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Abstract

To date, PACS1-neurodevelopmental disorder (PACS1-NDD) has been associated with recurrent 

variation of Arg203 and is considered diagnostic of PACS1-NDD, an autosomal dominant 

syndromic intellectual disability disorder. Although incompletely defined, the proposed disease 

mechanism for this variant is altered PACS1 affinity for its client proteins. Given this proposed 

mechanism, we hypothesized that PACS1 variants that interfere with binding of adaptor proteins 

might also give rise to syndromic intellectual disability. Herein we report a proposita and 

her mother with phenotypic features overlapping PACS1-NDD and a novel PACS1 variant 

(NM_018026.3:c.[755C>T];[=], p.(Ser252Phe)) that impedes binding of the adaptor protein 

GGA3 (Golgi-associated, gamma-adaptin ear-containing, ARF-binding protein 3). We hypothesize 

that attenuating PACS1 binding of GGA3 also gives rise to a disorder with features overlapping 

those of PACS1-NDD. This observation better delineates the mechanism by which PACS1 
variation predisposes to syndromic intellectual disability.

Keywords

PACS-1; Learning disability; CK2 (casein kinase 2); protein trafficking; membrane trafficking

Correspondence: Cornelius Boerkoel, Department of Medical Genetics, Women’s Health Centre of British Columbia, 4500 Oak St., 
Room C234, Vancouver, B.C. V6H 3N1, Canada, Phone: 604-875-2157, Fax: 604-875-2376, cboerkoel@gmail.com.
*These authors contributed equally to this work.
Author contribution statement: CFB, H-KL, and DH phenotyped the proposita and arranged testing. LL provided Virtual Geneticist 
analysis. AM-H, DH, and CFB collaboratively created the concept and content of the manuscript. GT, JBL, YY, and KC performed the 
co-immunoprecipitation. AM-H, DH, CFB, GT, H-KL, , LL, and YY contributed to editing of the manuscript.

Conflict of Interests: There are no conflicts of interest to declare.

HHS Public Access
Author manuscript
Am J Med Genet A. Author manuscript; available in PMC 2024 August 01.

Published in final edited form as:
Am J Med Genet A. 2023 August ; 191(8): 2181–2187. doi:10.1002/ajmg.a.63232.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Intellectual disability (ID), a genetically and phenotypically heterogeneous group of 

conditions, affects 1–3% of the population. Despite recent progress, the pathogenicity of 

novel variants, even within established ID genes, is difficult to interpret in the absence of 

robust functional studies (Ilyas et al., 2020)

Among the homeostatic disturbances contributing to ID are perturbations of protein and 

membrane trafficking. A player in such trafficking is PACS1 (Figure 1A), which encodes 

the phosphofurin acidic cluster sorting protein-1 (OMIM #607492) that is involved in the 

localization of trans-Golgi network (TGN) membrane proteins that contain acidic cluster 

sorting motifs (Thomas et al., 2017). PACS1, which is expressed at high levels in the brain 

during the embryonic period and down regulated in the postnatal period (Liu et al., 2021), 

mediates protein trafficking from endosomes to the TGN or to the cell surface (Scott et 

al., 2006). It also has roles in cellular apoptosis, genomic stability, and calcium flux in the 

endoplasmic reticulum (Arnedo et al., 2022; Thomas et al., 2017). Interacting with acidic 

clusters that can be phosphorylated by CK2 (casein kinase 2), PACS1 binds to CK2, client 

proteins, and adaptor proteins, facilitates client and adaptor protein phosphorylation by CK2, 

and activates CK2 through binding of the CK2 beta subunit (Scott et al., 2006; Thomas et 

al., 2017). PACS1 binding affinity is regulated by CK2 phosphorylation of an autoregulatory 

site Ser278 within the PACS1 acidic domain (Scott et al., 2006).

PACS1 modulates protein and membrane trafficking through interaction with the clathrin 

adaptors AP (adaptor-related protein complexes)-1 and AP-3 and the monomeric adaptor 

GGA3 (Golgi-associated, gamma-adaptin ear-containing, ARF-binding protein 3) (Thomas 

et al., 2017). Through these interactions, it mediates localization of furin and other client 

proteins to the TGN and targets a subset of client proteins to the primary cilium, including 

the adaptor protein nephrocystin and the olfactory cyclic-nucleotide-gated ion channel 

(Thomas et al., 2017).

Alteration of a single amino acid within PACS1 (NP_060496.2:p.Arg203) has been 

associated with the autosomal dominant syndromic intellectual disability disorder, PACS1-

neurodevelopmental disorder (PACS1 neurodevelopmental disorder -NDD, OMIM #615009) 

(Schuurs-Hoeijmakers et al., 2012; Seto et al., 2021; Stern et al., 2017; Tenorio-Castano 

et al., 2021; Van Nuland et al., 2021). Residing adjacent to the CK2 binding site 

(Arg196_Tyr200, Figure 1A), Arg203Trp alters PACS1 affinity for client proteins (GT, 

unpublished data) and likely alters CK2 phosphorylation of affected client proteins 

and PACS1-facilitated interaction of affected client proteins with adaptor proteins. The 

mechanism by which Arg203Trp causes disease is a gain-of-function rather than a loss-of-

function such as haploinsufficiency (Liu et al., 2021; Schuurs-Hoeijmakers et al., 2012).

Variation deleterious to components of the PACS1 complex also cause disease (Table S1). 

Pathogenic CK2 subunit variants cause autosomal dominant ID disorders (Asif et al., 2022; 

Caefer et al., 2022). Pathogenic variation in the adaptor proteins nephrocystin, AP-1, and 

AP-3 cause autosomal recessive ID disorders (Huizing et al., 2002; Konig et al., 2017; 

Martinelli et al., 2013; Usmani et al., 2021).
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We hypothesized that PACS1 variants impeding the binding of adaptor proteins to PACS1 

give rise to intellectual disability. We report a proband and mother with cognitive 

dysfunction and a novel PACS1 variant (NM_018026.3:c.[755C>T];[=], p.(Ser252Phe)) that 

impedes GGA3 binding (Figure 1A).

MATERIALS AND METHODS

Clinical Report

The proposita, age 5 years, presented with global developmental delay, short stature, 

bilateral hip dysplasia, feeding difficulties, and behavioral problems (Individual III-1, Figure 

1A). Her mother (Individual II-4, Figure 1A), age 43 years, presented with historical and 

ongoing learning difficulties, anxiety, and depression. The proposita and her mother were 

of Chinese extraction. No other family members had a learning disability or intellectual 

disability.

Individual III-1—The proposita was born at 38 weeks gestational age via caesarean section 

for breech presentation, oligohydramnios, and mild preeclampsia. She had prenatal exposure 

to fluoxetine and quetiapine prescribed for maternal mental health. Her birth measures 

were weight 2460g (−1.86 standard deviations (SD)), length 49 cm ((−0.17 SD), and 

head circumference 34 cm (−0.75 SD). She had no anomalies except for bilateral hip 

dysplasia. She was discharged on day 6 of life following resolution of hypoglycemia and 

hyperbilirubinemia. Because of inadequate caloric intake and growth failure (Supplementary 

Figure S1), she had a gastric tube placed at age 25 months. At age 6 years 6 months, she still 

received G-tube feeds for adequate caloric consumption.

The proposita had slow skill acquisition in all domains. She walked independently by age 

23 months. Evaluation at 36 months confirmed the delays and excluded autism spectrum 

disorder. Evaluation at 64 months showed gross motor delay, hypotonia, and decreased 

muscle strength; also, she was unable to feed herself with a spoon, was not yet toilet trained, 

and manifested multiple behavioral problems (difficulty playing with others, separation 

anxiety, and poor emotional regulation). On examination at age 64 and 78 months, she had 

normocephaly, a rounded face, telecanthus, broad nasal bridge, bilateral epicanthus, deep 

philtrum, short distal phalanges, normal palmar creases, and hypotonia posture (Figure 1C–

E, Table S2).

Initial genetic, biochemical, and endocrine testing as well as imaging did not identify an 

etiology for the proposita’s multiple problems (Supplementary Material).

Individual II-4—As a child, the mother of the proposita had growth failure, a learning 

disability resulting in academic challenges, and anxiety leading to social withdrawal. 

Despite requiring learning assistance, she completed a two-year college diploma and found 

employment. Following the death of her mother and familial turmoil, she was hospitalized at 

age 28 years for major depressive disorder and social anxiety disorder. At age 32 years, work 

stress and motor vehicle accidents precipitated hospitalization for a relapse and attempted 

suicide. She was diagnosed with bipolar affective disorder.
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On examination at age 44 years, she had a round face, bilateral epicanthus, mild 

retrognathia, low-set and posteriorly rotated ears, broad nasal bridge and bulbous nose, deep 

philtrum, palmar eczema, normal palmar creases, and normal fingernails. (Figure 1F–I).

Human Subjects

As part of a research protocol approved by the University of British Columbia Research 

Ethics Board (H09-01228, Vancouver, BC Canada), the proposita’s parents gave informed 

written consent to the study, data analysis, and publication of findings.

Reagents and Co-immunoprecipitation (Co-IP)

These were developed and performed as previously described (Scott et al., 2006). Please see 

Supplementary Material and Methods for details.

RESULTS

Singleton clinical exome sequencing reports several rare genomic variants

To screen for genetic etiologies, the proposita had singleton clinical exome sequencing, 

which reported five variants in four genes (Figure 2A). Consideration of phenotype, variant 

characteristics, and parent of origin diminished suspicion for the deleteriousness of the 

reported variants in DPP6, USP9X, and SNX14 (Figure 2B).

In contrast, these considerations increased suspicion of the PACS1 variant (NM_018026.3:c.

[755C>T];[=]) (Table S3). This variant segregates with disease, is absent from GnomAD, 

alters a highly conserved nucleotide (phastCons: 1.00, phyloP: 7.40) and amino acid (Figure 

2C), and is predicted deleterious by multiple in silico algorithms (Figure 2A–C). Consistent 

with this, Virtual Geneticist prioritized the PACS1 variant as first among all the exome 

variants (data not shown).

Coimmunoprecipitation shows reduced affinity of PACS1 S252F for GGA3

Because Ser252 resides in the GGA3 binding motif (Ala246_Ser253, Figure 1A) we 

hypothesized that it alters GGA3 binding to PACS1. To test this, we expressed Flag-tagged 

PACS1S252F and wild type Flag-tagged PACS1 in HCT116 cells co-expressing 3xHA tagged 

GGA3. As assessed by co-IP, Flag-tagged PACS1S252F bound approximately 40% less 

3xHA-GGA3 by than did wild type Flag-tagged PACS1 (Figure2E).

DISCUSSION

We describe a mother and daughter with cognitive, behavioral, and feeding problems 

segregating with the a novel PACS1 variant (NM_018026.3:c.[755C>T];[=], p.(Ser252Phe)) 

that impedes binding of the GGA3 adaptor protein to PACS1. The facial, cognitive, social, 

and behavioral characteristics of the proposita and her mother resemble those of PACS1-

NDD (Table S2).

Previous studies using a PACS1 mutant that is unable to bind GGA3 have shown that 

the lack of PACS1 binding to GGA3 selectively disrupts the trafficking of some client 

proteins similar to inhibition of CK2 binding to PACS1 and impedes the release of GGA3 
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from endosomal membranes (Scott et al., 2006). Although human disorders associated with 

GGA3 and its interactors largely remain to be described (Table S3), we hypothesize that 

deleterious variation in these predispose to ID.

Although the features of the proposita and her mother are milder than those of many 

PACS1-NDD individuals (Bruno et al., 2023; Seto et al., 2021), a later report proposes a 

phenotypic spectrum and underreporting of milder presentations (Martinez-Monseny et al., 

2018). The psychiatric features of the proposita’s mother have not been previously described 

in association with PACS1-NDD; however, few reported individuals are adults, and all carry 

a variant of Arg203. Although a recent study suggests a link between PACS1 and bipolar 

disorder (Chen et al., 2022), further study is needed to understand the full spectrum of 

PACS1-related disorders and whether variation in different domains of PACS1 give rise to 

different diseases or a continuum of PACS1-NDD.

Little published evidence delineates the mechanism of disease in PACS1-NDD. In vivo 
functional assays found that overexpression of PACS1 mRNA encoding Arg203Trp in 

zebrafish embryos generated craniofacial defects through a presumed dominant-negative 

mechanism (Schuurs-Hoeijmakers et al., 2012). We postulate a similar mechanism for 

Ser252Phe.

In conclusion, we describe a proposita and her mother with phenotypic features consistent 

with PACS1-NDD (Table S2) and a novel PACS1 variant (NM_018026.3:c.[755C>T];[=], p.

(Ser252Phe)) that impedes binding of the GGA3 adaptor protein. Further functional studies 

are needed to determine to what extent the reduced interaction between PACS1S252F and 

GGA contribute to the overall disease phenotype in the proposita as well as define the 

mechanism of disease for other deleterious PACS1 variants.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram of the PACS1 protein and the pedigree and features of the proposita and her 

mother. (A) Diagram of the PACS1 protein showing the atropin-1-related region (ARR), 

furin binding region (FBR), middle region (MR), and C-terminal region (CTR). The FBR 

binds client proteins (e.g., IGF2R, furin, HIV-1 Nef) and has motifs binding CK2 (casein 

kinase 2) and the clathrin adaptors AP (adaptor-related protein complexes)-1, AP-3 and 

GGA3 (Golgi-associated, gamma-adaptin ear-containing, ARF-binding protein 3). The MR 

contains an acidic cluster recognized by CK2, which phosphorylates serine (S278) to 
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regulate GGA3. R203 (blue), which is associated with PACS1-NDD, is adjacent to the 

CK2 binding motif. S252 (orange), which is altered in the proposita and her mother, is in 

the GGA3 binding motif. (B) Pedigree of the described family. Open and filled symbols 

represent affected and unaffected individuals, respectively. The parents of the mother were 

unavailable for testing or examination. (C, D) Frontal and profile photographs of the 

proposita. (E) Photograph of the proposita’s hands. (F, G) Frontal and profile photographs of 

the proposita’s mother. (H, I) Photograph of the hands of the proposita’s mother.
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Figure 2. 
Characterization of PACS1 S252F. (A) Variants reported on by clinical exome for the 

proposita. (B) LIRICAL graphical representation of phenotype in the context of genotype 

(Robinson et al., 2020). The green bars represent phenotypic features consistent with 

the disorder. The red bars represent phenotypic features not consistent with the disorder. 

(C) Screen shot from Alamut Visual showing amino acid conservation for S252 and 

the sequence reads for NM_018026.3:c.[755C>T];[=] (bottom). (D) Predicted crystal 

structure of PACS1 FBR showing the locations of R203 and of S252. (E) S252F reduces 
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PACS1 binding of GGA3. Left: HA-tagged GGA3 was expressed alone or together 

with either FLAG-tagged PACS1 or PACS1S252F. Flag-tagged PACS1 proteins were 

immunoprecipitated and co-precipitating GGA3 was detected by western blot. Error bars 

= 1 standard deviation. n =3, p = 0.00045.
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