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Abstract

Purpose: To develop a unified deep-learning framework by combining an ultrafast Bloch 

simulator and a semisolid macromolecular magnetization transfer contrast (MTC)-MRF 

reconstruction for estimation of MTC effects.

Methods: The Bloch simulator and MRF reconstruction architectures were designed with 

recurrent neural networks (RNN) and convolutional neural networks (CNN), evaluated with 

numerical phantoms with known ground-truths and cross-linked BSA phantoms, and demonstrated 

in the brain of healthy volunteers at 3T. In addition, the inherent MT ratio asymmetry effect 

was evaluated in MTC-MRF, chemical exchange saturation transfer (CEST), and relayed nuclear 

Overhauser enhancement (rNOE) imaging. A test-retest study was performed to evaluate the 

repeatability of MTC parameters, CEST, and rNOE signals estimated by the unified deep-learning 

framework.

Results: Compared to a conventional Bloch simulation, the deep Bloch simulator for generation 

of the MTC-MRF dictionary or a training dataset reduced the computation time by 181-fold, 

without compromising MRF profile accuracy. The RNN-based MRF reconstruction outperformed 

existing methods in terms of reconstruction accuracy and noise robustness. Using the proposed 

MTC-MRF framework, for tissue parameter quantification, the test-retest study showed a high 

degree of repeatability in which the coefficients of variance were less than 7% for all tissue 

parameters.

Conclusion: Bloch simulator-driven, deep-learning MTC-MRF can provide robust and 

repeatable multiple-tissue parameter quantification in a clinically feasible scan time on a 3T 

scanner.
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1. INTRODUCTION

Saturation transfer (ST) MRI provides unique and flexible contrast mechanisms, including 

semisolid magnetization transfer contrast (MTC) and chemical exchange saturation transfer 

(CEST), which enable indirect detection of MR-invisible protons bound to macromolecules 

(e.g., semisolid proteins and lipid bilayers of myelin) or water-exchangeable solute protons 

(e.g., mobile proteins and peptides), respectively (1–4). MTC imaging is highly sensitive 

to demyelination, inflammation, and edema and has shown promise for evaluating white 

matter diseases, such as multiple sclerosis and traumatic brain injury (5–7). However, 

MTC measured by a conventional MT ratio (MTR) metric has a dependence on multiple 

parameters, including semisolid proton concentration, average exchange rate of bound water 

and exchangeable protons, and free water relaxation properties (8–10). In addition, the ratio 

is affected by imaging scan parameters, such as RF irradiation frequency, saturation field 

strength, and duration. To improve the specificity and reproducibility of MTC, quantitative 

MT imaging analysis procedures have been used to estimate intrinsic tissue properties that 

are independent of the choice of acquisition parameters, most commonly by fitting acquired 

MTC-weighted images to a biophysical two-pool exchange model (3, 11–13). However, 

the fitting-based approach is often computationally intensive, susceptible to being stuck 

at local minima, and dependent on the number of fitting parameters, initial fitting values, 

and boundary conditions, often leading to poor quantification accuracy and computational 

efficiency.

While MTC has a broad absorption line-shape of the semisolid macromolecule-bound 

protons over a wide range of frequencies, CEST contrast is based on RF irradiation applied 

at a frequency offset specific for certain exchangeable protons. Amide proton transfer (APT) 

is one type of CEST contrast for a large group of amide protons (-NH) with an average 

chemical shift of about 3.5 ppm downfield from water. APT-weighted MRI has shown great 

potential in the diagnosis of many pathologies, such as cancer, stroke, and neurodegenerative 

disease (14–29). When applying RF saturation at 3.5 ppm for APT imaging, however, 

free bulk water and semisolid macromolecular protons may also be saturated due to 

overlap in the chemical shift, leading to an inevitable interference with the desirable APT 

contrast. Although a conventional MTR asymmetry (MTRasym) analysis can largely remove 

symmetric, direct water saturation and MTC effects, the APT-weighted (APTw) signal, 

measured by the MTR asymmetry analysis, is still confounded by inherent MT asymmetry, 

both from the relayed nuclear Overhauser effect (rNOE) in mobile macromolecules upfield 

from water and asymmetry in the semisolid MTC (30–33). To make matters worse, the MTR 

asymmetry and/or rNOE effects are weighted by the choice of RF saturation parameters, 

thus, reducing the specificity of APTw contrast (16, 34–36).

Recently, fast and quantitative MTC and CEST imaging techniques have been proposed 

by integrating an RF saturation scheme with MR fingerprinting (MRF) (37–41). Various 
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RF saturation parameters are applied, which create distinct signal evolutions for different 

tissue properties. For MRF reconstruction, a pattern-matching algorithm is typically needed 

to determine different tissue-type parameters against a pre-calculated dictionary created 

by Bloch simulations with a large range of tissue parameters (38). However, depending 

on the sequence type, the number of tissue properties, and the granularity of the tissue 

property values, the dimension or size of the dictionary is exponentially increased, which 

inevitably leads to an intensive computation time for dictionary generation and MRF 

reconstruction. To reduce the computational burden for MRF reconstruction, deep-learning-

based reconstruction techniques have been developed by learning the mapping relationship 

between MRF signals and tissue properties (37, 39–43). To improve reconstruction accuracy 

and generalization performance, the training dataset must be highly sampled with a wide 

range of tissue parameter combinations, which is extremely computationally expensive. In 

addition, optimization of the MRF acquisition schedule is very important to accelerate data 

acquisition and improve accuracy of the tissue parameter estimation (43, 44). However, 

repeatedly generating a dictionary or training dataset for each MRF schedule tested incurs 

a very high and impractical computational cost. In this study, a unified deep-learning 

architecture that included an ultrafast Bloch simulator and tissue parameter reconstruction 

was developed to address the above-mentioned issues. A deep Bloch simulator was designed 

to generate a huge amount of training dataset in a short time. A hybrid deep-learning model 

combined with a recurrent neural network (RNN) and a convolutional neural network (CNN) 

was proposed to improve the accuracy of MTC-MRF reconstruction (water proton and 

semisolid macromolecular proton parameters, such as relaxation time, pool size ratio, and 

exchange rate). The performance of the hybrid neural network was evaluated on numerical 

phantoms with known ground-truths and cross-linked bovine serum albumin phantoms. The 

proposed framework was demonstrated on healthy volunteers and compared with previous 

reconstruction methods (40, 45), including a fully connected neural network (FCNN) and 

Bloch fitting approaches. In addition, a test-retest study was performed to evaluate the 

repeatability of the tissue parameters estimated from the deep-learning framework.

2. THEORY

The Bloch simulator and MTC-MRF reconstruction are based on a two-pool exchange 

model. The dependence of tissue and scan parameters is captured by forward and inverse 

models derived from two-pool Bloch equations (3, 40, 46).

2.1 Steady-state two-pool MTC model

The MTC process can be described by a two-pool exchange model, free bulk water 

proton (w) and semisolid macromolecular proton (m) pools. Two-pool signal profiles were 

generated with a pseudorandomized RF saturation and acquisition parameters consisting of 

RF saturation strength (B1), saturation time (Ts), frequency offset (Ω), repetition time (TR) 

or relaxation delay time (Td), as shown in Figs. 1A and B. A steady-state MTC signal (SMTC
ss )

assuming a long Ts and TR is derived as follows (3):

SMTC
ss (ωoff, ω1) = α1

α2
[1]
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α1 = 1
T 1

m kmwM0
mT 1

w + Rrf + kmw + 1
T 1

m [2]

α2 = (kmwM0
mT 1

w) Rrf + 1
T 1

m + 1 + ω1

ωoff

2 T 1
w

T 2
w Rrf + 1

T 1
m + kmw [3]

where T1
m and T2

m are respectively longitudinal relaxation time and transverse relaxation 

time of a semisolid macromolecular proton pool; kmw is the proton exchange rate from pool 

m to pool w; M0
m is the equilibrium magnetization of a pool m; ωoff is the frequency offset 

of the RF saturation, defined as ωoff = γB0Ω with Ω in ppm; and ω1 is the RF saturation 

amplitude, defined as ω1 = γB1. M0
w is the equilibrium magnetization of a pool w, T1

w is 

longitudinal relaxation time and T2
w is transverse relaxation time of free bulk water. Note 

that the ratio of semisolid macromolecular pool size to free water pool size (pool size ratio) 

was defined as F = 100% × (M0
m/M0

w), where M0
w is set to 1. The RF absorption rate (Rrf), 

which is the rate of loss of the longitudinal magnetization of the semisolid macromolecule 

pool, is dependent on the super-Lorentzian lineshape (gm) as follows:

Rrf = ω1
2πgm(Δω) [4]

Δω = ωoff − Δmw [5]

gm(Δω) = 2
π∫

0

1
T 2

m

3x2 − 1
. e−2 ΔωT2

m

3x2 − 1

2
dx [6]

where Δmw is the radial frequency difference between the semisolid macromolecule and 

the free bulk water proton pools. Note that a positive Δmw corresponds to the MTC line-

shape center shifted upfield from the water resonance, while a negative Δmw corresponds 

to the MTC line-shape shifted downfield. The on-resonance singularity problem of the 

super-Lorentzian lineshape was avoided by extrapolating gm(Δω) signal (13, 47). The super-

Lorentzian values were extrapolated from 1 kHz to the asymptotic limit and approximated 

by cubic spline method.

2.2 Non-steady-state two-pool MTC model

For a non-steady-state (transient-state) signal evolution with short Ts and Td, the MTC 

signal (SMTC
ns ) can be described by (34, 46, 48):

SMTC
ns (ωoff, ω1, Ts) = M0

w − SMTC
ss eλTs + SMTC

ss [7]

where:
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λ = 1
2

1
T 1

m + Rrf
m + kmw − 1

T 1
w − Rrf

w − kwm

2
+ 4M0

mkmw
2

− 1
2

1
T 1

w + Rrf
w + kwm + 1

T 1
m + Rrf

m + kmw

[8]

Rrf
w = ω1

2T 2
w

1 + T 2
wωoff

2 , Rrf
m = ω1

2T 2
m

1 + T 2
mωoff

2 [9]

in which Rrf
m and Rrf

w are the rate of loss of the longitudinal magnetization by 

semisolid macromolecules and water pools, respectively. For a series of transient MTC-MRF 

acquisitions, varied RF saturation and acquisition parameters are dynamically applied. The 

transient MTC-MRF signal evolution can be described as follows:

SMTC(Ω, B1, Ts, Td) = M0
w 1 − e− Td

T1
w − SMTC

ss eλTs + SMTC
ss

[10]

The relaxation delay time in the absence of RF irradiation allows the longitudinal 

magnetization recovery, determining an initial state of the magnetization for the next 

dynamic scan. To solve an inverse problem of the two-pool Bloch equation, a neural network 

architecture was designed to learn the non-linear relation between tissue properties and 

the MRF signal profiles derived from the analytical solution (Eq. [10]) of the transient 

MTC-MRF model.

3. METHODS

3.1 Bloch simulator network

A bi-directional long-short term memory (Bi-LSTM)-based RNN was combined with 

convolutional and dense layers for the Bloch simulator (deepBS-RNN). The network had 

sixty-four hidden memory units of Bi-LSTM as an input layer, one 1-D convolutional layer 

with 128 channels and two fully connected dense layers with 256 neurons in the middle, 

and one fully connected dense layers with 40 neurons as an output layer. For comparison of 

the performance of the deep-Bloch simulator, another Bloch simulator was designed using 

fully connected neural networks (deepBS-FCNN), which consisted of one fully connected 

input layer with five neurons, one fully connected output layer with forty neurons, and 

four fully connected layers with 128 neurons in the middle. During the training of the 

Bloch simulators, the errors of the network outputs were calculated using the L1-norm loss 

function between ground-truths and estimated MRF signal profiles, and then propagated 

back to the networks. The deep Bloch simulators were validated using a conventional two-

pool Bloch simulation (BS) with ground-truths. The Bloch simulations were performed on 

MATLAB (MathWorks, Natick, MA) installed on a 64-bit Linux system (32-core, 3.75-GHz 

AMD processor and 512 GB of memory).
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3.2 Reconstruction network

A reconstruction network using RNN (Recon-RNN) was designed with Bi-LSTM as an 

input layer, four 1-D convolutional layers and four fully connected layers to extract the 

feature from MTC-MRF signals as middle layers, and one fully connected layer at an 

output layer. The Bi-LSTM layer had 128 hidden memory units, each convolutional layer 

had 256 channels, each fully connected layer in middle had 512 neurons and the last fully 

connected layer had four neurons. ReLU activation function was used to add non-linearity 

after Bi-LSTM layer and each convolutional layer. A sigmoid activation function was used 

as the last activation function in the fully connected layer, and then, the output values (tissue 

parameters) were de-normalized in their maximum to minimum range: kmw: [100, 5] Hz; F: 

[17, 2] %; T2
m: [100, 1] μs; and T1

w: [3, 0.2] s. To evaluate the MTC asymmetry effect, 

an additional tissue parameter (Δmw: [4, 0] ppm) was estimated, hence the fully connected 

layer had five neurons at the output. Note that T1
m was assumed to be 1 s due to a negligible 

contribution to the MTC signal (49). Mean squared errors between ground-truth values and 

estimated tissue parameters (N = 4 or 5) were calculated as the loss function (Loss1):

Loss1 = ∑
i = 1

N P t − P′t
2

N [11]

where Pt is the ground-truth and P’t is the tissue estimate. After de-normalization, the 

estimated tissue parameters and the T2 relaxation time of free bulk water (T2
w) were fed 

to a two-pool Bloch equation module to calculate MTC signal intensities at ±3.5 ppm with 

a B1 of 1 μT and 1.5 μT. The second loss function (Loss2) was calculated by averaging of 

the sum of the squared difference between the ground-truth values and the estimated MTC 

signal intensities at 1 μT and 1.5 μT respectively. The overall loss function was defined as:

L = Loss1 + λLoss2 [12]

The hyper-parameter (λ = 30) empirically determined such that the two sub-loss functions 

had similar contributions to the total loss (40).

Recon-RNN used the pre-trained deepBS network within training loop to estimate Zref 

(±3.5 ppm) signals. The deepBS contained a Bi-LSTM layer as the input layer, six 1-D 

convolutional layers with sixty-four channels as middle layers, and one 1-D convolutional 

layer with one channel as an output layer. Batch normalization and dropout layers (dropout 

rate of 20%) were placed between the Bi-LSTM and the first convolutional layer. The 

adaptive moment estimation optimizer was adopted, with a learning rate of 10−5 and a batch 

size of 1000. The reconstruction performance of Recon-RNN was compared with a fully 

connected neural network (Recon-FCNN). Training and testing for the Bloch simulators 

and reconstruction networks were performed using TensorFlow on multiple NVIDIA RTX 

A6000, 48GB GPUs systems. The proposed network architecture is schematically shown in 

Fig. 1C.
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3.3 Training dataset

Ground-truth MRF signals were generated using a two-pool Bloch simulation with a 

pseudo-randomized MRF schedule with 40 dynamic scans and a wide variety of tissue 

parameter combinations within the pre-defined ranges (section 3.2). The deep Bloch 

simulators (deepBS-RNN and deepBS-FCNN) were trained on a ten million ground-truth 

dataset, while the reconstruction networks (Recon-RNN and Recon-FCNN) were trained on 

a forty million dataset. White Gaussian noise was added to the training dataset to achieve a 

signal-to-noise ratio (SNR) of 46 dB. The SNR (= 10log10[s/σ]2) was defined as the ratio 

of signal (s) power to the noise (σ) power in decibels. Note that the SNR of 46 dB is 

equivalent to an imaging SNR (= μ/σ) of 188, calculated from the ratio of the average MRF 

signal intensity (μ = 0.78) over the standard deviation of the noise (σ = 0.0042) in normal 

white matter. To estimate the asymmetric MTC effect, both positive and negative frequency 

offsets were taken into account in the Bloch simulators and reconstruction networks. 

For simplicity, identical RF saturation field strength, duration, and relaxation delay time 

schedules were applied to both positive and negative frequency offset acquisitions, and thus, 

asymmetric MTC-MRF signal profiles with 80 dynamic scans were generated and fed to the 

reconstruction networks for training.

3.4 Test dataset

The reconstruction networks were tested and validated with Bloch equation-based numerical 

phantoms that had ground-truths. To evaluate the reconstruction accuracy for each of 

the tissue parameters, the numerical phantom that consisted of five compartments was 

constructed with five fixed values of one tissue parameter, while the other three tissue 

parameters were randomly selected in all five compartments. With the numerical phantom 

with a matrix size of 30 × 150 × 4 (tissue parameters) and the pre-defined MRF schedule, 

digital MTC-MRF images with a matrix size of 30 × 150 × 40 (dynamic scans) were 

synthesized using the Bloch simulation. To assess the generalization capability of the 

reconstruction networks across different noise levels in the test phase, the numerical 

phantom images were corrupted by additive Gaussian noise levels (SNR = 46, 45, and 42.5 

and 40 dB) and these SNRs are equivalent to imaging SNRs (= μ/σ) of 188, 166, 125 and 

95 respectively. Mean normalized root mean square error (nRMSE) values were calculated 

through Monte Carlo simulation. Within each iteration of the Monte Carlo simulation, 

Gaussian-distributed random noise was added to MTC-MRF signals with a fixed noise 

standard deviation. By repeating the random noise generation and MTC-MRF reconstruction 

for 200 times, nRMSE values from each iteration were calculated and averaged. The 

reconstruction accuracy was evaluated using the normalized root mean square error between 

the reconstructed quantitative maps and ground-truth maps, which was also used to assess 

the difference in reconstruction errors between the Recon-RNN and the Recon-FCNN 

methods. The accuracy of the deep Bloch simulator from in vivo test images was evaluated 

using two quantitative metrics, including peak signal-to-noise ratio (pSNR) and structural 

similarity index metrics (SSIM).
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3.5 In vitro MRI experiments

A set of cross-linked bovine serum albumin (BSA, Sigma Aldrich, St Louis, MO, USA) 

samples was prepared to mimic the in vivo MTC pool. Samples of 10%, 15%, and 20% 

(w/w) BSA were dissolved in phosphate buffered saline (PBS) with pH adjusted to 7.3. All 

samples were placed in 50 ml Falcon tubes. Cross-linking was achieved by adding 25 μL of 

25% glutaraldehyde solution. Prepared samples were stirred and allowed to sit overnight at 

4 °C to ensure adequate cross-linking. Then, all samples were fixed in a 1.5% agarose gel 

(Sigma Aldrich, St Louis, MO, USA) in a plastic container. Imaging was performed on a 

3T MRI system (Achieva dStream, Philips Healthcare, Best, The Netherlands) with a body 

coil for RF parallel transmission and a 32-channel head phased-array coil for reception. For 

MTC-MRF image acquisition, a pseudo-randomized RF saturation and acquisition schedule 

was applied. The MTC-MRF images were acquired with a multi-shot turbo spin-echo (TSE) 

sequence with a fat suppressed pre-pulse (spectral selective inversion recovery) (39, 40). The 

imaging parameters were FOV = 212 × 186 × 60 mm3, spatial resolution = 1.8 × 1.8 × 4 

mm3, TE = 6 ms, turbo factor = 104, refocusing flip angle = 120°, and compressed sensing 

acceleration factor = 4 (2 × 2 in ky × kz direction) (50, 51). TRs were varied dynamically 

according to the MRF schedule pattern (e.g., Ts and Td). In addition, an unsaturated image 

was acquired for signal normalization. A pseudo-continuous RF saturation scheme with a 

100% duty cycle was achieved using a time-interleaved, parallel RF transmission technique, 

enhancing saturation effects, and increasing degrees of freedom in the MRF schedule design. 

For B0 field correction, water saturation shift reference images (52) were acquired from -1.2 

to 1.2 ppm (step size = 0.1 ppm) with a B1 of 0.5 μT and a 500-ms saturation duration and 

other scan parameters were identical to those used for MTC-MRF, as described above. To 

measure the water T2 relaxation time, a five-echo turbo gradient-spin-echo sequence was 

acquired with TEs from 20 ms to 100 ms in 20-ms steps and a TR of 3 s.

3.6 In vivo MRI experiments

Eleven healthy volunteers (four females and seven males, age: 37.5 ± 4.3 years) were 

recruited for the study after informed consent was obtained in accordance with IRB 

requirements. Among these, eight subjects were scanned in two sessions, at a median of 

1.5 weeks apart to measure test-retest repeatability and reliability, remaining three subjects 

were scanned for analysis of MTC asymmetry. The 3D MTC-MRF, WASSR, and T2 map 

data were acquired with the same parameters used for the BSA phantom study. For APT 

and rNOE imaging, additional saturated images were acquired with the following scan 

parameters: Ω = 3.0, 3.5, 4.0 ppm for APT; Ω = -3.0, -3.5, -4.0 ppm for rNOE; B1 = 1 and 

1.5 μT; Ts = 2s; and Td = 4 s.

3.7 APT# and rNOE# image analysis

APT# and rNOE# signals were calculated by subtracting the saturated (or labeled, Zlab) 

Z-spectra at 3.5 and -3.5 ppm, respectively, from the two-pool MTC reference spectra (Zref) 

(36):

APT # = Zref( + 3.5ppm) − Zlab( + 3.5ppm) [13]
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rNOE# = Zref( − 3.5ppm) − Zlab( − 3.5ppm) [14]

in which Z(Δω) = Ssat(Δω)/S0, for in vivo studies, the baseline reference Z-spectra 

(Zref) were synthesized by solving the two-pool Bloch equation with the estimated tissue 

parameters from Recon-RNN and scan parameters. The labeled Z-spectra (Zlab) were 

experimentally acquired B0-corrected Z-spectra. Note that Zref(+3.5 ppm) and Zref(-3.5 

ppm) are identical when the symmetric MTC model is considered (Δmw = 0), while Zref(-3.5 

ppm) is lower than Zref(+3.5 ppm) when the asymmetric MTC model is considered, with 

the center of the semisolid resonance frequency shifted upfield from the water resonance 

(Δmw > 0) (31, 34). For comparison, APTw signals were obtained by subtracting the labeled 

Z-spectra at -3.5 ppm upfield, with respect to water, from that at +3.5 ppm (28):

APTw = Zlab( − 3.5ppm) − Zlab( + 3.5ppm) [15]

3.8 Statistical analysis

Two regions of interest were carefully drawn on T2w images for white matter and gray 

matter regions (Supporting Information Fig. S1). The tissue parameters, MTC, APT#, and 

rNOE# signal intensities were statistically compared using a two-sided Student’s t-test. 

Statistical significance was considered at p < 0.05. Scan-rescan repeatability was assessed by 

the coefficient of variance (CoV) within subjects and between subjects. The within-subject 

CoV values were computed as the percentage ratio of standard deviation and mean (= STD / 

mean × 100%) calculated over scan 1 and scan 2 data for each subject, and then averaged 

across all subjects. The between-subject CoV values were computed as the percentage ratio 

of standard deviation and mean calculated over scan 1 data of all subjects and scan 2 data 

of all subjects, and then averaged across both scans. A CoV less than 10% was defined as 

indicative of excellent repeatability of tissue parameters, MTC, APT#, and rNOE# signals 

(53). The reliability of measurement was performed with intra class correlation coefficient 

(ICC), which was calculated for mean of two measurements, absolute-agreement, 2-way 

mixed-effects model as follows: ICC = MSR − MSE
MSR + (MSC − MSE)/n , where MSR is mean square 

for rows, MSE is mean square for error, MSC is mean square for columns, n is number of 

subjects participated in test-retest study.

4. RESULTS

4.1 Evaluation of Bloch simulators

The performance of the deep Bloch simulators was benchmarked against ground-truth values 

from Bloch simulations, as shown in Fig. 2. The residual error signals were calculated 

by subtracting the ground-truth MRF profiles from the MRF profiles estimated from the 

deep Bloch simulators (Fig. 2A, bottom). The MTC-MRF profiles from the deep Bloch 

simulators were in agreement with the ground-truths, however, the deepBS-RNN showed 

slightly higher accuracy than the deepBS-FCNN. The root mean square error (RMSE) 

between the MRF profiles estimated from the deep Bloch simulators and the ground-truths 

were 0.51% for deepBS-RNN vs 0.53% for deepBS-FCNN (Fig. 2B). Importantly, the deep 
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Bloch simulators achieved significantly higher computation efficiency (by a factor of ~181 

for deepBS-RNN and ~570 for deepBS-FCNN) than the conventional Bloch simulation. 

Although the deepBS-RNN was slower than deepBS-FCNN (0.53 s vs. 0.17 s), both Bloch 

simulators required less than a second for the prediction of a 10k test dataset and were 

computationally efficient, compared to the conventional Bloch simulation (96 s). Therefore, 

the slightly more accurate deepBS-RNN method was further used in the reconstruction 

framework.

4.2 Evaluation of reconstruction methods

The deep-learning MTC-MRF reconstruction methods were evaluated and validated using 

the numerical phantoms constructed by a two-pool Bloch simulation with a pseudo-

randomized MRF schedule (Fig. 3A). The Recon-RNN was compared with the Recon-

FCNN to evaluate the reconstruction accuracy under various SNR levels to demonstrate 

generalization performance with respect to noise levels. The proposed Recon-RNN method 

outperformed the existing Recon-FCNN method in tissue parameter quantification in 

terms robustness to noise (Fig. 3B). In addition, the Recon-RNN outperformed dictionary 

matching approaches (Supporting Information Fig. S2A) in terms of reconstruction accuracy 

and computational speed. The higher-performing Recon-RNN was further trained and tested 

to estimate the MTC asymmetric effect. The nRMSE values of the Recon-RNN for the 

asymmetric MTC effect were 8.5% for kmw, 3.1% for F, 1.5% for T2
m, 1.1% for T1

w, 3.4% 

for Δmw at an SNR of 46 dB. Figure 3C shows the cross-liked BSA phantom results. A 

variable RF saturation and acquisition schedule generated unique MTC signal profiles for 

the three compartments with different BSA concentrations.

The Recon-RNN-based estimated pool size ratio was proportional to the known BSA 

concentration (10.5 ± 1.4% for 10% BSA, 17.8 ± 2.0% for 15% BSA, and 20.5 ± 1.9% 

for 20% BSA). However, the estimated value is not necessarily equal to BSA concentration, 

since it depends on how many macromolecular protons are present and participate in MT 

process with water (54). Similar exchange rate values (109.9 ± 2.7 Hz for 10% BSA, 117.6 

± 3.8 Hz for 15% BSA, and 114.1 ± 5.1 Hz for 20% BSA) were estimated at constant pH 

7.3.

4.3 In vivo MRI experiments

The Bloch simulator-driven, deep-learning reconstruction models were applied to the brains 

of healthy volunteers. Quantitative water and MTC parameter maps were successfully 

obtained in vivo using the conventional Bloch fitting, the deep-learning reconstruction 

models trained with two-pool Bloch simulations (BS/Recon-FCNN and BS/Recon-RNN), 

and the deep-learning reconstruction trained with the deep Bloch simulators (deepBS-RNN/

Recon-RNN) as shown in Fig. 4. In addition, the maps obtained from the deepBS-RNN/

Recon-RNN method were compared with a conventional dictionary matching approach 

(Supporting Information Fig. S2B). The dictionary matching method showed a poor 

reconstruction performance due to quantization errors from the discrete step size of the 

dictionary. The quantitative tissue parameter maps generated from the BS/Recon-RNN 

method were in good agreement with the results obtained from the deepBS-RNN/Recon-

RNN method (mean pSNR = 30.3 dB and mean SSIM =0.96), but substantially reduced 
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computation time for the generation of the training dataset by ~181-fold (106 h for Bloch 

simulation and 35 min for the deepBS-RNN to generate a forty million dataset). The total 

reconstruction time of the Recon-RNN for an image matrix of 256 × 256 × 9 × 40 was 3 min 

33 s, while the reconstruction time of the conventional Bloch fitting approach and dictionary 

matching (size = 200k) approach was approximately 34 h and 19 min, respectively. In 

addition, APT# and rNOE# images were calculated by subtracting the saturated images at 

±3.5 ppm from the symmetric (Δmw = 0) baseline reference images synthesized by solving 

a two-pool Bloch equation with estimated tissue parameters and scan parameters (Fig. 5). 

Good agreement was found between the synthetic images generated from the RNN-based 

reconstruction models trained with Bloch simulation (BS/Recon-RNN) and the deep Bloch 

simulator (deepBS-RNN/Recon-RNN). The pSNR and SSIM values of the MTC, APT#, 

and rNOE# images between the BS/Recon-RNN and the deepBS-RNN/Recon-RNN were all 

above 40 dB and 0.96, respectively. However, the MTC signal intensity estimated from 

the Bloch fitting approach was slightly higher than that from the deep-learning-based 

reconstruction methods and accordingly, lower APT# and rNOE# signal intensities were 

observed, particularly at 1.5 μT. Importantly, there were RF strength dependencies of the 

APT# and rNOE# signal intensities. At relatively low B1 (1 μT), the upfield rNOE# signal 

became more pronounced, compared to the downfield APT# signal. Table 1 summarizes 

the averaged tissue parameters, MTC, APT#, and rNOE# for gray matter and white 

matter regions, estimated from the RNN-based MRF reconstruction with symmetric MTC 

assumption (Δmw =0) (see also Supporting Information Table S1 for results from Bloch 

fitting, BS/Recon-FCNN, BS/Recon-RNN and deepBS/Recon-RNN methods). These tissue 

parameters and MTC, APT#, and rNOE# signals were significantly different between white 

matter and gray matter (p < 0.05), except for T2
m. For quantitative performance comparison 

in in vivo, MRF images were synthesized with tissue parameters estimated from the 

different reconstruction methods and compared with experimentally acquired images, as 

shown in Fig. 6. The mean nRMSE values for the deepBS-FCNN/Recon-FCNN, BS/Recon-

FCNN, deepBS-RNN/Recon-RNN, and BS/Recon-RNN were 2.4%, 2.0%, 1.7%, and 1.5%, 

respectively. The Recon-RNN overall outperformed the Recon-FCNN method, which is 

consistent with the numerical phantom result.

To evaluate the asymmetric MTC effect, MTC-MRF signal profiles were acquired at both 

positive frequency offsets (Ω+) and negative frequency offsets (Ω−), 80 dynamic scans 

in total. To display the MTC asymmetry effect, the MTC-MRF profile obtained from 

the negative frequency offsets was mirrored to the MTC-MRF profile from the positive 

frequency offsets, as shown in Fig. 7A. Although most of the MTC-MRF (Ω−) signal 

intensities were lower than the MTC-MRF (Ω+) due to asymmetric MTC effects around 

the water resonance frequency, some signal intensities were quite similar at certain scan 

numbers because the asymmetric effect is dependent on the frequency offset and other 

scan parameters, e.g., saturation B1 strength levels and durations. Figure 7B shows tissue 

parameter maps estimated from the RNN-based reconstruction with only MTC-MRF (Ω+) 

and with both MTC-MRF (Ω+) and (Ω−). Note that the asymmetric tissue parameter maps 

(asym MTC-MRF) were reconstructed from 40 MTC-MRF (Ω+) and 40 MTC-MRF (Ω−) 

images (80 dynamic scans in total), while the symmetric tissue parameter maps (sym 

MTC-MRF) were reconstructed from only 40 MTC-MRF (Ω+) images. The chemical shift 
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center (Δmw) was found to be 2.8 ± 0.1 ppm and 2.6 ± 0.2 ppm for the white matter and gray 

matter, respectively.

To investigate the asymmetric MTC effect on APT# and rNOE# images, asymmetric MTC 

images were synthetized using the tissue estimates from RNN-based reconstruction and 

scan parameters identical to those acquired in saturation images at ±3.5 ppm for APT# 

and rNOE# image calculation. The synthetic MTC images at ±3.5 ppm were generated 

with an assumption of asymmetric (Fig. 8A) and symmetric (Fig. 8B) MTC effects at RF 

saturation field strengths of 1 μT and 1.5 μT, respectively. With the assumption of the MTC 

asymmetry effect, overall MTC effects became more pronounced, which influenced APT# 

and rNOE# image contrast, as shown in Figs. 8D and 8E. Several important results were 

observed, including: (i) the rNOE# signal intensities with the asymmetric MTC effect were 

significantly lower than those with the symmetric MTC effect at 1 μT (p < 0.05) because 

the background baseline level (Zref = 100% - MTC) was lower when the asymmetric MTC 

component was added (also see Supporting Information Table S2); (ii) the broad MTC 

asymmetry also influenced downfield APT# signal intensities. The APT# signal intensities 

with the asymmetric MTC effect were higher than those with the symmetric MTC effects 

at the two RF saturation strength levels (p < 0.05) because the asymmetric super-Lorentzian 

lineshape signals spilled over into downfield frequency offsets from the water (Supporting 

Information Fig. S3); (iii) at 1 μT, the APTw signal intensities were all negative (-2.1 ± 

0.2% for white matter and -1.9 ± 0.3% for gray matter) due to a large upfield rNOE#, while 

the APTw effect (-0.2 ± 0.3% for white matter and -0.3 ± 0.3% for gray matter) was more 

pronounced at 1.5 μT due to decreased rNOE# and/or asymmetric MTC effects.

The repeatability of measurements by all reconstruction methods was evaluated by the 

test-retest study (Table 2). The within-subject CoV values for the deep-learning MRF 

reconstruction methods were less than 7% for all water and semisolid MTC parameters, and 

less than 10% for MTC, APT#, and rNOE# signals, indicating a high test-retest repeatability. 

The between-subject CoV values are reported in Supporting Information Table S3. The ICC 

values for test-retest reliability are presented in Supporting Information Table S4. An overall 

moderate reliability (ICC > 0.6) of the measurements was obtained.

5. DISCUSSION

High-resolution MRF that includes a multi-pool exchange model requires an extremely 

large dictionary or training dataset simulated with Bloch equations (40, 55). Furthermore, 

intensive Bloch simulation tasks are inevitable for MRF schedule optimization (44, 56). In 

this study, we developed a deep-learning-based Bloch simulator for ultrafast MRF dictionary 

or training data generation, and a recurrent neural network for semisolid macromolecular 

magnetization transfer contrast MRF reconstruction. For MRF training dataset generation, 

the deep Bloch simulator achieved a 181-fold reduction of the computation time compared 

to a conventional Bloch simulation. For MRF reconstruction, the deep-learning neural 

networks significantly reduced the reconstruction time without compromising reconstruction 

accuracy, ~570-fold reduction, compared to a Bloch equation-fitting approach without 

parallel computing. The proposed MRF reconstruction using recurrent neural networks 

outperformed the existing reconstruction methods, e.g., fully connected neural networks, 
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Bloch fitting, and dictionary matching methods in terms of tissue parameter quantification 

accuracy. Importantly, the unified deep-learning framework, including an ultrafast Bloch 

simulator and MRF reconstruction provided a high degree of repeatability.

The deep Bloch simulator mimics a conventional Bloch simulation to generate dictionaries 

or training datasets for MRF reconstruction more efficiently. For the semisolid MTC pool, 

a super-Lorentzian lineshape was used. The super-Lorentzian lineshape model includes 

an integration term to consider all possible dipolar orientations, requiring intensive 

computation. However, the deep Bloch simulator was able to address this computational 

challenge. For example, the deep Bloch simulator took only 34 min to generate forty 

million training datasets for MRF reconstruction neural networks, while the conventional 

Bloch simulation took about 107 h. In addition, the deep Bloch simulator substantially 

reduced the training time for MRF reconstruction neural networks. During training of the 

reconstruction network (Fig. 1C), the baseline MTC signal (Zref) was calculated for the loss 

function per iteration. For training the reconstruction network, the reconstruction network 

with the deep Bloch simulator took about 70 min for each epoch (1,000 iterations), while the 

reconstruction network with the conventional Bloch simulation took about 4 days for each 

epoch and would take 6 months for 40 epochs. Furthermore, the deep Bloch simulator could 

be utilized to solve MRF sequence optimization problems. In MRF sequence optimization, 

a very large amount of MRF signal profiles must be simulated with updated tissue and scan 

parameters for each optimization iteration, which is computationally intensive (37). The 

Bloch simulator needs to be re-trained repeatedly for each MRF schedule tested, requiring 

intensive computation (about 27 hr per epoch, including training dataset generation and 

neural network training). However, the re-training of the Bloch simulator after each epoch 

during MRF optimization could be avoided if the RNN-based Bloch simulator is trained 

with various tissue parameters and scan parameters using a recently developed Only-Train-

Once MR fingerprinting (OTOM) method (57, 58). The current deep Bloch simulator can 

be trained with a fixed duration of the MRF sequence (e.g., 40 dynamic scans), which is a 

limitation in the optimization of the number of dynamic scans for acquisition efficiency. 

However, the RNN-based OTOM framework can be trained only once and applied to 

different types of MRF schedule with various schedule lengths. Therefore, combining the 

deep Bloch simulator with the OTOM method can improve the generalization ability and 

optimize the number of dynamic scans, improving scan efficiency. For the evaluation of 

MTC asymmetry in vivo, for the sake of simplicity, positive and negative frequency offsets 

were symmetrically acquired, instead of fully mixing frequency offsets. These frequency 

offsets need to be chosen to improve quantification accuracy of the chemical shift center of 

the semisolid macromolecular proton pool.

Regarding the accuracy of the deep Bloch simulator, errors may propagate into the 

subsequent MRF reconstruction network during the training process and lead to a difference 

in final tissue parameter maps. However, it was observed that the RMSE were only 

0.51% and 0.53% for deepBS-FCNN and -RNN, respectively, which are equivalent to the 

acquisition noise level (RMSE of 0.42% at SNR = 46 dB). In addition, through the Monte 

Carlo simulation study and the comparison study between BS-driven and deepBS-driven 

MRF reconstruction, the reconstruction neural networks were demonstrated to be robust 

to noise and errors introduced from the deep Bloch simulators. In some cases, different 
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parameter values were found between different methods (e.g., Bloch fitting vs. neural 

network-based reconstruction or Recon-FCNN vs. Recon-RNN) which may cause concern 

for disease evaluation. However, the signal difference from the different methods would not 

affect detection of diseases-related contrast as long as consistent methodology is used when 

comparing healthy subjects with patients. In future work, the diagnostic accuracy of the 

deep-learning methods to identify pathology will be evaluated.

The proposed Recon-RNN framework is based on a hybrid network architecture in which 

the input RNN layers enable an understanding of the temporal behavior of MTC-MRF 

profiles, the intermediate CNN layer extracts important features from each MRF profile 

in the temporal domain, and the last fully connected dense layers comply the features 

from the previous CNN layers to form the final output (59–61). The hybrid architecture 

increased the reconstruction accuracy compared to the single FCNN model, while the 

reconstruction times were slightly longer mainly due to ReLU activation functions used 

in BiLSTM which is not currently supported by Computer Unified Device Architecture 

(CUDA) in TensorFlow environment (~3.5 min for Recon-RNN vs. 11 s for Recon-FCNN 

vs. ~34 h for Bloch equation fitting without parallel computing, for an image matrix of 256 

× 256 × 9 × 40). Nevertheless, highly accurate and precise measurement of the semisolid 

MTC exchange rate is a very difficult task, as described previously (39, 40, 44), because 

the contribution of the MTC exchange rate to MR signals is very small and vulnerable to 

noise. Rather than improving the sensitivity and specificity of the exchange rate estimation 

in the reconstruction process, the development of proton exchange-sensitizing RF labeling 

strategies may be rather desirable (62–65). Using symmetric MTC, our estimated APT# 

and rNOE# signal intensities were slightly higher than the values reported previously (34), 

likely due to differences in RF saturation parameters and direct water saturation effect. The 

previous study acquired MTC data with a fixed B1 field strength of 2 μT and a saturation 

duration of 800 ms.

Several previous studies assumed a symmetric semisolid MTC effect because the semisolid 

macromolecular protons have a very broad RF absorption lineshape (13, 40, 56, 66). 

However, the MTC is caused by aliphatic protons and experimental data have shown 

clear asymmetry around the water resonance (31). When using asymmetry in the MTC 

background, a higher pool size ratio of white matter is estimated (Fig. 7B). Correspondingly, 

the MTC signal intensities at -3.5 ppm with asymmetric MTC were significantly higher 

than those with symmetric MTC, resulting in decreased rNOE# signal intensities. With the 

inclusion of an asymmetric MTC, the semisolid macromolecular proton pool had a chemical 

shift center about 2.8 ppm upfield from the water resonance for white matter, which is 

consistent with the results (~2.34 ppm for normal white matter) presented by Hua et al. 

(31). Regarding the super-Lorentzian lineshape, the on-resonance singularity was handled 

by extrapolating gm(Δω) from 1 kHz cut-off frequency to the asymptotic limit Δω → 0 

(13, 47). However, the choice of the cut-off frequency may affect MTC signal estimation, 

particularly at -3.5 ppm, since the frequency offset of rNOE is very close to the chemical 

shift center (Δmw) of the semisolid macromolecular proton pool, as shown in Supporting 

Information Fig. S3. Alternatively, the singularity could be avoided by integrating power 

spectral density of RF pulse over frequencies (67).
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Along with quantification accuracy, the repeatability of the measurement plays a vital role 

in establishing an imaging method suitable for a clinical study. The test-retest repeatability 

from the CoV analysis was excellent for all tissue parameters, MTC, APT#, and rNOE# 

signals estimated from the deep Bloch simulator-driven MTC-MRF framework.

6. CONCLUSIONS

We developed a deep-learning-based Bloch simulator for the ultrafast generation of MRF 

training datasets and a recurrent neural network for semisolid macromolecular magnetization 

transfer contrast MRF reconstruction. The deep Bloch simulator significantly reduced 

the computation time for the generation of training datasets compared to a conventional 

Bloch simulation. The recurrent neural-network-based MRF reconstruction demonstrated 

advantages in terms of tissue parameter quantification accuracy and computation efficiency. 

The test-retest study showed a high degree of repeatability of the proposed MTC-MRF 

framework in the brain and holds promise for assessing multiple tissue parameters 

simultaneously in a single scan.
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Figure 1. 
(A) An illustration of RF saturation-encoded MTC-MRF sequence. A two-channel parallel 

transmission (pTX) was used to achieve continuous RF saturation at a 100% duty cycle. A 

variable density under-sampling pattern with the elliptic-centric k-space ordering was used 

in a turbo spin-echo (TSE) sequence and a spectral pre-saturation with inversion recovery 

(SPIR) was used for fat-suppressed data acquisitions. (B) An example of B1, Ts, Ω, and Td 

schedule for an MRF image acquisition. (C) MTC-MRF framework consisting of a deep 

Bloch simulator (deepBS-RNN) and a reconstruction network (Recon-RNN). Pt represents 

ground-truth (GT) tissue parameters and P’t represents estimated tissue parameters from 

the Recon-RNN. The estimated tissue parameters (P’t) and acquired T2
w are fed to the 

pre-trained deep Bloch simulator (deepBS) module as input to calculate baseline reference 

signals (Zref(±3.5 ppm) = 100% - MTC (±3.5 ppm)). ‡ indicates pre-trained neural networks.
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Figure 2. 
Evaluation of the performance of the deep Bloch simulators. (A) Top: Bloch simulation (BS) 

of Ssat/S0 and bottom: residual errors (absolute values of difference) between MTC-MRF 

profiles obtained from BS, deepBS-FCNN, and deepBS-RNN. Note that the saturation 

parameters used in the Bloch simulation are shown in Fig. 1B. (B) Comparison of the 

performance between deepBS-FCNN and deepBS-RNN for accuracy with nRMSE, and 

efficiency with computation time for a 10k test dataset.
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Figure 3. 
Evaluation of the performance of the deep-learning MRF reconstruction using Bloch 

equation-based numerical phantoms and BSA phantoms. (A) Tissue parameter maps 

estimated from the Recon-FCNN and Recon-RNN reconstruction networks. (B) Comparison 

of average reconstruction accuracy between Recon-FCNN and Recon-RNN across varied 

SNR levels. (C) Cross-linked BSA phantom validation experiments. kmw and F maps were 

estimated by deepBS-RNN/recon-RNN. The mean value of each ROI is shown in the insert 

(white).
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Figure 4. 
Quantitative MTC and water T1 maps of the human brain from a healthy volunteer. The 

tissue parameter maps were reconstructed from Bloch fitting, Bloch simulation (BS)-driven 

Recon-FCNN, BS-driven Recon-RNN, and deepBS-RNN-driven Recon-RNN.
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Figure 5. 
MTC, APT#, and rNOE# images from the brain of a healthy volunteer. The MTC images 

were synthesized with RF saturation strengths of 1 μT and 1.5 μT, an RF saturation time 

of 2 s, a relaxation delay time of 4 s, and a frequency offset of ±3.5 ppm. In this case, 

the semisolid MTC line-shape was assumed to be symmetric around water. The APT# 

and rNOE# images were calculated by subtracting acquired saturated images at +3.5 ppm 

and -3.5 ppm from the synthesized Zref(±3.5 ppm) images (= 100% - MTC(±3.5 ppm)), 

respectively.
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Figure 6. 
Evaluation of the reconstruction performance. Synthesized MTC-MRF images were 

generated using the tissue parameter maps estimated from different reconstruction neural 

networks (deepBS-RNN/Recon-FCNN, BS/Recon-FCNN, deepBS-RNN /Recon-RNN and 

BS/Recon-RNN) and compared with acquired MTC-MRF images. Difference images (x 

20) between the synthesized and the acquired images as well as quantitative reconstruction 

quality assessment with nRMSE are shown.
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Figure 7. 
Comparison of MTC-MRF profiles and reconstruction maps with symmetric and 

asymmetric MTC effects. (A) MTC-MRF profiles obtained from positive frequency offsets 

(Ω+, black line) and negative frequency offsets (Ω−, red line). The negative frequency 

offset values were mirrored to the positive frequency offset values. (B) Tissue parameter 

maps reconstructed from the Recon-RNN with only positive frequency offsets (40 dynamic 

scans) and both positive and negative frequency offsets (80 dynamic scans) to evaluate the 

asymmetric MTC effect. The additional tissue parameter, Δmw, represents a chemical-shift 

center mismatch between free bulk water and semisolid macromolecules.
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Figure 8. 
(A) Synthesized asymmetric MTC images at 3.5 ppm and -3.5 ppm, and corresponding 

difference images (= MTC(-3.5 ppm) - MTC(3.5 ppm)) and (B) synthesized symmetric 

MTC image at ±3.5 ppm at two different RF saturation strength levels. (C) APTw images 

calculated by MT ratio asymmetry analysis. (D) APT# and rNOE# images calculated with 

the asymmetric MTC effect. (E) APT# and rNOE# images calculated with the symmetric 

MTC effect
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Table 1.

Estimated semisolid MTC parameters, free bulk water T1 relaxation time, MTC at ±3.5 ppm, APT#, and 

rNOE# signal intensities (mean ± standard deviation and 95% confidence interval) obtained from Recon-RNN 

for white matter and gray matter of eight healthy volunteer human brain. Note that the Recon-RNN was 

trained with a forty million dataset synthesized from the RNN-based deep Bloch simulator (deepBS-RNN). 

Mean and standard deviations values were obtained across subjects.

ROIs
kmw 
(Hz)

F (%) T2
m 

(μs)
T1

w (s)

B1 = 1 μT B1 = 1.5 μT

MTC
(%)

APT#

(%)
rNOE# 

(%)
MTC
(%)

APT#

(%)
rNOE# 

(%)

WM Mean 
± STD

14.6 ± 
0.9

17.0 ± 
0.6

14.6 ± 
0.5

1.1 ± 
0.1

35.6 ± 
0.4 9.5 ± 0.5 11.7 ± 0.5 51.8 ± 

0.5 9.0 ± 0.7 9.3 ± 0.6

95% 
CI

14.1 – 
15.1

16.7 – 
17.3

14.4 – 
14.9

1.1 – 
1.2

35.4 – 
35.8 9.2 – 9.8 11.4 – 12.0 51.5 – 

52.0 8.6 – 9.4 8.9 – 9.6

GM Mean 
± STD

19.8 ± 
3.0

12.1 ± 
1.3

14.9 ± 
0.6

1.3 ± 
0.1

32.9 ± 
0.9 7.3 ± 0.9 9.3 ± 0.9 49.5 ± 

1.2 6.1 ± 1.0 6.3 ± 1.1

95% 
CI

18.2 – 
21.5

11.4 – 
12.9

14.5 – 
15.2

1.2 – 
1.4

32.4 – 
33.4 6.9 – 7.8 8.8 – 9.7 48.8 – 

50.1 5.6 – 6.6 5.7 – 6.9

p 
-value < 0.01 < 0.01 0.24 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
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Table 2.

Within-subject coefficient of variance (CoV) of the estimated semisolid MTC parameters, free bulk water T1 

relaxation time, MTC at ±3.5 ppm, APT#, and rNOE# signal intensities obtained from Bloch fitting, BS/

Recon-FCNN, BS/Recon-RNN and deepBS/Recon-RNN methods.

Coefficient of Variance

kmw F T2
m T1

w
B1 = 1 μT B1 = 1.5 μT

MTC APT# rNOE# MTC APT# rNOE#

Bloch Fitting
WM 4.3% 3.2% 0.7% 3.2% 0.5% 2.9% 2.4% 0.3% 4.9% 4.2%

GM 5.8% 2.7% 1.2% 2.0% 1.0% 4.1% 2.9% 0.8% 5.8% 6.9%

BS/Recon-FCNN
WM 2.1% 1.1% 1.0% 2.1% 0.8% 1.8% 1.7% 0.7% 2.9% 2.8%

GM 5.3% 3.4% 1.3% 3.0% 1.2% 2.7% 2.4% 1.3% 3.0% 3.7%

BS/Recon-RNN
WM 2.5% 1.4% 0.8% 2.1% 0.7% 3.0% 2.5% 0.6% 4.8% 4.2%

GM 4.8% 3.7% 1.6% 3.1% 1.2% 4.3% 3.3% 1.1% 5.9% 6.9%

deepBS/Recon-RNN
WM 4.2% 1.4% 1.1% 1.6% 0.5% 2.7% 2.1% 0.5% 4.1% 3.0%

GM 6.3% 3.5% 1.8% 3.8% 1.3% 5.0% 4.2% 1.4% 8.4% 9.1%
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