical regions involved in social and
emotional processing[24] that feature prominently in the SAH. It is therefore unclear
whether SES should be associated with an acceleration or delay of neurodevelopment per
these dimensional models.

Although most models predict acceleration of brain development as a function of adverse
experiences, the recent “change of pace” model[8] considers both acceleration and delay
in development This model suggests that the type of adversity encountered determines
whether biological maturation is accelerated or delayed and that changes in the rate of
development occur to eliminate gaps in parental caregiving. While the ‘change of pace’
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model focuses on the parent-child dyad, we have extended it to apply to low-SES in

our review given the strong links between SES and parenting behaviors[28]. The model
purports that delaying maturation lowers children’s physiological requirements when there
are unmet physiological needs in situations of deprivation, such as inadequate nutrition

or parental care. In the event of threat or abuse, children may have unmet safety needs,
and accelerated development may boost children’s ability to provide for their own safety.
The model also predicts that the aforementioned acceleration is time-limited and may
switch to slower or delayed development after puberty. Low-SES is characterized by
higher levels of material deprivation, such as food insecurity and reduced access to other
basic necessities[29,30]. Given this, the change of pace model is consistent with the idea
that SES might be associated with slower neurodevelopment Indeed, some longitudinal
studies report that low-SES is associated slower neurodevelopmental trajectories[e.g., 31].
However, low-SES is also associated with greater exposure to community violence and other
forms of threat[10,20], which are argued to accelerate neurodevelopment in this model. It
is therefore unclear whether SES should be associated with an acceleration or delay of
neurodevelopment per this model. Empirical studies directly testing the predictions of the
change of pace model are currently lacking.

Evaluating the validity of these frameworks has been challenging as concrete predictions
about what evidence would be aligned with acceleration or delay have not been articulated
clearly. More problematic, most studies use data from cross-sectional designs to make
inferences about accelerated versus delayed patterns of brain development[9,23,24].
Longitudinal research is needed to test how adversity and SES are associated with deviations
from typical developmental trajectories, yet such studies remain rare.

Theoretical predictions within the context of normative development

In the following sections, we ground the predictions of each theoretical model in the context
of normative patterns of gray matter development, highlight the types of evidence needed

to adjudicate among competing hypotheses, and review empirical studies on SES and brain
structure to ascertain which framework is best aligned with the evidence. We focus on
low-SES and gray matter structure as longitudinal studies of other forms of adversity and
other metrics of brain structure are limited[2] and typical patterns of cortical and subcortical
development have been relatively well characterized[32-38].

Normative development

To investigate whether empirical evidence is aligned with theoretical predictions, we must
contextualize these predictions within normative developmental trajectories. The brain
undergoes protracted gray matter development throughout childhood and adolescence
characterized by changes in cortical thickness, surface area, volume, and subcortical
volume[37]. Cortical thickness increases during the first two years of life, with more

rapid increases in the first relative to the second year peaking somewhere between 12-24
months[37]. Thickness then decreases rapidly in early childhood and is followed by
monotonic thinning from childhood to adolescence[32—36]. Cortical volume increases in the
first two years of life[39] followed by a more gradual increase in volume during childhood
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peaking around 10 years of age[40], and non-linear decreases throughout adolescence,

with varying rates of decreases across regions[36,41]. In contrast, cortical surface area
greatly expands in the first years of life[42], continues to expand throughout childhood,
peaking in late childhood or early adolescence, and then undergoes subtle decreases
thereafter[32,34-36,43]. Finally, the volume of subcortical regions such as the amygdala
and hippocampus increases throughout childhood and early adolescence, plateaus in middle
to late adolescence, and decreases thereafter[40,44—-47]. It is important to acknowledge
however that these are average trajectories and that there is substantial individual variability
in the magnitude and timing of the peak as well as in rates of change[48].

Theoretical predictions

Overall, models largely predict accelerated development as a function of adversity and low-
SES, with the exception of one model that also considers the idea of delayed development.
If the pace of brain development was accelerated[6,7,9] or delayed[8], we would expect to
see a temporally shifted pattern of brain development That is, individuals with accelerated
or delayed brain development would hit the same normative developmental milestones, but
earlier or later, respectively. Below we briefly outline the expected patterns for different
measures of cortical development as a function of low-SES. Since cortical thickness
increases in the first two years of life, accelerated neurodevelopment in low-SES youth
would be associated with more rapid growth trajectories resulting in an earlier peak and
increased cortical thickness prior to age two years. Thereafter, accelerated development
would manifest as more rapid cortical thinning, resulting in lower cortical thickness in
low-SES relative to high-SES children beginning in early childhood and continuing through
adolescence. If development were delayed, we would observe the opposite pattern—slower
growth resulting in lower thickness during infancy, a later peak in cortical thickness, and
slower thinning resulting a thicker cortex during childhood and adolescence in low relative
to high-SES youth. Similarly, for volume and surface area, accelerated development would
involve faster expansion and growth in early childhood, an earlier peak, and more rapid
decreases during late childhood and adolescence. If development were delayed, the opposite
pattern would be expected—slower growth in early childhood, a later peak, and slower
decreases during adolescence. Finally, subcortical volume would exhibit more rapid growth
resulting in higher volume if development were accelerated and slower growth resulting in
lower volume if development were delayed. Figure 1 depicts these predictions using cortical
thickness and subcortical volume as examples.

Most studies have examined individual differences in the pace of neurodevelopment using
cross-sectional data in adolescents, which has hindered our ability to truly test these
theories. For example, cross-sectional data makes it impossible to disentangle whether lower
thickness, surface area, or volume in low-SES adolescents[1] reflects a difference in the
amount of cortical gray matter or in the rate of change over time, highlighting the need

for longitudinal studies. Therefore, in order to assess which of these frameworks is best
aligned with existing evidence, several pieces of information are needed in conjunction.
First, information on SES-related differences in the rate of change in cortical grey matter
and subcortical volume across development is required, as models differ in predictions
about whether the rate of change in brain structure is faster versus slower during infancy;,
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childhood, and adolescence. Second, models also differ in their predictions of whether
cortical thickness and volume should be higher or lower in low-SES youth during infancy
as well as childhood and adolescence (see Figure 1). Finally, knowledge about the timing
of peak thickness and volume would help evaluate the predictions. Each of these pieces

of information can be used to evaluate whether developmental trajectories are accelerated
or delayed. We now review existing studies that provide the first and second pieces of
information on SES and brain structure during infancy, childhood, and adolescence. Studies
on differences in age at peak are currently lacking.

Empirical observations

Infancy

SES-related differences in cortical structure.—We identified six studies examining
associations of SES with cortical structure in infants (Table 2). Four studies found

that lower-SES was associated with fower cortical and subcortical volume[31,49-51] in
neonates, infants, and toddlers. In contrast, one study reported both higher and lower cortical
volume related to low-SES; infants aged 1-6 weeks from low-SES households had larger
volumes in the occipital lobe, temporal pole, left inferior frontal regions, and anterior
cingulate and lower volumes in the frontoparietal region and inferior temporal lobe relative
to infants from high-SES households[52]. Partially in line with this, a study on a relatively
large sample found low-SES to be associated with Aigheraverage cortical thickness and
thickness of some frontal and temporal regions[53]. However, their findings could have
been influenced by their adjustment for intracranial volume, which does not scale with
thickness[54]. Although the literature is somewhat mixed, most findings, including those
from well-powered samples of 756 infants aged 8-12 months and 280 neonates[51], suggest
that low-SES is associated with /ower cortical and subcortical volume early in life.

SES-related differences in rate of change.—To our knowledge, only one study has
examined SES-related changes in cortical structure in infants or toddlers longitudinally.
Low-SES infants had lower total, frontal, and parietal volume, and these differences became
more pronounced with age[31], consistent with a slower pace of neurodevelopment.

Childhood and Adolescence

SES-related differences in cortical structure.—Numerous cross-sectional studies
observe lower cortical thickness, surface area, volume, and subcortical volume among low-
SES relative to high-SES children and adolescents[55-69]. For greater details see a recent
systematic review[1]. Although studies vary in terms of specific regions where differences
were observed, the evidence is remarkably consistent in the direction of the association
between SES and brain structure.

SES-related differences in rate of change.—Longitudinal studies find low-SES to be
associated with a /owerrate of change (Table 3). For example, low-SES has been associated
with reduced and slower growth in hippocampus[59,70,71] and overall subcortical[72]
volume during childhood and adolescence. Three studies reported lower rate of change

in cortical thickness and volume reported as a maturational lag in total gray matter, frontal,
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and temporal volume in low-compared to high-SES children[73], lower rate of cortical
volume growth in parts of the insula and superior temporal gyrus[72], and less cortical
thinning over time in low-SES adolescents[74], suggesting slower cortical development[75].
Finally, using a brain-predicted age framework based on both cortical and subcortical

data, one study showed that low-SES children had higher brain age gap values at age

12 followed by a negative trajectory, reflecting slower brain development[22]. Finally, a
recent paper shows higher SES to be associated with more rapid cortical thinning and area
reduction[76]. Not all findings are aligned with lower rate of change in youth from lower
SES backgrounds, however. Mixed sex-dependent findings of slower and faster change[77],
more rapid amygdala growth in males[74], and greater decreases in surface area[78] in
low-SES adolescents have also been reported.

Brain developmental trajectories associated with low-SES may be simply

different

Collectively, the evidence suggests that low-SES is associated with lower thickness, surface
area, and volume and slower rate of change throughout infancy, childhood, and adolescence
(Table 1, Figure 1). In addition, the pattern of findings does not appear to vary based on the
specific SES indicator used, although the number of studies of each specific SES indicator
is small. There have been a limited number of studies examining SES and brain structure in
infants, and even fewer longitudinal studies, which makes it challenging to make definitive
conclusions about this time period. However, the available evidence is more consistent with
delayed than accelerated brain development in low-SES infants. While lower thickness, area,
and volume in childhood and adolescence is consistent with accelerated brain development,
patterns of change over time are consistent with delay rather than acceleration during this
period. Although most findings were consistent with delayed brain development, the lack
of evidence for low-SES children exhibiting Aigherthickness or volume in childhood or
adolescence than high-SES children is inconsistent with a delayed maturational trajectory.

Based on this review, we stipulate that none of the models fully captures the existing pattern
of evidence of SES-related differences in structural brain maturation. Instead, it may be
that low-SES is associated with a simply different developmental trajectory characterized
by lower cortical thickness and volume at all ages from infancy through adolescence as
well as slower growth and slower thinning over time (Figure 1). This trajectory is most
consistent with the evidence, which shows lower thickness, volume, and surface area

and slower rates of change in individuals from low-SES backgrounds at all ages. Of

note, this proposed trajectory may be more applicable to cortical and subcortical volume
given the limited number of longitudinal studies that have examined cortical thickness and
surface area trajectories, as well as the presence of null and mixed findings. Clearly, more
longitudinal studies examining changes in different brain structural metrics over time are
needed, particularly in the first years of life.

Mechanisms contributing to SES-related differences in brain structure

Several factors that vary as a function of SES—including prenatal factors, exposure
to stress, and reduced cognitive stimulation—Tlikely influence changes in underlying
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neurobiological processes such as synaptic pruning and myelination and contribute to
SES-related differences in large-scale brain morphology. These ideas have been discussed
extensively[7,9,17,27,79]. We highlight some mechanisms that may explain SES-associated
differences in the pace of brain development in each development period briefly.

Local cellular events—such as rapid gains in dendritic complexity, myelination,
synaptogenesis, glial proliferation, and axonal elongation—have been suggested to
contribute to increases in cortical thickness and surface area in the first years of life[80-84].
Higher levels of enriching and stimulating experiences in high-SES households may alter
cellular processes and contribute to SES-associated differences in brain structure. Evidence
from animal models suggests that the expression of cellular signals involved in activity-
dependent synaptic development is upregulated by enrichment including neurotrophins,
brain-derived neurotrophic factor, synaptic proteins involved in synaptic proliferation and
function, and factors implicated in glutamatergic signaling[79]. Low-SES is also associated
with higher levels of family conflict and harsh parenting[85,86], meaningful sources of
chronic stress in early life. Chronic stress also influences glial cell proliferation, which could
contribute to differences in gray matter structure[87]. However, the mechanisms driving the
associations between enrichment and stimulation, stress, and increases in cortical thickness
and volume during the early years remain relatively unexplored.

Childhood and adolescence

Differences in brain structure are also evident in childhood and adolescence. It is possible
that differences in proliferation during the first years of life simply carry forward into

later developmental periods. Alternatively, differences in synaptic pruning could give

rise to low-SES being associated with lower cortical thickness and volume in childhood

and adolescence. For example, reduced dendritic spine density, branching and length of
dendrites, and the number of synapses per neuron are all observed in animals raised in
deprived environments[88-90]. In addition, greater chronic stress can cause spine 10ss[88],
atrophy of apical dendrites[89], and suppress neurogenesis in the dentate gyrus[90], which
could contribute to lower cortical thickness, volume, and subcortical volume. The slower
rate of change reported in longitudinal studies suggests that greater pruning may not

be a plausible explanation for SES-related differences in brain structure. Importantly, the
biological mechanisms underlying reduced cortical thickness and surface area cannot solely
be attributed to small-scale changes at the synapse level[37]. For example, changes in
myelination and reduction in the number of glial cells can contribute to these developmental
changes[37]. Understanding of how SES influences these processes remains limited.

Rate of change

To our knowledge, animal studies linking enrichment and stress with small-scale
developmental changes at the level of synaptic pruning, myelination, and dendritic
arborization have not been examined using longitudinal designs. The lack of such
knowledge makes it challenging to comment on the mechanisms underlying slower
rates of change. However, studies using the minimal bedding paradigm to mimic low-
SES in rodents demonstrate impaired microglia-mediated synaptic pruning after this
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manipulation[91]. Less pruning could reflect slower circuit refinement Enrichment also
contributes to newly produced neurons being integrated into functional circuits[79], and
computational neuroscience models show that network abilities benefit from early synaptic
overgrowth followed by pruning of weak synapses[92]. Accordingly, lower overall synaptic
proliferation could partially explain the differences in brain functional integration and
segregation observed as a function of low-SES both early in life[93], and during childhood
and adolescence[1,94-101]. For example, measures of network efficiency, such as within-
network connectivity and global efficiency, which typically increase with age during
development[102-107] are lower in children from low-SES backgrounds[95,108,109].
However, given limited longitudinal research on functional and structural connectivity,
caution is warranted in interpreting these patterns.

Importantly, we have focused on postnatal differences in this review. However, given
differences in brain structure observed in the first weeks of life[51], it is possible and even
likely that SES influences brain structure before birth, which may create a persistent offset
that is observed as cross-sectional differences in brain morphology at all ages. Differences at
birth could be due to a host of prenatal factors including maternal stress, nutrition, prenatal
complications, drug and toxin exposure, and pre-term birth[79]. Higher levels of stress,
higher infection rates, and poor nutrition can increase the levels of corticotropin-releasing
factor and glucocorticoids in the mother and fetus[110-113]. These factors can lead to
restricted fetal growth and premature birth[110,111,113]. More neuroimaging studies that
examine associations between prenatal factors and fetal brain development are needed.
Further, genetics may also play a confounding role. That is, genetics may in part determine
both the parent’s SES as well as children’s brain structure. Past work has shown that both
SES and genetic factors contribute to educational attainment and impact cognitive and brain
development in adolescents[78]. It is also possible that the initial offset present at birth may
influence rates of change in brain structure, however, this is speculative and longitudinal
research is needed to test this hypothesis. Finally, even postnatally, low-SES is associated
with numerous factors other than chronic stress and cognitive stimulation that can influence
brain development, including nutrition, school environments, and exposure to toxins and
pollutants[50,114-116]. Research examining how these factors might independently and
jointly shape neurodevelopment is sorely needed.

Concluding remarks and future directions

We examined the predictions of influential conceptual models on adversity and the pace

of brain development Across models, the predictions differ in how adversity and low-

SES should be associated with brain structure during infancy as well as childhood and
adolescence and whether changes in brain structure should occur at a slower or faster

pace. The empirical data suggests that none of these models fully captures the observed
differences in structural development between low and high-SES youth, and that low-SES
may be associated with a simply different neurodevelopmental trajectory. However, in the
absence of longitudinal data that spans infancy, childhood, and adolescence, it is challenging
to make definitive conclusions about accelerated, delayed, or different trajectories. Despite
the first years of life being marked by rapid and dynamic brain development, there has

been very little research on SES- and adversity-related differences during this period of life.
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This is understandable given the challenges associated with infant neuroimaging. However,
more longitudinal research that maps normative development as well as differences related
to early experience from infancy to adolescence are needed to test these ideas thoroughly.
Eventually, researchers will be able to combine data from studies such as Healthy Brain
and Child Development and Adolescent Brain Cognitive Development to test associations
between SES and changes in brain morphology from infancy to late adolescence.

Further, most of the conceptual models we evaluate focus on experiences of adversity
broadly rather than SES specifically, with some exceptions[9]. We focus here on SES due

to lack of longitudinal imaging studies and infant research on other forms of early-life
adversity. However, it is important to acknowledge low-SES is not synonymous with
adversity(Box 1) and that neurodevelopmental mechanisms beyond accelerated or delayed
development may contribute to observed SES-related differences in brain structure. Many
children raised in low-SES families receive enriching cognitive and social stimulation and
are not exposed to harsh parenting or violence. Further, whether the patterns of structural
brain maturation observed here apply to other forms of adversity is unknown and is a
critical topic for future research, although similar patterns as those described here have been
reported in relation to other forms of adversity in several studies. For example, numerous
cross-sectional studies observe lower cortical thickness in children who have experienced
maltreatment, exposure to violence, and severe deprivation related to institutional rearing[2],
which is often interpreted to be consistent with accelerated development. Longitudinal
work shows reduced growth in amygdala volume over time in adolescents exposed to
maltreatment[117], which reflects a slower rate of development. More longitudinal research
in this area is sorely needed. Further, SES is a broad and complex construct that can be
operationalized in multiple ways—for example household income, parental education, and
neighborhood SES as well as in the form of composite SES indices like Hollingshead Index.
These indices tend to be moderately correlated[118] and may influence brain development
through both distinct and similar pathways[see Box 1; 5]. More studies are needed to
examine independent associations of different SES indicators with brain maturation.

Brain development is a profoundly complicated process. SES can influence brain
development in numerous ways that vary meaningfully as a function of the presence of
other risk and protective factors. Critically, the lack of longitudinal studies using other
imaging modalities precluded us from examining associations between SES and the pace of
maturation of white matter structure, structural and functional connectivity, and task-based
activation(see Outstanding Questions), which also play an important role in behavioral
outcomes. For example, although low-SES may be associated with lower cortical thickness
and brain volumes on average, which has been shown to mediate links between SES and
cognitive performance in young people[67,119,120], other neurodevelopmental changes
associated with low-SES are likely to confer important advantages that help children

adapt to the environment in which they are developing[121]. For example, the ability

to switch between tasks or mental sets quickly and easily, and the capacity to track

novel environmental information tend to be enhanced in children and adults who grew

up in more unpredictable family environments[122,123]. Low-SES is likely associated

with numerous brain adaptations that help children develop such skills and thrive in their
environment[124]. Further, it is also important to consider the complex relationships of SES
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and adversity with systemic and interpersonal racism when examining associations with
neurodevelopment[125,126]. In addition to variability in covariates included, some studies
have covaried for race and ethnicity while others have not (see Supplementary Materials),
which makes it somewhat challenging to compare findings. Further, results from studies
that covary for race/ethnicity but do not have an even distribution of SES across racial

and ethnic groups in the study need to be interpreted cautiously[127]. In addition, research
in this area has relied heavily on data from Western, Educated, Industrialized, Rich, and
Democratic(WEIRD) countries, limiting our ability to generalize findings to other countries
and cultures. Finally, while parental SES does not change substantially during childhood
for most individuals[128], given our limited knowledge about timing effects and when brain
maturation may be most sensitive to SES or changes in SES, we are unable to comment

on how these brain maturation curves(Figure 1) may change if SES were to increase or
decrease. This is an important direction for future work, particularly in the context of
interventions (see Box 2).

In sum, existing evidence is more, but not entirely consistent with low-SES predicting
delayed rather than accelerated brain development. No existing model fu/ly captures
observed differences between low- and high-SES youth. Low-SES and other adverse
environments are likely associated with brain developmental trajectories that differ in
multiple ways considering the available evidence. Our understanding of how SES may
influence the pace of neurodevelopment is limited and more longitudinal work, particularly
during infancy and early childhood, is needed to establish normative developmental
trajectories and to test the predictions of neurodevelopmental pace models more rigorously.
Based on the available evidence, we suggest that low-SES may be associated with a distinct
pattern of brain maturation that is less about the timing of the attainment of milestones (i.e.,
acceleration or delay) but the milestones themselves.
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Outstanding Questions

What are the normative brain developmental patterns in utero and during infancy, and
how is SES associated with these trajectories?

How is SES associated with developmental changes in cortical thickness and surface area
during childhood and adolescence?

How does SES relate to maturation of white matter structure, structural and functional
connectivity, and task-based activation?

What are the neurobiological processes underlying change in cortical and subcortical
brain structure across infancy, childhood, and adolescence, and what is the role of SES in
shaping these mechanisms?

What are the proximal environmental factors that mediate the association between SES
and changes in brain structure over time?

How do SES-associated differences in structural brain structure development impact
functional network development and circuit refinement in the brain?

How can we disentangle the role of prenatal factors, genetics, and SES in shaping brain
development?

Can this model be extended to other types of adversity including childhood abuse and
traumatic experiences?
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Highlights
Theories make contrasting predictions about whether adverse experiences and low SES

are associated with accelerated or delayed neurodevelopment.

Existing evidence is more consistent with low-SES predicting delayed rather than
accelerated brain development. However, no existing model fully captures observed
differences between low- and high-SES youth.

Low-SES and other adverse environments are likely associated with brain developmental
trajectories that differ in multiple ways considering the available evidence.

We suggest that low SES is associated with brain maturation patterns characterized by
lower volume and slower rates of change throughout development.

Longitudinal research, especially in the early years, is needed to rigorously test how
adversity and SES are associated with deviations from typical developmental trajectories.
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Box 1:
Defining adversity and socioeconomic status.

Many conceptual models on the associations between early experience and the pace

of neurodevelopment focus on experiences of adversity broadly rather than SES
specifically. It is important to acknowledge that while low-SES is a risk factor for
adverse experiences, low-SES is not synonymous with adversity. Childhood adversity is
defined as early-life stressors that are either chronic and/or severe and likely to require
meaningful adaptation by an average child[129]. Adversity can be conceptualized in
different ways, including cumulative risk and dimensions of adversity such as threat,
deprivation, and unpredictability[15] (see Table I). Children from low-SES backgrounds
are more likely to experience these forms of adversity than their peers from higher-SES
backgrounds [10,130], although it is important to note that many children raised in
low-SES environments do not encounter adversity. In addition, it is important to note that
low-SES is associated with other exposures and experiences that do not neatly fit into
any of these adversity definitions but may influence neurodevelopment such as crowding,
pollution and toxicant exposure, high levels of noise, and lack of access to green spaces.

Table I.
Definitions of different conceptualizations of
adversity.

Cumulative risk Dimensions

Threat Deprivation Unpredictability
The cumulative risk Threat refers to Deprivation Unpredictability can be
approach focuses on experiences that refers to described as a state of
the number of involve harm or the reductions in environmental instability,
adverse experiences a possibility of harm social and where there is a
child has encountered to one’s physical cognitive inputs lack of routine and
and assumes that integrity. This from the frequent, rapid, and/or
these experiences have includes experiences environment unanticipated changes
additive influences where the child is during in the environment. It

on developmental
outcomes. Cumulative
risk assumes that
different types of
adverse experiences
influence behavioral
and neural development
through mechanisms

that are largely universal

or shared.

directly victimized,
such as physical
abuse, as well as
situations where the
child witnesses harm
occurring to others,
such as violence
between caregivers.

development,
leading to limited
opportunities for
learning.

can also be defined

as stochastic variation
in extrinsic morbidity-
mortality.

SES is a broad and complex construct that represents access to or possession of both

material resources, which is often indexed by income, and non-material resources such as
educational attainment and neighborhood quality (see Table II). Subjective social status
and parent occupational prestige have also been used as measures of SES, although these

methods of measuring SES have rarely been studied in relation to neural outcomes in

developmental studies outside of composite SES indices[1]. Generally, these different
metrics of SES tend to be moderately correlated [118], which suggests that they capture
unique aspects of the environment and may influence brain and behavioral development

through pathways that are both shared and unique[68,94]. Importantly, each of these
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aspects of SES are associated with differences in exposure and experiences—Iike stress,

adversity, stimulation, and support—to different extents.

Table II.

Definitions of commonly used indicators of SES.

Educational Income Neighborhood Composite SES
attainment disadvantage
Educational Income reflects Neighborhood Composite measures of

attainment reflects
human capital.
Education is usually
operationalized either
as the highest or
average level of
completion (e.g.,
high school, college,
professional degree)
or as the total number
of years of education
completed.

financial or
economic
resources.
Income is
typically
measured as
total monthly or
annual
household
income,
typically
adjusted for
household size
by computing
an income-to-
needs ratio.

disadvantage reflects
the socioeconomic
characteristics of the
neighborhood. It is
typically computed

by aggregating across
multiple neighborhood-
level measures of
employment, education,
and income. In addition,
neighborhood measures
can also capture
opportunity levels in
the neighborhood like
access to early childcare
centers and school

quality.

SES are aggregate
measures of the

child’s socioeconomic
environment. They can
be operationalized by
aggregating income,
education, occupation
(and other indicators)
in measures such

as the Hollingshead
index, normalizing

and averaging data
across indicators, or
constructing a composite
measure using factor
loadings of those
indicators from a latent
SES model.
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Box 2:
Leveraging intervention studies to establish causal inferences

It is crucial to acknowledge that the findings presented in this review are derived

from observational studies, and as such, cannot establish a causal relationship between
SES and brain development Intervention studies that involve changing income through
cash transfers and quasi- experimental approaches can provide more definitive causal
evidence for these associations. Numerous such studies support a causal relationship
between increased income and improved academic outcomes for low-income students.
For example, in the United States and Canada, quasi-experimental research has utilized
income boosts to demonstrate that increases in income produce higher levels of school
achievement in children[131-133]. Similar intervention studies that examine impacts

on neurodevelopment have rarely been conducted. One key exception is the Baby’s
First Years Study[134], which provides cash assistance to low-SES mothers during the
first years of their child’s life and is collecting metrics of brain structure and function

in the children across development. These types of studies can determine whether
changes in income are causally associated with corresponding changes in brain structure
as well as the pace of neurodevelopment Further, studies that intervene on specific
environmental pathways that may mediate associations between SES and outcomes, such
as by providing higher quality early education and child care, have also shown promise
in improving a wide range of developmental outcomes[135-138]. Determining whether
these interventions improve outcomes by contributing to changes in brain development
is a critical question for future research. Such research can also help to identify periods
when brain development is most responsive to intervention and inform optimal windows
for intervention.
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Accelerated Development

——— HighSES
............. Low SES
. Cortical

Thickness

Subcortical
Volume

infancy  Toddlerhood Childhood Adolescence

B) Delayed Development

High SES
............. Low SES
. Cortical
Thickness

Subcortical
Volume

Low SES has higher
thickness

Infancy  Toddlerhood Childhood Adolescence

C)

Observed

—— High SES

............. Low SES
Cortical
Thickness
Subcortical
Volume

Infancy Toddlerhood Childhood Adolescence

Figure 1: SES and the pace of neurodevelopment: theoretical predictions and empirical

observations.

Expected trajectories of cortical thickness from infancy to late adolescence based on
models of accelerated (A) and delayed (B) brain development Solid and dashed lines

Page 24

represent trajectories for high and low-SES youth, respectively. Panel C depicts the patterns
observed in existing longitudinal studies. These patterns suggest that low-SES children have
consistently lower cortical thickness, volume, surface area, and subcortical volume as well
as slower rates of change during both growth and decline. Figures depict the starting point
for low- and high-SES infants to coincide as evidence on SES-related differences in brain

Trends Cogn Sci. Author manuscript; available in PMC 2024 September 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Rakesh et al.

Page 25

volume at birth is limited. Blue and green lines represent average trajectories for cortical
thickness and subcortical volume—specifically amygdala and hippocampus, respectively.
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