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Abstract

Seasonal changes in food intake and adiposity in many animal species are triggered by changes 

in the photoperiod. These latter changes are faithfully transduced into a biochemical signal 

by melatonin secreted by the pineal gland. Seasonal variations, encoded by melatonin, are 

integrated by third ventricular tanycytes of the mediobasal hypothalamus through the detection 

of the thyroid-stimulating hormone (TSH) released from the pars tuberalis. The mediobasal 

hypothalamus is a critical brain region that maintains energy homeostasis by acting as an interface 

between the neural networks of the central nervous system and the periphery to control metabolic 

functions, including ingestive behavior, energy homeostasis, and reproduction. Among the cells 

involved in the regulation of energy balance and the blood–hypothalamus barrier (BHB) plasticity 

are tanycytes. Increasing evidence suggests that anterior pituitary hormones, specifically TSH, 

traditionally considered to have unitary functions in targeting single endocrine sites, display 

actions on multiple somatic tissues and central neurons. Notably, modulation of tanycytic TSH 

receptors seems critical for BHB plasticity in relation to energy homeostasis, but this needs to be 

proven.

Graphical Abstract

The mediobasal hypothalamus is a critical brain region that maintains energy homeostasis. 

Among the cells involved in the regulation of energy balance and the blood–hypothalamus 

barrier plasticity are tanycytes. We discuss how third ventricular tanycytes of the mediobasal 
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hypothalamus circulate metabolic signals to hypothalamic neurons as critical metabolic processors 

of communication between the central nervous system and the periphery.
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INTRODUCTION

Changes in the photoperiod are faithfully transduced into neuroendocrine signals by 

melatonin secreted by the pineal gland, which, in turn, triggers seasonal adaptive responses 

in many animal species. Most of these species decrease their food intake and adiposity as 

they are reproductively quiescent during a short photoperiod, when ambient temperatures 

decline and the availability of food is low. They increase their food intake and adiposity 

upon resuming reproductive activities during a long photoperiod when ambient temperature 

and the food supply are more favorable. The pars tuberalis (PT) of the pituitary gland, 

comprising the anterior lobe of the pituitary stalk that links the mediobasal hypothalamus 

with the posterior pituitary, is a key site involved in the regulation of seasonality across 

birds and mammals. That is, short/long photoperiod-dependent seasonal variations, encoded 

by melatonin, are integrated by tanycytes via the detection of the thyroid-stimulating 

hormone (TSH) released from the PT (1–4). The switch to a long photoperiod triggers 

melatonin-responsive cells in the PT of the anterior pituitary to increase TSH production, 

which, in turn, acts locally on TSH receptor (TSHR)–expressing cells of the mediobasal 

hypothalamus, resulting in increased type 2 deiodinase (DiO2) expression (2). Notably, 

tanycytes of the ependymal layer express very high levels of DiO2, an enzyme that converts 

L-thyroxine (T4) to triiodothyronine (T3) (3, 5). This calls into question whether central TSH 

actions regulate thyroid hormone metabolism within tanycytes, and in doing so, directly 

modulate thyrotropin-releasing hormone (TRH) neuronal signaling.

In addition to the PT-synthesized TSH, several groups have reported that TSH is also present 

in the rat hypothalamus (6, 7). Using double antibody immunoassay, TSH was recovered 

preferentially from the synaptosome-rich hypothalamic layers (6). The physiological in vivo 
significance of these findings is not clear, however. Although the concentration of TSH is 

markedly low relative to the PT, it may function locally as a neuromodulator, as proposed for 

other peptide hormones (8).

To our knowledge, the first mention of TSHRs broadly in the hypothalamus of the laboratory 

rat was made by Lawrence and colleagues (9). Subsequently, others reported TSHR 

expression in the hippocampus of the mouse (10); hypothalamus, hippocampus, pyriform 

and postcingulate cortex of the rat (11, 12); hypothalamus of the quail (13); and amygdala, 

cingulate gyrus, frontal cortex, hippocampus, hypothalamus, and thalamus of the adult 

human (14). However, the first mention of tanycytic TSHR expression, to our knowledge, 

was 15 years earlier by the Hazlerigg laboratory, describing strong expression of TSHRs 

both within the PT itself and in adjacent cells in the median eminence, extending into the 

ependymal paraventricular region surrounding the base of the third ventricle in sheep (2).
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Given our recent discovery of a broad array of anterior pituitary hormone receptors, notably 

TSHRs, follicle-stimulating hormone receptors (FSHRs), and luteinizing hormone receptors 

(LHCGRs), in multiple brain sites (15), our perspective will focus on the question—what 

is the role of ependymal TSHRs in mediating blood–hypothalamus barrier (BHB) plasticity 

in relation to ingestive behavior and energy homeostasis? While little is known about 

this topic, the main functions and neuroanatomy of the BHB are well known. A specific 

question we address is how tanycytes, which border the periphery of the third ventricle 

(3V), circulate metabolic signals to hypothalamic neurons as critical metabolic processors 

of communication between the central nervous system (CNS) and the periphery. Evidence 

supports the premise that tanycytes influence energy metabolism through the organization of 

hormonal and nervous signals (16). Research regarding tanycytic regulation of food intake, 

glucagon and insulin release, and fatty acid metabolism in adipose tissue and skeletal muscle 

may provide answers to such questions (16).

TANYCYTES AND THE BLOOD–BRAIN BARRIER

Lining the border of the 3V, tanycytes are specialized ependymoglial cells that reside 

along the regions of the dorsomedial nucleus (DMH), ventromedial nucleus (VMH), arcuate 

nucleus (Arc), and median eminence (ME) of the hypothalamus (16–18). Although sharing 

close resemblance with astrocytes, tanycytes possess a unique morphology and distinct 

functional characteristics (19). They display a cell soma intact along the mediobasal wall 

of the hypothalamus, which is in direct contact with CSF through extended microvilli. 

Long processes extend from their soma into the parenchyma of the hypothalamic Arc, 

VMH, DMH, ME, and the brain pial surface, thus enabling a specific range of functions 

that maintain energy balance. Because of this peculiar morphology and their stem-cell–like 

features, tanycytes are also considered to be radial glia cells of the mature brain (20). ME 

tanycytes also contribute to the regulation of metabolic functions and reproduction. They 

dynamically control the secretion of neuropeptides into the hypothalamus–pituitary portal 

vasculature, sense glucose levels, produce and secrete the active form of thyroid hormones, 

and regulate local homeostasis via their ability to control the exchange of molecules, such as 

leptin, between the blood and the hypothalamic extracellular fluid (20).

Tanycytes are composed of four different subtypes: α1, α2, β1, and β2 (16–18). α1 Tanycyte 

processes extend directly into the VMH, while α2 processes extend directly into the arcuate 

nucleus (18). α Tanycytes thus create a CSF–hypothalamic barrier in this region (16, 18, 

21). β1 Tanycytic processes project to the lateral ME and Arc, while β2 tanycytic processes 

project to fenestrated capillaries of the ME, allowing contact with nutritional signals (18). β2 

Tanycytes are joined together by tight junctions, zonula occludens, and claudins, which help 

form the BHB. Such organized tight-junction complexes at the level of tanycytic soma seal 

the intercellular space to prevent free diffusion of blood-borne molecules extravasating from 

fenestrated capillaries of the ME into the CSF.

For energy metabolism and ingestive behavior studies, tanycytes can be readily identified 

through specific markers including G protein–coupled receptor 50 (GPR50), which is 

related to the melatonin family receptors found in tanycytes, as well as vimentin (VIM), 

nestin (NES), solute carrier family 1 member 3 (SLC1A3), and retina and anterior neural 

Kannangara et al. Page 3

Ann N Y Acad Sci. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fold homeobox (RAX) (17, 22). Of note, vimentin and nestin were also found to label 

hypothalamic pericytes (23, 24), as well as pituitary cells that are neither hormonal nor 

typical folliculo-stellate (25).

TANYCYTES CONTROL FOOD INTAKE AND ENERGY METABOLISM

Food intake and energy homeostasis are processes controlled through central neural 

networks that interact with the periphery (16, 20, 21). This interaction is achieved 

through the coordination of thermoregulation, insulin and glucagon release, and fatty acid 

metabolism in adipose tissues and skeletal muscles (16). Among the cells regulating energy 

balance and glucose homeostasis, tanycytes have begun to attract considerable attention 

(20, 26, 27). The pervasive assumption that tanycytes are involved in regulation of food 

intake has been tested through tanycyte ablation studies, where alloxan-induced suppression 

of the tanycytic layer triggered hyperphagia following overnight fasting (28). Another 

elegant study also showed that 8-week tamoxifen treatment of Rax-CreER;Eno2-lsl-DTA 
mice, which selectively ablated tanycyte-derived neurons without killing the tanycytes 

themselves, induced hyperphagia in response to fasting and, as a result, an increased 

epidydymal white adipose tissue mass (29). Nevertheless, several studies, employing genetic 

approaches, reveal less profound anorexigenic effects of tanycyte manipulation (30–32), 

while optogenetically activated tanycytes trigger food consumption. Support for tanycytic 

sufficiency to modulate food intake comes from several studies showing that food intake 

is modulated by Arc neuropeptide Y, agouti-related peptide (AGRP), proopiomelanocortin, 

cocaine- and amphetamine-regulated transcript (CART), [(28, 30, 31); for review, see Ref. 

16].

There are indirect and direct mechanisms through which tanycytes elicit neuronal 

modulation. The first involves BHB remodeling. For example, during fasting, tanycytes 

undergo structural alterations favoring increased accessibility of the hypothalamic Arc to 

peripheral metabolic cues, which, in turn, activate Arc orexigenic neurons to initiate a 

feeding response (28, 30, 33–36). The latter indicates a direct role of so-called “tanykines”, 

that is, tanycytic molecules with orexigenic actions such as T3 (37), anorexigenic actions 

such as diazepam-binding inhibitor (38, 39) and prostaglandin E2 (40), and tanykines with 

dual orexigenic and anorexigenic properties such as chemerin (41) and purines (16, 42–44).

As the key integrative hypothalamic area for energy balance, the Arc also plays an important 

role in the seasonal cycles of ingestive behavior and body weight regulation. Species 

exhibiting seasonal adiposity can be divided into two major categories. The first includes 

species that respond to changes in the photoperiod (e.g., hamsters and voles), whereas 

the second category includes species responding to the timing of an endogenous clock of 

unknown location (e.g., ground squirrels, wood chucks, and marmots) (45). The orexigenic 

action of the Arc-NPY/AGRP neuronal population is countered by the Arc-POMC/CART 

neuronal population (46). Both neuronal populations are regulated by leptin, which is 

transported to the Arc through the tanycytes (21, 47). Surprisingly, the finding of POMC 

mRNA and protein not only in the hypothalamic neurons that were thought to be its 

exclusive province, but also in tanycytes of seasonal and nonseasonal rats, supports an 

anorexigenic role of tanycytes in ingestive behavior (48–50). In the seasonal context, the 
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photoperiod regulates pituitary TSH production via melatonin, which, in turn, controls 

seasonal cycles of thyroid hormone synthesis and metabolism. Decreases in tanycytic T3 

levels are hypothesized to trigger apoptosis in a small fraction of key hypothalamic neurons 

involved in energy balance and reproduction, thus affecting physiological status, namely 

body weight and testes size, respectively (51).

The mediobasal hypothalamus, comprising 3V tanycytes, is a critical brain region that 

maintains energy homeostasis by acting as an interface between the neural networks of 

the CNS and the periphery to control metabolic functions, including ingestive behavior, 

energy homeostasis, and reproduction. The link between ependymal TSHR regulation of 

the BHB vascular permeability and ingestive behavior has not been established, but we 

believe it is more than coincidental that TSHRs cluster in the tanycytic region bordering 

brain centers that control food intake. We have recently discovered that the BHB undergoes 

dynamic and reversible structural alterations that modulate its permeability in response to 

TSHR modulation during fasting, thereby acting as a checkpoint for the access of peripheral 

metabolic signals to surrounding feeding centers, such as the Arc, paraventricular nucleus of 

the hypothalamus, VMH, and DMH (Figure 1).

TANYCYTES ARE A CONDUIT FOR LEPTIN TRANSPORT

Leptin, a primary white adipose tissue adipokine, is traditionally thought to convey lipid 

reserve information to the brain through the circulation. Leptin is released into the 

bloodstream from adipocytes and circulates to the brain where it crosses the blood–brain 

barrier and BHB to act on leptin receptors (LEPRs) in multiple brain sites to decrease food 

intake and increase energy expenditure. Its deficiency results in hyperphagia and obesity 

(52). While leptin has been traditionally considered as a circulating factor that may inform 

the brain of adiposity levels (53), its accuracy to do so is questionable. For example, in 

cold-exposed rats (54) and humans (55), circulating leptin levels decrease rapidly, but there 

are no measurable alterations in adiposity. Furthermore, although plasma leptin levels in 

humans and rodents correlate with the degree of adiposity more generally, a considerable 

part of the between-individual variance in plasma leptin is unrelated to the degree of 

adiposity in humans [for review, see Ref 56]. Thus, understanding leptin transport to convey 

adiposity-level information of the specific fat pad becomes fundamental.

To this end, Balland et al. (21) showed that tanycytes are the key conduit for leptin transport 

into the hypothalamus. Notably, this process requires tanycytic ERK signaling to enable the 

passage of peripheral leptin via the CSF (21). Furthermore, LEPR-deficient db/db mice or 

mice treated with a leptin antagonist display disrupted leptin transport into the hypothalamic 

sites, as evidenced by stagnant leptin accumulation in the ME (21). This study suggests that 

ERK-dependent leptin transport via tanycytes may be an actionable target for overcoming 

leptin resistance. Another study by Duquenne et al. showed that tanycytic LEPRs respond 

to leptin by triggering Ca2+ waves and target protein phosphorylation (47). Transcytotic 

transport of leptin into the hypothalamus occurs through the sequential activation of a 

LEPR:EGFR complex triggered by leptin and EGF (47). Importantly, the authors found a 

link between deficient tanycytic leptin transport and the pathophysiology of pancreatic β-cell 

failure and lipid dysmetabolism in relation to moderate weight gain, thus providing vital 
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pointers toward improving pharmacological interventions for controlling metabolic disorders 

(47).

NUTRIENT AND HORMONE SENSING BY TANYCYTES

Mounting evidence suggests that tanycytes regulate sensing of CSF glucose concentrations 

(termed glucosensing) (57). In situ studies reveal that tanycytes not only sense glucose, 

evoking robust ATP-mediated calcium responses, but also respond to nonmetabolizable 

glucose analogs, such as 2-deoxy-D-glucose (2DG) (58). It has been reported that tanycytes 

express the glucose transporter GLUT2 and glucolytic enzymes, such as glucokinase (GCK) 

(59). The latter is a critical enzyme that senses glucose and modulates neuronal responses 

to glucose levels (60). Direct evidence for the tanycytic role in glucosensing was shown in 

the rat, wherein the central injection of a glucokinase inhibitor, alloxan, destroyed specific 

glucose-sensitive tanycytes and induced higher fasting glycemia (28). Interestingly, a similar 

phenotype was recently reported in a murine model, where tanycyte lipid sensing and lipid 

metabolism in the subcutaneous white adipose tissue were both altered by Fgf21 ablation 

(61). These mice had higher post-fasting glycemia and elevated glucose levels in glucose 

tolerance tests (61). In another study, the ablation of GCK-expressing tanycytes led not only 

to increased adiposity, specifically in the epididymal white adipose tissue, but also to leaner 

brown adipose tissue, suggesting decreased thermogenesis (60).

There is also direct evidence of glucose sensing via the sweet taste receptors TAS1R2 

and TAS1R3 expressed in tanycytes (62). In taste receptor tanycytes, the calcium-sensitive 

monovalent cation channel TRPM5 is required for cell depolarization (63), followed by ATP 

release from sweet taste receptor tanycytes to activate gustatory nerves (64). Furthermore, 

in addition to glucose and nonmetabolizable analogs of glucose, tanycytes also respond to 

three different ligands of the sweet taste receptor, namely sucralose, AceK, and RebA (62). 

Therefore, the nodes of glucosensitive tanycytes and neurons in the Arc and VMH appear to 

be perfectly positioned to control ingestive behavior and energy balance. Heterodimerization 

of TAS1R1/R3 with mGluR4 allows CSF amino acid sensing (65). It was hypothesized that 

in rodents that lack the Tas1r1 gene, this sweet taste receptor underwent adaptive changes to 

sense umami (monosodium glutamate) taste (65).

Tanycytes also appear to modulate insulin and glucagon sensitivity; that is, ablation of the 

ME and Arc tanycytes alters insulin sensitivity (29), whereas 2DG-induced glucoprivation 

lowers glucagon secretion (60). 2DG and fasting have been shown to regulate remodeling 

of vascular permeability as shown by altered tanycytic tight junction complexes due to the 

upregulation of tanycyte vascular endothelial growth factor A (VEGFA) expression (34). 

Interruption of VEGFA signaling blocks fasting-induced hypothalamic barrier remodeling 

and markedly impairs the physiological response to refeeding (34). Finally, a very recent 

study revealed the surprising ability of Arc tanycytes to convert glucose into lactate that is 

then transmitted via monocarboxylate transporters to the Arc POMC neurons to fuel their 

activity in regulating ingestive behavior and energy homeostasis (66).

It has recently been reported that insulin receptors are expressed in tanycytes but not in 

brain endothelial cells. These cells are required to shuttle insulin to the hypothalamic arcuate 
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nucleus (67). Deletion of insulin receptors specifically in tanycytes led to systemic insulin 

resistance without affecting normal food intake and energy expenditure. In addition, ablation 

of tanycytic insulin receptors abrogated the feeding-regulatory effect of peripherally injected 

ghrelin. This explains the necessity of tanycytic insulin receptor signaling for the orexigenic 

effects of ghrelin (67).

In attempting to understand how liraglutide, an anti-diabetic agent and a glucagon-like 

peptide one receptor (GLP1R) agonist, enters the mediobasal hypothalamus to regulate 

energy homeostasis, Imbernon et al. injected fluorescently labeled liraglutide peripherally 

(68). Surprisingly, blood-borne liraglutide did not cross the blood–brain barrier via the 

GLP1R-negative endothelial cells, but did so by transcytosis via hypothalamic tanycytes 

using routes of entry previously described for leptin, ghrelin, and insulin (21, 33, 67, 68). 

Selective silencing of tanycytic GLP1R or inhibition of tanycytic transcytosis not only 

prevented liraglutide shuttling into the hypothalamus but also blocked its anti-obesity effects 

(68).

An additional therapeutic, FGF21, which affects energy homeostasis, not only acts directly 

on peripheral targets but also by way of its action in the brain. A recent study has detected 

the FGF21 protein in the tanycytes of the median eminence, suggesting that the tanycytic 

shuttle is used to transport liver-derived FGF21 into the hypothalamus (69). Entering into a 

controversy, Zhou et al. showed that FGF21 is not expressed in hypothalamic tanycytes, but 

is instead found in select brain sites, including the retrosplenial cortex and thalamic nuclei 

(70). Modulation of FGF receptor 1 (FGFR1) signaling is another potential mechanism 

underlying adaptation of energy expenditure to negative energy balance. FGFR1 signaling is 

crucially involved in FGF21-mediated regulation of energy metabolism by regulating genes 

implicated in energy consumption, adiposity reduction, and weight loss (71, 72). In this 

regard, the selective inhibition of tanycytic FGFR1 by the monoclonal antibody IMC-H7 

suppressed appetite and increased energy expenditure in the Siberian hamster (73). It is 

especially noteworthy that reductions in food intake and body weight are always paralleled 

by decreased tanycytic DIO2 expression (73).

TANYCYTES EXPRESS PITUITARY GLYCOPROTEIN HORMONE 

RECEPTORS

Increasing evidence suggest that anterior pituitary glycoprotein hormones, traditionally 

considered to have unitary functions in targeting single endocrine sites, act on multiple 

somatic tissues (74–77). Furthermore, in light of emerging evidence for anterior pituitary 

hormone action on brain receptors in regulating central neural and peripheral somatic 

functions (77), we have recently discovered additional multiple brain sites expressing 

TSHRs (15). Tanycytes of the 3V not only possess the highest number of Tshr transcripts, 

but also display the highest transcript density [(15), Figures 2 and 3]. Furthermore, and 

as noted above, physiological adaption to seasonal changes in the day length, encoded by 

melatonin, are integrated by hypothalamic tanycytes through the detection of TSH released 

from the PT (1, 2, 4). TSH, in turn, acts locally on tanycytic TSHRs, resulting in increased 

DIO2 expression and thyroid hormone synthesis (2). In line with a unique physiological 
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role for locally produced TSH, PT-derived TSH is distinctly glycosylated compared with 

pars distalis–derived TSH. Furthermore, PT-TSH, detectable in the circulation, does not 

stimulate the thyroid gland (78). Collectively, hypothalamic tanycytes serve as a gateway 

to relay photoperiodic information to the brain, underpinning mechanisms responsible for 

seasonal changes in ingestive behavior and adiposity in many animal species. Therefore, 

it is plausible, although not proven, that an uncharacterized central TSH–TSHR feedback 

loop may directly regulate the hypothalamic–pituitary–thyroid axis, previously thought to be 

exclusively controlled by thyroid hormones (79).

Utilizing RNAscope, we recently reported the expression of another glycoprotein hormone 

receptor, FSHR, in multiple brain sites (15, 77). Notably, the highest Fshr density was 

also found in the 3V tanycytes, which was not surprising, given its anatomical proximity 

to the anterior pituitary gland where FSH is synthesized in response to the hypothalamic 

gonadotropin-releasing hormone GnRH. Likewise, tanycytes also expressed the LHCGR 

(15), although at much lower transcript number or density (Figure 2). Finally, we also 

recently documented the expression of oxytocin receptors in 3V tanycytes. However, 

functional evidence for the exact roles of the pituitary hormone receptors is currently 

unknown.

CONCLUSIONS AND PERSPECTIVES

We have summarized the role of this unique cell population of tanycytes in the brain in 

regulating BHB plasticity and energy homeostasis. Clearly, nutrient and hormone sensing by 

tancytyes and modulation of BHB plasticity appear critical in relation to ingestive behavior. 

With increases in BHB permeability, increased food ingestion is triggered, perhaps due to 

greater accessibility of hunger factors to food-related hypothalamic and hindbrain centers 

resulting in sensitization to orexigenic cues, whereas decreases in BHB permeability have 

the opposite effects. We and others have found ubiquitous expression of pituitary hormone 

receptors in the tanycytes, with TSHRs having both the highest transcript number and 

density. It is apparent that our understanding of the functional roles of these glycoprotein 

hormone receptors in various brain sites, and specifically in the 3V tanycytes in relation to 

appetite is lacking. We therefore hope that our review will stimulate further investigations by 

others.
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Figure 1: 
Food deprivation reduces microvilli surface area of α2 tanycytes, suggesting decreased 

CSF–hypothalamus permeability. Transmission electron microscopy of α2 tanycytes in 

the mouse mediobasal hypothalamus bordering the 3V, ventromedial nucleus, and arcuate 

nucleus of the hypothalamus showed that, compared to control mice (Fed), mice that have 

been food deprived (FD) have shorter microvilli with markedly lower surface area facing 

the 3V. These data suggest that in the FD mice the diffusion of circulating factors is more 

restricted through the tanycytes that ultimately project to the Arc and 3V CSF. 3V, third 

ventricle; Arc, arcuate nucleus; FD, food deprivation; mv, microvilli; VMH, ventromedial 

nucleus. Scale bar = 2 μm.
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Figure 2: 
TSHR is highly expressed in the tanycytes. (A). A representative photomicrograph showing 

immunofluorescence of TSHR in the 3V tanycytes. We utilize a complementary approach to 

examine tanycytic Tshr expression, that is, the Tshr-deficient mouse in which exon 1 of the 

Tshr gene is replaced by a Gfp cassette. This allows for the in vivo display of TSHR using 

GFP immunoreactivity (GFP-ir) as a surrogate for TSHR expression. Abundant GFP-ir 

(green) was detected in the ependymal layer of the 3V in Tshr+/− mice whereas GFP-ir was 

absent in Tshr+/+ mice. Sections were co-stained with DAPI (blue) and the neuronal marker 

NeuN (red). (B). Tshr transcripts in the 3V tanycytes in a sagittal brain section (RNAscope, 

red dots). Fshr (C), Lhcgr (D), and Oxtr (E) transcripts in the 3V tanycytes in a coronal 

brain section (RNAscope, brown dots). 3V, third ventricle; Arc, arcuate nucleus; VMH, 

ventromedial nucleus. Scale bar = 100 μm (A), 50 μm (B), and 20 μm (C–E).
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Figure 3: 
Pituitary glycoprotein hormone receptors, GLUT2, and leptin receptors are found in 3V 

tanycytes. Thyroid-stimulating hormone (TSH) is stimulated and secreted in response 

to the hypothalamic thyrotropin-releasing hormone (TRH). The conversion of thyroxine 

to triiodothyronine (T3) occurs in the tanycytes, and this process is thought to be the 

critical regulator of the TRH neurons. In turn, T3 itself has been reported to have 

orexigenic properties. Tanycytes express the glucose transporter GLUT2 and glycolytic 

enzyme GCK, which is a critical enzymatic component of glucosensing. Additionally, 

the adipokine leptin acts via LEPR found on the ME tanycytes to regulate appetite 

and energy expenditure. We also found expression of FSHRs, LHCGRs, and OXTRs 

in 3V tanycytes, but their functions are currently unknown. 3V, third ventricle; ARC, 
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arcuate nucleus; DIO2, iodothyronine deiodinase 2; FSHR, follicle-stimulating hormone 

receptor; GCK, glucokinase; GLUT2, glucose transporter 2; LDH, lactate dehydrogenase; 

LEPR, leptin receptor; LHCGR, luteinizing hormone/choriogonadotropin receptor; MCT1/4, 

lactate transporter 1 and 4; ME, median eminence; OXTR, oxytocin receptor; POMC, 

proopiomelanocortin; T3, triiodothyronine; T4, L-thyroxine; TSH, thyroid-stimulating 

hormone; TSHR, thyroid-stimulating hormone receptor.
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