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Abstract

Background: Individuals with bipolar disorder (BD) and schizophrenia (SCZ) show aberrant 

brain dynamics (i.e., altered recruitment or traversal through different brain states over time). 

Existing investigations of brain dynamics typically assume that one dominant brain state 

characterizes each time point. However, as multiple brain states likely are engaged at any given 

moment, this approach can obscure alterations in less prominent but critical brain states. Here, we 

examine brain dynamics in BD and SCZ by implementing a novel framework that simultaneously 

assesses the engagement of multiple brain states.

Methods: Four recurring brain states were identified by applying nonlinear manifold learning 

and K-means clustering to the Human Connectome Project task-based fMRI data. We then 

assessed moment-to-moment state engagement in two independent samples of healthy controls 

(HCs) and patients with BD or SCZ using resting-state (N=336) or task-based fMRI (N=217). 

Relative state engagement and state engagement variability were extracted and compared across 

groups using MANCOVA, controlling for site, medication, age, and sex.

Results: Our framework identified dynamic alterations in BD and SCZ while a state 

discretization approach revealed no significant group differences. Patient participants showed 
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reduced state engagement variability, but not relative state engagement, across multiple brain 

states during resting-state and task-based fMRI. We found decreased state engagement variability 

in older participants and preliminary evidence suggesting an association with avolition.

Conclusions: Findings suggest that assessing multiple brain states simultaneously reflects 

the complexity of aberrant brain dynamics in BD and SCZ, providing a more comprehensive 

understanding of the neural mechanisms underpinning these conditions.
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neuroimaging

Introduction

Bipolar disorder (BD) and schizophrenia (SCZ) are multifaceted, heterogeneous psychiatric 

disorders characterized by psychotic symptoms and impaired executive functioning (1, 2, 3). 

These illnesses and their cardinal symptoms putatively reflect disruptions in the interactions 

between functional brain networks, including the default mode and frontoparietal networks 

(4, 5, 6). Many previous studies have examined disruptions using “static” functional network 

structure, estimated over a minutes-long scan. Nevertheless, as communications within the 

brain are dynamic and fluctuate over small time windows (7, 8), our understanding of the 

neural correlates underpinning these disorders may be incomplete.

Indeed, a new wave of methods has emerged to capture this additional temporal information 

in the form of brain states (i.e., recurring brain activation and connectivity patterns) (8). 

Brain states can be characterized in terms of state engagement (i.e., the proportion of time 

points spent in a particular state, also called dwell time) and transition (i.e., the number 

of times individuals transitioned from one state to another). These methods have revealed 

aberrant brain dynamics in BD and SCZ that were undetectable using static approaches (9, 

10, 11). Compared to healthy controls (HC), individuals with these disorders demonstrate 

aberrant transitions and dwell times (12, 13, 14, 15, 16, 17, 18, 19). Brain dynamic 

alterations are additionally associated with psychiatric symptoms in these groups, including 

elevated suicide risk, psychotic symptom severity, and hallucinations (14, 15, 18, 19).

However, these studies mainly assigned one state to each time unit despite the possibility 

that the activity or connectivity patterns at a given time window can reflect a combination 

of several patterns (15). As brain state recruitment can overlap temporally (20, 21), a state 

discretization approach might ignore meaningful but non-dominant constituent brain states 

that also contribute to the observed activation pattern at each time point. This approach 

can potentially misrepresent dynamic information. For instance, assigning one state to 

each time point makes it challenging to evaluate whether the elevated recruitment of one 

constituent brain state might accompany reduced engagement of another as an alternative or 

compensatory mechanism in clinical populations.

To address this limitation, we developed a novel method that estimates the extent to which 

each time point reflects the presence of multiple co-occurring states. We first applied 
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nonlinear manifold learning and 2-step Diffusion Mapping (2sDM) to project task-based 

fMRI data from the Human Connectome Project (HCP; 22) onto a low-dimensional space. 

We subsequently identified reproducible brain activity patterns across multiple fMRI tasks 

(23). With non-negative least squares regression, we extended these recurring brain activity 

patterns to two ethnically diverse international datasets. We examined whether individuals 

with BD or SCZ differed from HC in either their engagement of or transitions through these 

brain states. Notably, this framework used 2sDM to learn task-relevant brain states for each 

time point in the HCP, followed by non-negative least squares regression to characterize 

brain state engagement for each time point in two other previously unseen datasets. We 

hypothesized that individuals with BD and SCZ would show aberrant brain dynamics 

(i.e., overall state engagement and engagement variability) compared to HC during rest. 

Since difficulties with executive functioning and cognitive flexibility have been consistently 

reported in individuals with BD and SCZ (2, 24, 25, 26), secondary analyses using fMRI 

data from a task-switching paradigm were performed to further investigate state transition in 

clinical populations and link altered brain state dynamics to clinical symptoms.

Methods and Materials

Participants

Data from three independent, publicly available datasets were analyzed in this study. First, 

we used the HCP S500 release (22) to identify recurring brain states. The moment-to-

moment engagement of these brain states was explored in the HC, BD, and SCZ groups 

from the UCLA Consortium for Neuropsychiatric Phenomics (CNP) and the University of 

Tokyo Hospital site in the Japanese Strategic Research Program for the Promotion of Brain 

Sciences (SRPBS) datasets (27, 28). Demographic information for each dataset is shown in 

Table 1 (see Supplementary Table 1 for medication information).

HCP fMRI data from six tasks (motor, working memory, social, emotional, relational, and 

gambling) were used to identify recurring brain states. As the HCP dataset contains tasks 

ranging from motor to cognitive and affective paradigms, it has the potential to reveal brain 

states underlying a rich set of cognitive processes. Brain states were identified in the HCP 

dataset to avoid circular analysis and overfitting when examining them in the CNP and 

SRPBS cohorts. We used the resting-state fMRI data from CNP and SRPBS dataset for 

primary analyses. Task-based fMRI data from the CNP task-switching paradigm were used 

for secondary analyses.

FMRI data preprocessing

Acquisition and imaging parameters for the HCP, CNP, and SRPBS datasets have been 

detailed elsewhere (22, 27, 28). The HCP minimal preprocessing pipeline was used for 

the HCP dataset (29). Standard preprocessing procedures described in previous work (23) 

were applied to the structural and functional data from the CNP and SRPBS datasets 

(see Supplementary Material for more details). While we have utilized the HCP and CNP 

datasets in previous works (23, 30), neither studies explored aberrant brain dynamics 

in individuals with BD or SCZ. We removed time points with over 0.45 framewise 
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displacement to mitigate motion artifacts. Participants with over 20% of their time points 

censored due to motion were excluded from further analysis.

Additional quality control criteria for the HCP and CNP datasets were described in 

a previous study and are summarized in the Supplementary Material (23). After these 

exclusions, 390 HCP participants remained for brain state identification. For brain dynamics 

analyses, 336 participants from the CNP and SRPBS datasets were included in the resting-

state analysis (N=177 participants from the CNP dataset, HC: n=104, BD: n=35, SCZ: 

n=38; N=159 participants from the SRPBS dataset: HC: n=86, BD: n=40, SCZ: n=33, Table 

1), and 217 participants (CNP dataset, HC: n=120, BD: n=49, SCZ: n=48; Table 1) were 

included in the task-based analysis.

Brain state identification

As detailed information on 2sDM was described in earlier work (23), we provide a brief 

overview here. Nonlinear approaches like 2sDM can project complex neural data onto a 

manifold that is more representative of its temporal dynamics than linear methods to find 

robust brain states (23). In brief, diffusion maps was applied twice to fMRI timeseries data 

to reduce it in the participant’s and brain node’s dimensions as well as embedding it into a 

lower-dimensional space, where time points showing similar activity were located closer to 

each other (Figure 1). We applied K-means clustering for 100 iterations using the first three 

embedding dimensions and found the optimal number of clusters, or brain states, as four 

using the Calinski-Harabasz criterion (31; see discussion on the number of brain states in 

Supplementary Material). These labels can be applied to the original data to find time points 

associated with each state across participants. For each brain state, all associated fMRI data 

from all participants were averaged first across the individual level and next across time 

points to establish a brain state representative time point. These brain states are considered 

as recurring, as their activation patterns emerged during the performance of six different 

fMRI tasks across different time points. The same set of activation patterns can also be 

found when participants are at rest (23).

Next, we investigated how canonical functional brain networks activated or deactivated for 

each brain state using the ten functional networks defined in the Shen-268 atlas (32,33). 

For each network, we first identified the activated and deactivated regions within each 

representative time point (defined as having activation above or below 0, respectively). An 

activation or deactivation percentage was computed by dividing the number of activated or 

deactivated regions by the total number of regions in a network.

Resting-state brain dynamics analyses

As brain state engagement can overlap spatially and temporally (20,21), we developed a 

framework to track the contributions of multiple brain states simultaneously in a continuous 

manner. Perhaps one helpful analogy to our approach is color. Red, yellow, and blue are 

the primary colors, which can be combined in various ways to form different secondary 

colors. Here, we first identified a set of recurring brain states, as described earlier, 

to serve as potential constituent brain states (similar to the primary colors). Next, to 

evaluate how they were engaged over time to form observed activation patterns (similar 
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to secondary colors formed by the three primary ones), we regressed each representative 

time point from every CNP and SRPBS resting-state time point with non-negative least 

squares regression (MATLAB function lsqnonneg; Figure 2). Non-negative least squares 

was selected over standard regression to ensure brain state engagements were positive, 

as a negative state engagement, which is possible with standard regression, is difficult 

to interpret. Representative time points and all rest time points were first normalized by 

standard deviation before regression.

By concatenating the output beta coefficients for each state across time, we can create 

a brain state timeseries indicating a particular state’s weighted contribution over time for 

each participant (Figure 2). Two summary measures can be extracted from each brain 

state timeseries: 1) relative state engagement —a continuous version of state engagement 

computed by dividing the sum of each state’s beta coefficients by the sum of all beta 

coefficients, and 2) state engagement variability —a continuous estimation of state transition 

defined as the standard deviation of brain state timeseries (see Supplementary Material for 

validations of these brain dynamic measures).

Secondary analysis with task-based fMRI data

We performed secondary analyses in a smaller sample with available fMRI data from a task-

switching paradigm. This task required participants to flexibly switch between task rules 

(i.e., responding to the color vs. the shape of the stimulus) based on the cue presented over 

96 trials (27). As this paradigm demands flexible responses to changing cognitive demands, 

it can supplement our resting-state analysis to provide insight into altered brain state 

engagement variability in clinical populations. Relative state engagement and engagement 

variability were extracted and examined in this dataset.

Statistical analysis

We combined the two datasets for resting-state group comparison to maximize statistical 

power for detecting brain dynamic alterations in BD and SCZ. Additionally, this allowed 

us to capitalize on similar study designs (e.g., collection of eyes-open, resting-state data 

from adult patient participants) and examine the extent to which these alterations generalize 

across cultures. As we have a relative state engagement and state engagement variability 

measure for each brain state, multivariate group differences were examined across all three 

groups using MANCOVA, with site (N=2), medication, age, and sex as covariates. The 

group comparison analysis was supplemented by assessing group differences between both 

patient groups and HC (i.e., BD vs HC and SCZ vs HC) with t-squared tests, controlling for 

site, medication, age and sex. Cohen’s d effect sizes in pairwise differences were computed 

to quantify how much each brain state contributed to multivariate group differences. For our 

primary and secondary analyses, p<0.0125 (i.e., p<0.05/4) was considered significant after 

Bonferroni correction for multiple comparisons. We did not correct for multiple comparisons 

for our post hoc or exploratory analyses. We additionally examined brain dynamics with a 

state discretization approach (see Supplementary Material for details).
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Exploratory analysis with behavioral data

To further understand the implications of differences in state engagement variability, we 

examined the association between state engagement variability and symptom measures 

in patient participants. We focused on brain dynamic measures from task-based fMRI 

data, as the sample size was larger than the resting-state dataset. We first performed a 

principal component analysis (PCA) on the four state engagement variability measures 

to estimate a combined state engagement variability measure. This step allowed us to 

reduce dimensionality and decrease the number of statistical tests needed to investigate how 

state engagement variability across all four states was associated with clinical symptoms. 

Similar state engagement variability patterns were observed in both patient groups. Data 

from participants with BD and SCZ were additionally combined here to increase statistical 

power and examine transdiagnostic associations between altered brain dynamics and clinical 

symptoms. The first output component scores were then correlated with measures from 

the Scale for Assessment of Negative Symptoms (34) and Scale for Assessment of 

Positive Symptoms (35) using Spearman correlation. We specifically focused on avolition, 

anhedonia, and attention since the other factor measures were zero-inflated (Supplementary 

Figure 1). These symptom measures were only available in patient participants, not in HCs.

Results

Brain states and canonical functional brain networks

Replicating previous work (23), we identified four brain states with distinct activity 

patterns using 2sDM and K-means clustering. These brain states were characterized as high-

cognition, low-cognition, fixation and cue/transition based on the task conditions involved in 

each cluster (Figure 3A; Supplementary Table 4).

In general, the networks associated with each brain state aligned with the presumed 

cognitive processes supported by each state (Figure 3B; Supplementary Table 5). For 

example, the entire motor network was activated for the low-cognition state, which 

contained time points from the motor task. Additionally, the high-cognition state, which 

included time points from working memory, emotional, social and relational tasks, was 

associated with frontoparietal network activation and default mode network deactivation.

Primary and secondary analysis: resting-state and task brain dynamics across groups

Before group comparisons, we examined the residual from non-negative least squares 

regression. No rest or task time point showed an outlier residual term (defined as 1.5 times 

the interquartile range), suggesting that the activity patterns of all rest and task time points 

can be considered as some weighted combinations of brain states obtained from the HCP 

(see discussion on residuals and model fitting in Supplementary Material).

During rest, we observed a significant effect of diagnostic group on state engagement 

variability (MANCOVA; F(8,648) =3.093, p=0.002; Figure 4B) but not for relative state 

engagement (MANCOVA; F(8,648)=1.327, p=0.227; Figure 4A). There were additionally 

site and age effects on state engagement variability (Supplementary Table 7; see 
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Supplementary Material for site effect discussion). The effect of medication use was not 

significant (Supplementary Table 7).

Follow-up tests interrogated how clinical groups differed from HCs for state engagement 

variability. Participants with BD (t-squared; F(4,253)=4.850, p<0.001) and SCZ (t-

squared; F(4,249)=2.883, p=0.023) showed significant differences in state engagement 

variability compared to HCs when including site, medication, age, and sex as covariates 

(Supplementary Table 8). Both clinical groups showed lower state engagement variability 

across multiple brain states, with the high-cognition brain state showing the largest effect 

size (Supplementary Tables 9 and 14).

During task-switching paradigm, we similarly observed a significant group effect on state 

engagement variability (MANCOVA; F(8,412)=2.536, p=0.011; Figure 5B) but not on 

relative state engagement (MANCOVA; F(8,412)=0.734, p=0.662; Figure 5A). While the 

effect of medication use was not significant, there were significant age, site, and sex 

effects (Supplementary Table 10; see Supplementary Material for site effect discussion). 

Both participants with SCZ (t-squared; F(4,157)=3.103, p=0.017) and BD (t-squared; 

F(4,158)=2.792, p=0.028) demonstrated lower state engagement variability in several brain 

states compared to HCs (Supplementary Table 11, 12 and 14). These findings indicate 

that aberrant brain dynamics in BD and SCZ affected multiple brain states during both 

paradigms. Our results further emphasize that implementing a multivariate approach 

when examining multiple brain states simultaneously can provide a more comprehensive 

understanding of brain dynamic alterations in BD and SCZ.

Brain dynamics with discrete states

We additionally compared brain dynamics that were extracted using a state discretization 

approach between groups. With discretized states, we did not observe significant group 

differences in state transition during resting-state (F(2,326)=1.404, p=0.247; Supplementary 

Table 15) or task-switching (F(2,208)=0.167, p=0.846; Supplementary Table 16). The group 

effect on dwell times was not significant for either resting-state or task-based data following 

Bonferroni correction (Supplementary Table 15 and 16).

Post hoc and exploratory analysis: age, symptom measures and state engagement 
variability

As we observed a strong age effect on state engagement variability in resting-state and task-

switching (Supplementary Table 7 and 10), we conducted a post hoc analysis to investigate 

the direction of their association. Combined state engagement variability was computed 

to draw information from all four states while lowering the number of statistical tests 

run (Supplementary Table 17). At rest, combined state engagement variability decreased 

with age in the HC and SCZ groups (Pearson; HC: r=−0.414, p<0.001; SCZ: Pearson; 

r=−0.348, p=0.003; Figure 6A), but the correlation was not significant in the BD group 

(Pearson; r=−0.192, p=0.098; Figure 6A). The association between age and combined 

state engagement variability was significant for all groups during the task (Pearson; HC: 

r=−0.269, p=0.003; SCZ: r=−0.318, p=0.028; BD: r=−0.355, p=0.012; Figure 6B).
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Our exploratory analysis additionally revealed that decreased combined state engagement 

variability during task-switching was associated with elevated avolition in individuals with 

BD and SCZ (r=−0.222, p=0.029; Supplementary Figure 4; Supplementary Table 11), 

but not the other symptom measures (attention: r=0.154, p=0.132; anhedonia: r=−0.152, 

p=0.138; Supplementary Table 11).

Discussion

Here, we examined whether altered brain dynamics in individuals with BD or SCZ reflect 

differences in the simultaneous engagement of multiple brain states relative to unaffected 

controls. Our novel framework leveraged nonlinear manifold learning and non-negative least 

squares regression to assess the continuous engagement of brain states during resting-state 

and task-based fMRI. Both the BD and SCZ groups showed consistent reductions in state 

engagement variability across multiple brain states during rest and a cognitive control 

task. Decreased variability can indicate lower neural complexity, potentially reflecting the 

brain’s impaired ability to flexibly respond to ongoing cognitive demands (37,38). Detecting 

altered brain dynamics in a smaller sample using a task-switching paradigm supports 

prior arguments that more robust brain-behavior relationships can be identified when the 

construct of interest (i.e., cognitive flexibility) is engaged during the scan (39,40). A state 

discretization approach did not reveal aberrant brain dynamics in clinical populations. These 

results deepen our understanding of the neural basis of BD and SCZ, indicating that these 

illnesses reflect impaired fluid recruitment of different brain states, which may, in turn, 

contribute to difficulties with cognitive functioning or motivation.

Additional insight from assessing multiple brain states simultaneously

Prior studies of brain dynamics in BD and SCZ have reported mixed results, encompassing 

increased, similar, and decreased state transition and dwell time in clinical populations 

(12, 13, 15, 16, 17, 18). While these discrepancies could reflect variable analytic 

approaches, many studies often do not fully consider the temporal overlap in brain state 

engagement. Therefore, previous mixed findings might reflect potential bias contributed 

by the differences in the relative dominance of a given brain state. Assessment of state 

transition and engagement across multiple brain states simultaneously represents a powerful 

approach that is less biased by brain state dominance and might more closely reflect the 

complex cognitive alterations observed in patients with BD and SCZ.

We found similar relative state engagement across patient and control groups, which deviates 

from prior reports of altered dwell time in BD and SCZ (12, 13, 14, 18). The four brain 

states examined here shared spatial overlap with some of the brain states showing altered 

dynamics in patients in previous studies. For instance, studies have reported on states 

with DMN activation and frontoparietal network (FPN) deactivation or DMN deactivation 

and visual areas activation (18, 41). These states were analogous to our fixation and 

high-cognition states, respectively. But some spatial variations were also noted. Patients 

dwelled more in states showing opposite activation patterns in the FPN and the sensorimotor 

networks (18). Additionally, they spent less time in states where the DMN and FPN showed 

similar activation levels (i.e., activating or deactivating together; 41). None of our brain 
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states showed these latter activation patterns. However, it is important to point out that our 

framework should still be able to capture these previously unseen patterns since it allows the 

simultaneous combinations of our four brain states. For example, a time point showing both 

DMN and FPN activation can be represented by the weighted sum of the high-cognition and 

fixation brain states.

One possible explanation underlying the differences in results is that our relative state 

engagement measure is not analogous to dwell time. The inconsistency in results likely 

reflects variations in the operationalization of engagement across studies. A state with less 

dwell time (i.e., considered dominant in fewer time points) can still show high relative state 

engagement if it is consistently engaged in the background. Our results also suggest that a 

state discretization approach might mask variability differences as dwell time differences. If 

a state demonstrated decreased engagement variability (as in most states examined here), it 

would likely show consistent engagement across time and be assigned to more or fewer time 

points, depending on its dominance. This variability difference might then be interpreted 

as increased or decreased dwell time, respectively. Our results indicated that altered brain 

dynamics in BD and SCZ stem from disrupted recruitment of various brain states across 

time, instead of the elevated or decreased engagement of a particular brain state relative to 

controls.

It is worth mentioning here that aberrant dwell times in patients have also been reported 

by papers using dynamic functional connectivity approaches. Specifically, patients spent 

more time in brain states that are characterized by weaker or sparser functional connections 

(12,13,42). These results echoed our main findings of decreased state engagement variability 

in BD and SCZ, indicating that patients might have decreased neural complexity to 

effectively engage different brain networks or brain states to support cognitive processes 

(37,38).

Speculating the contribution of the dopaminergic system

While we observed aberrant state engagement variability in BD and SCZ, the mechanisms 

underpinning these alterations remained unclear. The dopaminergic system is one potential 

candidate, as it is implicated in the pathogenesis of BD and SCZ (43, 44, 45, 46), cognitive 

control (47), aging (48, 49), and avolition (50). Emerging work has demonstrated that 

changes in the dopaminergic system (either induced by pharmacological manipulations 

or observed in psychiatric disorders such as SCZ) are associated with brain dynamic 

differences (51). Notably, a dopamine D2-receptor antagonist increased the effort required 

for state transition (51). These previous findings are important to consider since some 

patient participants were prescribed dopamine D2 antagonist medications at the time 

of scanning. While our analyses controlled for medication use, it remains possible that 

medication-induced alterations in dopamine functioning contributed to the observed group 

differences in engagement variability. Future research directly manipulating dopaminergic 

tone can further characterize how dopamine contributes to brain dynamic differences across 

individuals and in psychiatric disorders.
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Limitations and future directions

While our framework provides a more comprehensive picture of brain dynamics by tracking 

multiple states concurrently, some limitations should be considered. As we used open-source 

data, medication information was unavailable for the SRPBS participants. However, when 

including medication as a covariate for our task-based analyses in the CNP dataset, we 

still observed aberrant state engagement variability in patient participants. These results 

suggest that group differences are potentially robust to medication effects. Brain states were 

identified using fMRI data from healthy HCP participants. While previous studies (18,21,23) 

have reported similar brain states in patients (including both BD and SCZ) and HC, model 

fit differences across groups could decrease or increase state engagement in patient groups. 

It is additionally possible that brain states outside of the ones studied here could contribute 

to impaired dynamics in BD and SCZ. One can easily modify our framework to study brain 

dynamics using brain states identified with other approaches (such as Neurosynth activation 

maps). Applying this framework to study brain dynamics in other clinical populations can 

shed light on whether the alteration patterns reported here are specific to BD and SCZ or can 

be generalized to other forms of psychopathology. Furthermore, the current study examined 

brain dynamics within each experimental condition. Future work can study if differences in 

brain dynamics between resting-state and task-based fMRI provide additional insights.

In summary, we introduced a novel approach to investigate multiple brain states that 

co-occur simultaneously. Findings from this study suggest that aberrant state engagement 

variability – instead of relative state engagement – drives brain dynamic differences in BD 

and SCZ. Our approach revealed brain dynamic alterations while a discrete state approach 

did not find significant group differences. By assessing multiple brain states simultaneously, 

our framework painted a more comprehensive picture of brain dynamics in a population-

based cohort, as well as in patients with serious mental illness. This novel framework has 

the potential to provide a more comprehensive understanding of psychiatric disorders and 

uncover new findings not observable with previous methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 2sDM pipeline.
A) Flowchart showing how 2sDM was applied to the HCP dataset to first reduce the brain 

node’s (d1) and participant’s (d2) dimensions before projecting it to a low-dimensional 

space. B) Several views of the manifold. Each dot here represents a time point, color-coded 

by the task condition it is associated with. Further details about 2sDM can be found in Gao 

et al., 2021 (23).
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Figure 2: Assessing moment-to-moment brain state engagement with non-negative least squares 
regression.
This flowchart illustrates how beta coefficients for each brain state are concatenated across 

time to create a brain state timeseries. Four recurring brain states were identified using the 

HCP dataset: fixation, high-cognition, low-cognition and cue/transition (see Figure 3). The 

representative time points for each HCP-derived state were regressed from each resting-state 

or task-switching time point of interest in the CNP and SRPBS datasets. The inputs to this 

regression are one time point of interest from an independent dataset (dependent variable; 

either resting-state or task-based data), as well as the representative time point from each 

of the four recurring brain states (independent variable). After the four representative brain 

states were regressed from the time point of interest. We received four beta coefficients. 

Each coefficient indicated the contribution of each brain state to the time point of interest. 

For each state, we can then create a brain state time series by concatenating beta coefficients 

across time. Two summary measures can be generated using the brain state time series: state 

engagement variability and relative state engagement.
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Figure 3: Recurring brain states and their association with canonical functional brain networks.
A) Four brain states identified from K-means clustering. These states were defined as 

fixation, high-cognition, low-cognition, and cue/transition based on the prominent task 

conditions associated with the time points in each cluster (each dot here represents a time 

point; see Figure 1 and Supplementary Table 4 for their task conditions). B) Regional 

brain activation corresponding to the four representative brain states. Spider plots show the 

relative extent to which functional brain networks were activated and deactivated in each 

representative timepoint. For illustrative purposes, the raw activation values were multiplied 

by 100. MF, medial frontal network; CBL, cerebellar network; SC, subcortical network; 

SAL, salience network; Vas, visual association network; VII, visual II network; VI, visual I 

network; motor, motor network; DMN, default mode network; FP, frontoparietal network.
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Figure 4: Brain dynamics during rest.
A) All three groups showed similar relative state engagement across all four states during 

rest. B) But we observed lower state engagement variability across multiple brain states in 

BD and SCZ compared to HC. Yellow, HC; red: SCZ; blue: BD. Violin plots created using 

the ggstatsplot R package (34).
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Figure 5: Brain dynamics during task-switching.
A) Similar to rest, we found that all three groups recruited the four brain states similarly 

during task-switching. B) The clinical populations also showed significantly lower state 

engagement variability in several brain states compared to HC during task-based fMRI. 

Yellow, HC; red: SCZ; blue: BD. Violin plots created using the ggstatsplot R package (36).
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Figure 6: Associations between state engagement variability and age.
A) Overall state engagement variability was negatively related to age in HC and SCZ 

groups at rest. B) During task-switching, older participants showed decreased combined 

state engagement variability across all three groups.
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Table 1

Demographic information by dataset

Characteristic HC BD SCZ

SRPBS N 86 40 33

Self-reported sex (F/M) 56/30 15/25 11/22

Age (years) (M±SD) 47.07±15.18 34.48±9.11 31.64±10.77

CNP (Resting-state dataset) N 104 35 38*

Self-reported sex (F/M) 49/54 15/20 9/29

Age (years) (M±SD) 30.29±7.99 34.09±9.01 35.42±8.99

Ethnicity AI/Asian/Black/White/Other 20/2/1/81/0 2/0/1/27/5 8/0/2/26/1

CNP (task-switching dataset) N 120 49 48**

Self-reported sex (F/M) 56/64 21/28 11/37

Age (years) (M±SD) 31.65±8.84 35.29±9.03 36.19±8.87

Race or ethnicity AI/Asian/Black/White/Other 25/2/1/92/0 4/0/1/37/7 11/1/2/31/1

Note: This table reports the demographic information for all three datasets included in this study. Race or ethnicity information was not available 
for the SRPBS dataset. AI, American Indian or Alaskan Native, BD, bipolar disorder; HC, healthy control; Other, more than one race or ethnicity; 
SCZ, schizophrenia.

*
Race information missing from one participant.

**
Race information missing from two participants.
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