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Abstract

Background: Short structural variants (SSVs) including indels are common in the human 

genome and impact disease risk. The role of SSVs in late onset Alzheimer’s disease (LOAD) 

has been understudied. Here we developed a bioinformatics pipeline of SSVs within LOAD-

GWAS regions to prioritize regulatory SSVs based on the strength of their predicted effect on 

transcription factor (TFs) binding sites.

Methods: The pipeline utilized publicly available functional genomics data sources including 

candidate cis-regulatory elements (cCREs) from ENCODE and single-nucleus (sn)RNA-seq data 

from LOAD patient samples.

Results: We catalogued 1581 SSVs in candidate cis-regulatory elements (cCRE) in LOAD-

GWAS regions that disrupted 737 TF sites. That included SSVs that disrupt the binding of 

RUNX3, SPI1 and SMAD3, within the APOE-TOMM40, SPI1 and MS4A6A LOAD-regions.
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Conclusions: The pipeline developed here prioritized noncoding SSVs in cCREs and 

characterized their putative effects on TF binding. The approach integrates multi-omics datasets 

for validation experiments using disease models.

1 NARRATIVE

1.1 Contextual background

Structural variants (SVs) are common in the human genome and were implicated in 

human traits and diseases including neurodegenerative diseases such as Late Onset 

Alzheimer’s Disease (LOAD) [1, 2]. The broadest class of structural variation includes 

deletions, duplications, large copy number variants, insertions, inversions, tandem repeats 

and translocations. While single nucleotide polymorphisms (SNPs) are limited to a single 

nucleotide base change and are primarily bi-allelic, SVs can be multi-allelic and repeated 

multiple times within the genome. Short structural variants (SSVs) are a subclass of SVs 

and include the same types of variation but are shorter in length, covering variation less 

than 50 bp[3]. A subset of SSVs include simple sequence/tandem repeats (SSRs/STRs); 

these are also known as microsatellites or short tandem repeats, including homopolymer 

stretches and indels. These variants are abundant in the human genome and one of the most 

polymorphic classes characterized by multiple alleles. Many SSVs have functional roles 

through which they mediate disease causality [4–6]. However, SSVs were not included in 

disease GWAS and expression quantitative trait (eQTL) studies mainly due to technological 

limitation in high throughput studies. Recent studies have suggested that SSVs are involved 

in many complex diseases and contribute to variation in gene expression in humans[4–7]. 

A structural variant (SV) map of 2504 human genomes showed that SVs are enriched 

in haplotypes identified by GWAS [8]. Other studies elucidated the role of short tandem 

repeats[4, 5] and extendable repeats[6] in human disease. It has been suggested that 

the effect of SVs on human diseases and traits is mediated via dysregulation of gene 

transcription[9–14], splicing[15], and translation. However, the roles of noncoding SSVs in 

human complex diseases, including LOAD, and specifically the mechanisms whereby SSVs 

regulate gene expression and exert their pathogenic effects, have yet to be discovered.

Examples of SSVs involved in neurodegenerative disorders include the Rep1 repeat site in 

the SNCA gene, involved in Parkinson’s disease[16–18] and the c9orf72 hexanucleotide 

repeat that is associated with frontotemporal dementia (FTD) and ALS[19, 20]. Recent 

research on ALS-linked genes have highlighted polymorphic STRs and SSVs that could 

influence disease risk and progression[21, 22] and showed that SSVs may account for some 

of the missing heritability for ALS[22]. For example, an indel variant within intron 5 of the 

SQSTM1 gene[23] and a poly-T repeat in the SCAF4 gene were associated with ALS [24]. 

Of note, the indel variant in the SQSTM1 gene was found to influence transcript levels and 

was significantly associated with familial ALS, especially in patients who had a superoxide 

1 (SOD1) mutation [23]. Although the role of SSVs in LOAD has been understudied, 

examples such as the impact of the intronic poly-T variant in the TOMM40 gene and the 

impact of haplotypes in the APOE-TOMM40 region with LOAD risk and age of onset[25–

31] suggest that systematic exploration of SSVs within LOAD risk regions will advance the 

understanding of the genetic architecture of LOAD.
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Tagging-SNPs associated with LOAD risk are mainly located in noncoding regions that 

contain cCREs, suggesting that the actual causal variants have a regulatory role in gene 

expression. However, the regulated gene might be distal from the cCRE and interact via 

chromatin looping[32]. Gene-cCRE interactions are further complex as one cCRE may 

regulate more than a single gene and one gene can be regulated by several cCREs [33]. 

Thus, identification of regulatory variants and their target genes within LOAD associated 

regions has been a challenge in the field of LOAD genetics. Previously we developed 

a bioinformatics pipeline that characterizes and prioritizes candidate regulatory SNPs in 

cCREs within LOAD-GWAS regions[34]. Here we extend the bioinformatics pipeline to 

include SSVs, and developed a framework to catalogue a filtered set of candidate regulatory 

SSVs that have a predicted strong effect on TF binding. The outcomes prioritized candidate 

SSVs and transcription factors (TFs) for in vitro and/or in vivo validation in cellular models 

or animal models, respectively.

1.2 Study approach and findings

We aimed to catalogue candidate functional SSVs in LOAD-GWAS regions that impact 

transcriptional regulation by examination of their effects on TF binding affinities. Towards 

this goal we utilized public bioinformatics databases and specifically, recently available 

single nucleus (sn)RNA-seq data from LOAD brains and age-matched controls. In this 

paper, we present four example SSVs and their regulatory impact on specific TFs (Table 

1) and provide data for all of the SSVs in LOAD-GWAS regions in the Supplemental 

Material. The example SSVs were chosen to optimize two different criteria: minimize 

distance between the SSV and the GWAS-SNP and/or to maximize the difference in the TF 

binding scores for the reference and alternate alleles.

The present study builds on our prior work where we developed a bioinformatics strategy to 

identify candidate LOAD causal genes in LOAD-GWAS regions based on evidence for 3D 

interactions between promoters in genes and active enhancer elements[35] and subsequent 

work to predict the impact of enhancer SNPs within LOAD-GWAS regions on transcription 

factor (TF) binding sites with the goal to catalogue and prioritize candidate LOAD 

functional SNPs[34]. The current study presents two major innovations and advancements 

in moving forward the prior work. First, the bioinformatics analysis specifically addresses 

SSVs compared to SNPs. Second, the bioinformatics pipeline integrates recent sources of 

data including single nucleus RNA sequencing (snRNA-seq) data from LOAD brains and 

age and sex matched controls and data from the expanded encyclopaedia of DNA elements 

(ENCODE) on cCREs. The code for the bioinformatics pipeline is publicly available and is 

extensible to cover both SNPs and SSVs.

The overall strategy for the study is shown in Figure 1. Effectively, each step in the pipeline 

filters prioritized SSVs to proceed from the GWAS loci (broad range, ±1 Mb around the 

tagging SNP) to pinpoint candidate regulatory SSVs that impact binding affinities of LOAD 

relevant TFs and their linked genes. The version of the pipeline used for this study is focused 

on CCCTC-transcription binding factors (CTCF). CCCTC-binding factors are a family of 

highly conserved zinc finger proteins. The choice of CTCF binding sites is based on their 

ability to bind at chromatin domain boundaries, at enhancers and gene promoters, and inside 
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gene bodies and their involvement in chromatin loops formation[36]. In addition, CTCF TFs 

can attract many other TFs to chromatin, including tissue-specific transcriptional activators 

and repressors[36]. The developed pipeline is built stepwise and is based on evidence of 

genomic attributes: (1) location of the SSV in a genomic locus, identified as associated 

with LOAD risk from large, consortium GWAS, (2) presence of the SSV in a proximal, 

CTCF-bound candidate cis-regulatory element, (3) evidence for at least one epigenetic mark 

in the hippocampus and/or temporal lobe, (4) evidence that the SSV disrupts TF binding, 

either gain or loss of binding sites, (5) evidence of the TF expression in snRNA-seq dataset, 

(6) identification of the TF as a differentially expressed gene (DEG) in LOAD. Each of these 

criteria could be relaxed or strengthened, depending on the number of SSV/TF hypotheses 

for further investigations. The number and size of specific GWAS loci could be expanded or 

reduced, the cCRE search could be expanded to more distal enhancer-like signatures and not 

restricted to CTCF, epigenetic marks could be expanded to more brain regions and types of 

marks, different stringency levels can be set for impact on TF binding, forthcoming larger 

snRNA-seq datasets could be used.

1.2.1 The utilization of the bioinformatics pipeline: Identification of candidate 
LOAD functional SSVs and the interacting TFs.—We demonstrated the utility of 

the bioinformatics pipeline with detailed examples for the SPI1 LOAD GWAS region 

interaction with the RUNX1 TF (Fig. 2) and for the MS4A2 LOAD GWAS region 

interaction with the FOXA3 TF (Fig. 3). We present these examples together since 

biologically, these genes are involved with immune system processes and microglial 

activation and function. We discuss our results with SSVs and TF binding in context 

with prior studies of these LOAD GWAS regions. We also present consolidated results 

for two additional regions to further illustrate the utility and range of applications of the 

bioinformatics pipeline: (1) APOE genetic locus and the SMAD2 TF (Supplemental Fig. 

1), (2) FERMT2 genetic locus and TAL1 TF (Supplemental Fig. 2). These examples of 

the deletion type demonstrated the strongest evidence for SSV and TF pairs in LOAD 

regions from the entire catalogue examined in this study. Both the APOE and SPI1 loci 

have strong literature precedent and GWAS results supporting their involvement in LOAD 

and recent work suggested mechanistic role in the microglia[32, 37–40]. Relevant to our 

paper, several transcriptomic studies including snRNA-seq demonstrated that APOE and 

SPI1 are LOAD-DEGs upregulated in microglia[29, 41]. Here we showed specific deletions 

potentially modify TF binding which may in turn affect their expression in LOAD. APOE 
exemplified an SSV that is in close proximity to the GWAS tagging SNP, and SPI1 provides 

an example for the robust change in TF binding affinities between the alternative SSV 

alleles.

1.2.2 Characterization of SSV impact on TF binding sites and prioritization 
of SSV/TF pairs—Table 1 provides a summary of SSVs effects on TF binding affinity 

for each of the four examples described above. Each row shows the results for a specific 

SSV/TF pair and indicates the corresponding GWAS locus and tagging SNP. The program 

MotifbreakR was used to calculate the relative entropy for the reference and alternative 

alleles of the SSV. The table reports whether the alternate deletion-allele results in a loss 

or gain of binding function and the binding affinity difference. Two additional criteria were 
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used to select SSV/TF pairs for progression in the analytical pipeline: (1) the magnitude of 

difference in TF binding scores between the reference and alternate alleles of the SSV or (2) 

proximity to the GWAS SNP.

These two criteria are guidelines that can be used to select SSVs for validation studies, 

using genome editing approaches such as CRISPR/Cas experiments. However, the criteria 

are not mutually exclusive, thus, in a scenario where a strong impact on TF binding is the 

main criteria the selection would be based on the largest allele differences and therefore 

down weighting distance between the GWAS SNP and the SSV. Based on the MotifbreakR 
classifications for the effect size of the allele differences, values greater than 1.6 are 

considered very strong effects, greater than 0.7 are strong effects, less than 0.7 are weak 

effects. The distance between the GWAS SNP and the SSV that disrupts the TF is effectively 

a proxy for the genetic association between the variants or linkage disequilibrium (LD). The 

GWAS SNP effectively tags a region of the genome and the specific causal variants and/or 

gene may be proximal to the GWAS SNP or may be distal. In this study, we purposely 

expand the region around the GWAS SNP to include potential TFs that may be associated 

with LOAD but are not in strong LD with the GWAS SNP. We report the LD (D’ and 

r2) in addition to the distance between the GWAS SNP and the SSVs in the results tables. 

The correlation between distance (Kb) and LD has been extensively examined in human 

genetics with some general principles. For haplotypes, the swept radius, 1/ɛ, estimates the 

distance in kb at which association falls to approximately 1/3 of For disease haplotypes, 

the swept radius is estimated between 300 and 500 kb and for random haplotypes it is 

somewhat smaller than 300 kb[42]. More recently, LD at larger distances (1 centimorgan or 

approximately 1Mb), has been characterized at the chromosome-wide level[43] and epistasis 

at distances of long-range LD (>0.25 cM) has been reported for complex diseases including 

Alzheimer’s disease[44]. Noteworthy, the LD is also influenced by factors including allele 

frequencies of the variants and is often ancestry-specific.

1.2.3 SPI1 locus—Figure 2A visualizes the extended genomic region for the SPI1 gene 

including the RUNX1 TF binding site, GWAS tagging-SNP and location of the 2 bp deletion 

(rs4647710) in the E1538022 cCRE. Figure 2B shows the magnified region surrounding 

the deletion variant and the RUNX1 TF. The deletion is in predicted TFs of RUNX1, 

RUNX2 and RUNX3. We present this SSV-TF pair as an example for a relatively large 

(−2.10) difference in RUNX1 binding scores between the SSV alleles. The region was 

defined using the GWAS tagging-SNP in the SPI1 gene (rs3740688) as an anchor. However, 

the candidate SSV is distal (140kb) from the tagging-SNP and the LD between them 

was reduced (r2=0.01). The deletion is located in predicted cCREs for brain hippocampus 

middle, temporal cortex and prefrontal cortex (orange color blocks). Furthermore, epigenetic 

evidence for the E1538022 cCRE supports a regulatory role in brain tissue relevant to 

LOAD. There is a high signal for H3K4me3m, a histone mark that usually indicates an 

active gene promoter in hippocampus, temporal lobe and mid frontal cortex (Supplemental 

Table S1) and a high signal for H3K27ac, a marker for an active enhancer that activates 

transcription in the same brain tissues (Supplemental Table S1).

SPI1 encodes PU.1, a transcription factor that is critical for myeloid cell development and 

function[45]. Previous studies suggested that PU.1 may regulate the expression of multiple 
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LOAD associated genes in myeloid lineage cells mainly microglia [45]. Overexpression and 

down regulation of PU.1 levels in mouse microglial cells affected the expression of mouse 

orthologs of several LOAD risk genes and the phagocytic activity. GWAS have shown that 

the SPI1 locus is associated with LOAD[46]. Fine-mapping approaches and integrative multi 

genomic analysis have nominated SPI1 as the most likely gene mediating the CELF1/SPI1 
locus association with LOAD risk[32, 45].

The SPI1 genomic region demonstrated the complexity of the gene regulation network 

associated with LOAD. Previously, we identified a SNP, rs116371174 located in a predicted 

active enhancer adjacent to the SPI1 gene for three brain tissues, frontal cortex, temporal 

cortex and hippocampus [34]. Like the SSV deletion, this SNP disrupts the binding site 

of the TF RUNX3 and is also adjacent to the PU.1 binding site. Although the SNP 

was not predicted to affect PU.1 binding, the proximity of the two TF binding sites 

suggested a possible interaction between the TFs in this region that may have a biological 

consequence. Moreover, it was shown that the candidate LOAD SNPs within the myeloid 

cCRE modulated expression of several genes, suggesting regional network regulation of 

several genes with plausible contribution to LOAD risk [32].

1.2.4 MS4A6A locus—In the example of the SSV deletion within the MS4A6A locus, 

the GWAS SNP and the candidate SSV were relatively close (approximately 14kb), which 

was the main factor driving the selection of this candidate SSV/TF pair as a candidate 

for further evaluation. On the other hand, the SSV deletion showed a moderate (−0.99) 

difference in the predicted allele scores for the binding of the FOXA3 TF. Figure 3 shows 

the annotated genomic MS4A6A locus from the bioinformatics analysis.

The MS4A gene cluster encodes a family of cellular membrane spanning proteins with 

a similar protein sequence and with similar predicted topological structure, which have 

roles in signal transduction and regulation of cell activation and are highly expressed in 

microglia[39]. The MS4 family genes are involved as chemosensory receptors[39]. These 

genes are expressed in microglia and regulate cell activation[47]. A recent LOAD GWAS 

study reported significant association signal within 1.0 kb windows at MS4A6A and 

MS4A4A for CpG-related SNPs (CGSes) and identified a strong negative dosage effect 

of the CGSes on LOAD risk[48]. The window containing the MS4A4A CGSes was found 

to be associated with increased DNA methylation in brain and blood[48]. LOAD-associated 

SNPs within the MS4A locus are associated with lower MS4A4A and MS4A6A expression 

in myeloid cells, which confers a protective effect on LOAD[32, 38]. An example includes 

the functional SNP (rs636317) that was validated in hiPSC-derived microglia[38], It was 

shown that MS4As were highly expressed in microglia and peripheral immune cells[32], and 

suggested that these proteins function as lipid receptors and may interact with TREM2 [32, 

49].

Several studies examined shared genetic etiology between LOAD and neuropsychiatric 

diseases including post-traumatic stress disorder (PTSD)[50] and major depressive disorder 

(MDD) [51]. These studies found that among the most significant shared loci were 

genes mapped on chromosome 11 from the MS4A gene family[50, 51]. We found an 

enrichment for SNPs in the MS4A gene family for LOAD across increasingly stringent 
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levels of significance with PTSD GWAS association, e.g. statistical association for SNPs 

in the MS4A locus conditional with an association with PTSD or (LOAD|PTSD) in 

two independent cohorts and also found a modest enrichment for the reverse conditional 

association (PTSD|LOAD) for the SNPs in this locus[50]. African-American samples 

showed moderate enrichment for (LOAD|PTSD), however, no FDR-significant associations 

were reported[50]. Similar conditional associations between SNPs in the MS4A locus were 

reported for LOAD and major depressive disorder (MDD)[51]. Moreover, for the LOAD and 

MDD pleiotropy study, significant associations were observed between four SNPs clustered 

at the MS4A locus and mRNA levels of MS4A6A gene in whole blood and with proxy 

SNPs for mRNA levels of MS4A6A in monocytes[51]. A recent study identified two SNPs 

in the MS4A locus that were modifiers of AD risk, one protective (rs1582763) and one risk 

(rs6591561)[52]. This study reported a chemokine microglial subpopulation that is altered 

in individuals who carry the MS4A variants[52]. Moreover, the study identified MS4A4 as 

the major regulator and provided a mechanistic explanation for the AD variants in the MS4A 
locus[52]. Our study is complementary to this work in terms of providing details on SSV 

variants in this region and potential TF targets.

1.2.5 TF cell-type specific expression in LOAD—The results of the LOAD-

associated differential expression analysis for the genes and TFs considered in this study are 

summarized in Figure 4 and Supplemental Table S2. We used two independent snRNA-seq 

datasets and reported results that showed FDR-significance for LOAD associated differential 

expression by both datasets (Table 2). The replication by two independent snRNA-seq 

datasets provided a strong statistical rigor of the developed pipeline. An FDR-corrected p 
value ≤ 0.1 for differential expression by LOAD diagnosis compared with controls and an 

absolute value of log2(fold change) ≥ 0.2 was used to determine a differentially expressed 

gene (DEG).

Six of the 9 gene/TFs were DEGs in astrocytes for both snRNA-seq datasets. Notably, 

both APOE and PPARG are found to be differentially expressed in astrocytes between 

LOAD cases and controls. Numerous studies have considered the role of PPARG in 

the development of Alzheimer’s disease[53–55] and indeed PPARG agonists have been 

evaluated as potential repurposed drugs to delay the onset of LOAD[56, 57]. IRF7 is a 

TF that is a master regulator of type I interferons after activation by pathogen recognition 

receptors and was reported to be associated with decreased levels in LOAD brains relative to 

controls; supporting a hypothesis that the innate immune system is impaired in LOAD. 

Studies have supported the role of IRF7 in activation of interferon pathways as part 

of the neuroinflammatory response to brain amyloidosis and showed an association of 

IRF7 expression with neuritic plaque burden, clinical dementia rating and Braak score[58] 

and described IRF7 regulation of type-I IFN-mediated immune suppression in AD and 

tau-associated neurodegenerative diseases including LOAD[59]. Although these gene/TFs 

show a statistically-significant log2 fold change ≥ 0.2, for 5 of the 9 comparisons between 

the datasets, there is a different direction of effect. Further studies with larger samples 

sizes are needed to confirm the direction of change in expression levels with respect to 

clinically-relevant phenotypes..
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1.3 Limitations, future studies and disease implications

Regulation of gene expression is complex and controlled by several pre- and post- 

transcriptional mechanisms. In this work we focused on the affinities of TFs for their 

corresponding binding sites which represents only one facet of the gene regulation process. 

Furthermore, we investigated the relationships between a particular SSV and TF, while 

it is likely that multiple genetic variants and TFs contribute in concert to changes in the 

transcription of key genes in LOAD. Another limitation is related to the parameters of 

our bioinformatics pipeline. While we considered the impact of changing parameters on 

the number of candidates SSVs and TFs, specific sensitivity to parameters including cCRE 

type needs to be determined. Finally, although the results presented were for cases with a 

reference and an alternate allele, the extension to SSVs offers the opportunity to evaluate 

multi-allelic variants. Currently, the MotifbreakR algorithm is limited to the evaluation of 

bi-allelic variants, however, our bioinformatics pipeline is easily extended to multi-allelic 

variants by designating one allele as the reference and repeatedly running the MotifbreakR 
algorithm. Future work will expand the analysis for the LOAD GWAS regions beyond 

biallelic, short insertions, deletions and indels to larger classes of SSVs. These SSVs are 

often polymorphicMotifbreakR. Finally, the effect of different ancestral genetic backgrounds 

should be included in future analysis, notably as results for GWAS for cohorts of individuals 

from diverse and under-represented ancestries are completed.

The current study developed a bioinformatics pipeline that uses genomic attributes to 

catalogue and prioritize candidate SSV and TF pairs. The pipeline employed in silico tools 

and existing datasets to generate evidence and assess each SSV/TF pair. Next steps will be 

essential to test experimentally the specific alleles of the SSVs using gene editing techniques 

such as CRISPR/Cas technologies. Initial studies would focus on generating isogenic hiPSC 

lines for the candidate SSVs identified by our bioinformatics analysis and evaluatiom of 

their cis regulatory effects in the respective brain cell-type by differentiation into microglia, 

astrocytes and neurons. The advantage of using isogenic hiPSC-derived models is that only 

the SSV is modified on the same genomic background allowing direct evaluation of the SSV 

function. These studies would confirm the effect of the SSV on gene transcription, the linked 

target gene, and the TF that mediate the effect. Follow up analyses could use 3D models 

including organoids and co-cultures to further examine impact on downstream cellular 

mechanisms, neurodegeneration and other disease perturbations, The knowledge gained 

by the combined computational and experimental approach will provide the foundation 

for the development of new emerging actionable therapeutic targets for prevention and/or 

treatment of LOAD. Also, as more single cell multi-omics datasets from LOAD became 

available we could apply the bioinformatics pipeline to study in depth cell-type and subtype 

LOAD-associated changes in gene regulation driven by cis-trans interactions. Future work 

will consider the complexity of gene regulation networks including, more distal enhancers 

governed by SNPs and SSV and crosstalk between cCREs and gene promoters.
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2 CONSOLIDATED METHODS AND RESULTS

2.1 Consolidated Methods

2.1.1 Bioinformatics analysis—The schematic for the bioinformatic pipeline is shown 

in Figure 1 with the corresponding number of elements identified at each step provided.

2.1.2 Sample demographics—Sample demographics, as described in the primary 

studies that provided data for each of the bioinformatics analysis steps including the original 

GWAS study, evidence for brain tissue and single cell RNAseq data are provided in Table 

3. All individuals in Stage 1 of the original AD GWAS were of European ancestry[46]. 

For the single cell RNAseq data, individuals were also primarily of European ancestry, 

Sufficiently powered GWAS from multi-ancestry populations will be essential to develop a 

clear understanding of the genetics of AD, to provide the detailed annotations of SSVs and 

TFs and to elucidate which genomic properties apply generally across ancestries and which 

are unique.

2.1.3 Cataloguing SSVs in LOAD defined cCREs—For the current study, the recent 

LOAD GWAS data reported by Bellenguez et al.[46] defined the LOAD-associated loci. The 

approach for identifying active enhancers in LOAD GWAS regions is described in detail 

in Lutz et al.[35]. In brief, the region tagged by each LOAD-SNP was initially defined by 

anchoring the center of the region on the GWAS SNP and extending 500kb in each direction 

to cover a 1Mb locus. The GWAS SNP effectively tags a region of the genome, the specific 

SSVs may or may not be in LD with the GWAS SNP, however, the bioinformatics analysis 

is designed to find SSVs that cause a disruption (gain or loss) in specific TFs in the genomic 

region. Using a 1Mb range is a conservative boundary based on studies to predict the range 

of linkage disequilibrium (LD) for mapping disease genes[42]. Genes on the boundary of 

the 1Mb region were examined and the locus extended to cover the full length of the 

gene if the boundary intersects within a gene. Alternative methods for definition of LOAD 

GWAS-associated regions to search for active enhancers include using LD blocks and/or 

selection of specific enhancer types (e.g. proximal, distal or promoter).

The extended GWAS regions were used to search the ENCODE Registry (GENCODE V24) 

of candidate cis-regulatory elements (cCREs)[60] for proximal, CTCF-bound cCREs. This 

registry includes 926,535 cCREs for 839 cell types. We downloaded all human cCREs 

using the ENCODE Screen tool (https://screen.encodeproject.org/) and tested for evidence 

(designated as high expression) of at least one epigenetic mark (H3K4me3, H3K27ac) in 

specific brain tissues relevant to LOAD (hippocampus, temporal lobe, mid frontal lobe, 

astrocytes in the hippocampus, astrocytes in the cerebellum). From 34,492 cCRE elements, 

8026 are filtered as proximal, CTCF-bound and 5898 had at least one epigenetic mark 

providing supporting evidence for a role in the brain.

SSVs located within the enhancers were catalogued using the UCSC Table Browser[61, 62] 

to load data for the Thousand Genomes Project, Phase 3. This dataset contains 73 million 

single nucleotide variants (SNVs) and 5 million short insertions/deletions (indels) produced 

by the International Genome Sample Resource (IGSR) from sequence data generated by the 

1000 Genomes Project in its Phase 3 sequencing of 2,504 genomes from 16 populations. 
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Importantly, this is an extensive source of indel annotation where the variant genotypes are 

phased with a designated reference and alternate alleles which is the information required 

for analysis of transcription factor binding. There were 1581 SSVs identified in the 5898 

cCRE elements.

2.1.4 Predicting TF binding sites affected by SSVs in LOAD cCREs—
Prediction of TF binding sites was completed for the 1581 SSVs. The software package/

algorithm MotifbreakR[63] was used to estimate or predict whether the sequence 

surrounding a SSV matches to specific TF binding sites, and how one allele of the SSV 

relative to the other affects the strength of the TF binding site (gain or loss of the TF binding 

affinity). MotifbreakR can predict effects for novel or previously described variants in public 

databases. For our study, we utilized the information content (ic) algorithm and position 

weight matrices from Homer, HOCOMOCO, Factorbook and ENCODE.

Each SSV from the catalogue we generated for LOAD-GWAS enhancers filtered by the 

prior steps was evaluated for the potential to disrupt/gain TF binding sites using a predicted 

p value < 1× 10-4. The choice of the 1× 10−4 threshold is a first level filtering parameter 

recommended in the MotifbreakR user manual[64] for the p value for the position weight 

matrix match to the sequence. All p values for the sequence match will be at this level or 

lower with the final p values for the reference and alternate allele scores reported after a 

second step of p value calculation for the resulting set of TFs. The SSVs were evaluated for 

impact on specific TF binding with calculation of a permutation p value, score for impact 

on binding and assessment of loss or gain of a binding site based on the MotifbreakR 
calculations. There were 737 TFs identified by the MotifbreakR analysis.

2.1.5 Evaluation of candidate TFs and their binding sites in snRNA-seq data 
for LOAD and control brain samples.—The candidate TFs from the bioinformatics 

analysis were evaluated in single cell RNA-seq (snRNA-seq) data from LOAD and control 

brain samples to interrogate expression in specific brain cell subtypes (astrocytes, microglia, 

excitatory neurons, inhibitory neurons, oligodendrocytes, oligodendrocyte progenitor cells 

and pericytes/endothelial cells).

To provide a replication framework, two snRNA-seq datasets were used to evaluate 

expression of the candidate TFs and corresponding genes.

The first sample was obtained from a public dataset made available by the Swarup Lab 

(https://swaruplab.bio.uci.edu/singlenucleiAD/), that is described in detail in Morabito et al.

[40]. The data was downloaded from Synapse (Synapse ID: syn22079621). In short, single 

nuclei suspensions were isolated from ~ 50mg frozen human prefrontal cortex, as described 

in [40, 65]. Nuclei were FACS sorted with DAPI (NucBlue Fixed Cell ReadyProbe Reagent, 

Cat#R37606, Thermo) before running on the 10x ChromiumTM Single Cell 3’ v3 platform. 

cDNA library quantification and quality were assessed as in bulk RNA-seq. Libraries were 

sequenced using Illumina Novaseq 6000 S4 platform at the New York Genome Centre, 

using 100bp paired-end sequencing. Detailed demographic and technical information on the 

samples is provided in Morabito et al.[40]. There were 20 samples analyzed, 12 AD, 8 

control samples, age matched across diagnoses (Table 3).
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The second sample was taken from a subset of the Religious Orders Study and Rush 

Memory and Aging Project (ROSMAP) dataset [14,22–24]. ROS has enlisted nuns and 

brothers since 1994. MAP has recruited individuals from the northern Illinois region 

since 1997. Both studies were run by the same investigators using similar data collection 

techniques. Thus, the results from both were comparable. The ROSMAP snRNA-seq 

dataset is described in detail in Mathys et al.[66]. The data was downloaded from Synapse 

(Synapse ID: syn16780177). In short, single nuclei were isolated from the prefrontal cortex 

(Brodmann area 10) and profiled by RNA-sequencing using the DroNc-seq protocol[67], 

modified to work on the 10x Genomics Chromium platform. This approach uses droplet 

technology for high-throughput, massively parallel single-nucleus RNA-sequencing, and is 

suited for profiling cells from tissues that cannot be easily dissociated (human brain, for 

example), or from samples that have been previously frozen. Detailed information on the 

samples and the snRNA-seq analysis are provided in Mathys et al.[66]. There were 48 

samples analyzed, 24 clinically-diagnosed AD, 24 controls, age- and sex-matched across 

diagnoses (Table 3).

Differential expression analysis to calculate log2(Fold Change) and FDR-adjusted P values 

for the genes and TFs identified from the bioinformatics analysis were calculated using the 

approach described in the Seurat program[68].

2.1.6 Genome version and coordinates—All genomic data and coordinates are 

based on the December 2013 version of the genome: hg38, GRCh38.

2.2 Consolidated Results

Results for two additional examples, APOE and FERMT2 loci were reported in this section. 

Table 1 reports the detailed bioinformatics analysis for these loci and full analysis results 

were reported for all of the LOAD-GWAS loci in supplemental table S3.

2.2.1 APOE Locus—The association between APOE ε2/3/4, determined by two coding 

SNPs, and LOAD risk and age of onset have been well established. In recent years 

accumulating evidence has suggested that specific haplotypes across the APOE locus have 

regulatory roles that also contribute to LOAD risk and pathogenesis. We identified an SSV 

deletion variant (rs546328656) that disrupts the SMAD2 TF (Supplemental Figure 1). The 

SSV is positioned in a genomic region proximal to both APOE and its nearby TOMM40 
gene. The distance between the SSV deletion and the APOE ε4 coding SNP (rs429358) is 

approximately 5Kb, thus, in high LD with variants across the APOE and TOMM40 region. 

This example illustrated the criteria of proximity between the LOAD SNPs (APOE isoforms 

defining SNPs) and the SSV as an important factor for prioritizing candidate SSV/ TF pairs 

for further evaluation.

2.2.2 FERMT2 locus—The identified SSV deletion within the FERMT2 locus showed 

a large difference (−2.99) in the predicted binding allele scores for the TAL1 TF. Thus, this 

is another example where the magnitude of difference in TF binding scores was the main 

factor driving selection of the candidate SSV/ TF pair. The annotated genomic locus plot for 

FERMT2 is provided in Supplemental Figure 2.
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2.2.3 Other LOAD GWAS loci—Supplemental Table S3 shows the complete set of 

results for all of the LOAD GWAS loci. We found 1581 unique SSVs in the LOAD GWAS 

regions and 737 TFs are identified by the MotifbreakR analysis. Overall the bioinformatics 

pipeline identified 7587 combinations of SSVs and TFs pairs; 5934 showed strong effects on 

TF binding affinities and 1653 showed weak effects. For three of the 75 LOAD GWAS loci 

(EPHA1, PTK2B and CLU) the pipeline did not identify any SSV/TF pair.

The two major alternative evidence supporting the prioritization of SSV/TFs pairs within 

LOAD risk loci are: (1) close proximity between the SSV and TF binding site to the GWAS 

tagging SNP, (2) the magnitude of the differences in binding potential for the alternative 

alleles of the SSV. Figure 5 shows the relationship between these criteria for all of the SSVs 

listed in Supplemental Table S3. Of note, allele differences greater than 3 were found for 

several SSVs in the ABCA7 locus and these also showed close proximity to the GWAS SNP. 

In contrast, many of the entries in Supplemental Table S3 were distal to the GWAS SNP by 

over 100k, thus, unlikely in LD with the GWAS SNP.

2.2.4 Bioinformatics pipeline computational and performance details—The 

bioinformatics pipeline is comprised of a number of steps which involve downloading data 

from public repositories using bioinformatics software (UCSC Table Browser, ENCODE 

Screen Tool, Synapse for snRNA-seq data and performing the operations detailed in 

Figure 1 and in the Consolidated Methods section for each level of analysis. The most 

computationally-intensive steps are the MotifbreakR analysis and the single cell analysis 

using the Seurat program; both of these analyses were run using R version 4.1. Statistical 

analysis for reporting and summarizing the results was done using JMP (version 16.2.0, 

SAS Institute, Cary NC) and SAS (version 9.4, SAS Institute Cary). A visual basic macro 

is available on the public resource site that maps SSVs from the MotifbreakR output to 

the input GWAS genomic regions. Overall elapsed time from starting with a list of loci to 

completion of the MotifbreakR analysis, prior to single cell analysis, is about 30 minutes 

with time dependent primarily on length of time to download the specific data needed for 

each step and formatting of the files for each part of the analysis.

The two major computational steps, MotifbreakR analysis and single cell analysis (Seurat) 

were run on two computational platforms, a Windows 10 PC, intel i-7 6600U 2.6 Ghz 

processor with 15Gb RAM and on a local linux compute cluster with 1300 nodes, 30,000 

VCPUs and 200Tb RAM. The run times for MotifbreakR strongly depends on the number 

of input SSVs. For 10, 20 and 40 SSVs, the run times were 2, 5 and 8 minutes on the 

Windows PC. MotifbreakR run times were similar for the linux compute cluster, although 

the 40 SSV run was slightly faster at 6 minutes. The MotifbreakR program utilizes the 

R package TFMsc2pv[69] to compute p values for scores for the reference and alternate 

alleles based on the specific position weight matrices. This step can be a very memory and 

time intensive process if the algorithm doesn’t converge rapidly. We set the “granularity” 

parameter to improve the speed of computation without sacrificing accuracy of the p values. 

We used a value of 1×10−4 as recommended in the MotifbreakR user manual[64] as a 

compromise between computational time and p value accuracy. We used the information 

criteria as the method for scoring probabilities for the different positions in the sequence; 

for this approach, the position-specific scoring matrix is created using a scoring method that 
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directly weights the score by the importance of the position within the match sequence in 

contrast to a simple sum of the log probabilities for each position within the sequence.

The run times for the Seurat, single cell analysis are typical for single cell experiments, 

however, since a subset of the full dataset was used to limit the analysis to the specific genes 

and TFs of interest identified by the bioinformatics pipeline analysis, run times were shorter 

than for the entire set of genes. For the ROSMAP dataset (48 samples), run times on the 

linux cluster were approximately 6 minutes while on the PC run times were on order of 12 

minutes.

To show the impact of the number of genomic regions that are used as the primary input for 

the bioinformatics pipeline, Supplemental Table 4 shows the number of elements (cCREs, 

SSV variants, TFs) for 24 and 75 regions respectively. The approximately 3-fold increase 

in number of regions results in approximately a 2-fold increase in number of TFs identified 

as disrupted by the SSV variants while the number of elements at different steps ranges 

from 2-fold to 7-fold with the greatest increase for the number of cCREs. Other aspects 

of the bioinformatics study design included decisions on the inclusion of SNPs in addition 

to SSVs, more distal cCRE types and extensions to include testing in other types of brain 

tissue.

Selection criteria at several steps will have a significant impact on the number of elements 

(cCRES, SSVs, TFs) considered at each step. Moreover, the bioinformatics pipeline can be 

used to consider both SNPs and SSVs in the same analysis for a set of genomic regions. 

For both SNPs and SSVs, minor allele frequency can be used as an effective filtering step. 

Supplemental Table 5 shows the number of different types of variants (SNPs, SSVs) at two 

MAF levels: MAF > 0.01 and unfiltered (e.g. includes rare variation). This Table shows 

the number of variants by the two levels of MAF filtering across all of the AD GWAS 

regions and for the APOE-TOMM40 region (chr19:44,892,743–44,909,743). The increase 

of number of variants varies greatly by type, there are approximately 50 times as many 

SNPs when the MAF > 0.01 restriction is removed for both the AD GWAS regions and the 

APOE-TOMM40 region. For the AD GWAS regions, removing the MAF > 0.01 restriction 

results in about 8 times as many insertions and 16 times as many deletions. The decision to 

use a filter based on MAF largely centers on whether rare variation is to be included and 

the threshold for detection of common variation (e.g. greater than 1% or 5%). Rare variants 

near the APOE region have been reported to be associated with CSF and neuroimaging 

biomarkers of Alzheimer’s disease and were hypothesized to account for some of the 

missing heritability of Alzheimer’s disease not explained by the common variation assessed 

by GWAS[70]. Analysis of rare variation from whole-genome sequencing datasets also 

revealed two novel Alzheimer’s disease-associated genes: DTNB and DLG2[71].

The public resource (https://github.com/NCTrailRunner/Alzheimer-SSV-TF-analysis) 

provides datasets for each step of the bioinformatics pipeline for investigators to use any 

aspect of the datasets for further analysis and for the design of follow up bioinformatics or 

experimental studies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Availability of data and materials

Publicly available bioinformatics software and data sources were used for all analyses. 

Software:

MotifbreakR: https://www.bioconductor.org/packages/release/bioc/html/MotifbreakR.html

UCSC Table Browser: https://genome.ucsc.edu/cgi-bin/hgTables

ENCODE SCREEN tool: https://screen.encodeproject.org/

Databases:

dbSNP v153: https://www.ncbi.nlm.nih.gov/snp/

TF binding motifs from MotifDb: https://bioconductor.org/packages/release/bioc/html/

MotifDb.html

1000 Genomes Phase 3 release: https://www.internationalgenome.org/category/phase-3/
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Single nucleus (sn)RNA-seq data from the Swarup lab for AD samples and controls: https://

www.synapse.org/#!Synapse:syn22079621/wiki/603535

snRNA-seq data from ROSMAP for AD samples and controls: The single-nucleus RNA-

Sequencing data is available at Synapse (https://www.synapse.org/#!Synapse:syn18485175). 

The DOI for this dataset is: 10.7303/syn18485175. The DOI for the ROSMAP metadata is: 

10.7303/syn3157322.

ABBREVIATIONS

AD Alzheimer’s Disease

LOAD Late-onset Alzheimer’s Disease

GWAS Genome-Wide Association Study

cCRE Candidate cis-regulatory element

SNP Single Nucleotide Polymorphism

SV Structural Variant

SSV Short structural variant

TF Transcription Factor

UCSC University of California, Santa Cruz

ENCODE Encyclopedia of DNA elements

LD Linkage Disequilibrium

SnRNA-seq Single Nucleus RNA sequencing

SnATAC-seq Single Nucleus Assays for Transposase Accessible 

Chromatin using sequencing

bp, Kb, Mb base pair, kilobases, megabases
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Systematic review:

The authors reviewed the literature using Pubmed, meeting abstracts and presentations, 

selected computational tools and downloaded publicly available datasets. Short Structural 

Variants (SSVs), including indels are common multi- allelic variants in the human 

genome and impact substantially human traits and diseases. The role of indels in 

brain diseases including late onset Alzheimer’s disease (LOAD) has been understudied. 

Previously we developed a bioinformatics pipeline that characterizes and prioritizes 

candidate regulatory SNPs in enhancers located in LOAD-GWAS regions. Here we 

extend the pipeline to the analysis of SSVs. The developed bioinformatics pipeline 

progresses from SSVs located in LOAD-GWAS regions to a filtered set of candidate 

regulatory SSVs that have a predicted strong effect on transcription factor (TFs) binding 

sites.

Interpretation:

This study provides an analytical framework to catalogue and prioritize noncoding indel 

variants in candidate cis-regulatory elements (cCREs) located in LOAD-GWAS loci and 

characterize their putative effects on TF binding sites. This study extended prior work 

with cCRE within LOAD-GWAS regions to include SSVs and to rank the top candidate 

SSV/TF pairs for validation experiments. The bioinformatics pipeline was utilized to 

characterize several LOAD-GWAS loci including SPI1 and APOE.

Future directions:

Future work will focus on testing experimentally the effect of the different SSV alleles 

using gene editing techniques such as CRISPR/Cas technologies. Initial studies would 

focus on generating isogenic hiPSC lines for the candidate SSVs identified by our 

bioinformatics pipeline and evaluate their cis regulatory effects in the respective brain 

cell-type by differentiation into microglia, astrocytes and neurons. These studies would 

confirm the effect of the SSV on gene transcription, the linked target gene, and the TF 

that mediate the effect. Follow up analyses could use 3D models including organoids 

and co-cultures to further examine impact on downstream cellular mechanisms, 

neurodegeneration and other disease perturbations. This knowledge would be essential 

for the development of new therapeutic targets for prevention and treatment of LOAD. 

Future computational biology work will consider the complexity of gene regulation 

networks including, more distal enhancers governed by SNPs and SSV and crosstalk 

between cCREs and gene promoters.

Lutz and Chiba-Falek Page 20

Alzheimers Dement. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. Schematic of the bioinformatics pipeline.
Flowchart illustrating the analytical scheme used to progress from SSVs located in candidate 

cis-regulatory element within LOAD GWAS regions to a filtered set of SSVs that have a 

predictive regulatory effect on transcription factor binding in LOAD-disease relevant tissues 

with supporting data from snRNA-seq data.
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Figure 2. SPI1 LOAD GWAS locus.
Genome browser view of SSV deletion variant (rs4647710) disruption of RUNX 
transcription factors. Tracks include (upper to lower): gene structure (GENCODE V41); 

candidate cCCREs (ENCODE) TFs from the JASPAR core collection; and SSVs from 

short genetic variants (dbSNP153). The deletion disrupts the RUNX1, RUNX2 and RUNX3 
TFs. (A) Displayed genomic region includes the GWAS SNP (rs3740688) and the deletion 

variant (Rs4647710) located in the enhancer element (E1538022). (B) Inset that shows detail 

surrounding the enhancer SSV (Rs4647710).
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Figure 3. MS4A6A LOAD GWAS locus.
Genome browser view of SSV deletion variant (rs575848267) disruption of the FOXA3 
transcription factor. Tracks include (upper to lower): gene structure (GENCODE V41); 

candidate cCCREs (ENCODE) TFs from the JASPAR core collection; and SSVs from short 

genetic variants (dbSNP153). The deletion disrupts the FOXA3 TF. (A) Displayed genomic 

region includes the GWAS SNP (rs7933202) and the deletion variant (rs575848267) located 

in the enhancer element (E1540795). (B) Inset that shows detail surrounding the enhancer 

deletion SSV (rs575848267).
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Figure 4. Volcano plot of single cell LOAD data.
This plot is based on the fold change differences in the snRNA-seq data for the genes 

and transcription factors identified in the bioinformatics analysis for all of the LOAD 

GWAS regions. The fold change is calculated as the difference between late-stage AD 

(LOAD) and age-matched cognitively healthy controls (74–90+years old). The plot shows 

the relationship between fold change (log2 fold change (FC); horizontal axis) and FDR-

adjusted statistical significance (−log10 (p value); vertical axis), respectively. The horizontal 

line corresponds to a cut-off of FDR P value ≤ 0.1, vertical lines correspond to log2 

fold change thresholds of ± 0.2. (A) ROSMAP data analysis. Cell type abbreviations: 

Oli-oligodendrocytes, In-inhibitory neurons, Mic-microglia, Per-pericytes (B) Sample 

analysis from Morabito et al. data[40] Cell type abbreviations: INH-inhibitory neurons, EX-

excitatory neurons, ASC-astrocytes, MG-microglia, PER-END-pericytes/endothelial cells, 

OPC-oligodendrocyte progenitor cells.
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Figure 5. Relationship between absolute value of the allele difference for the reference and 
alternate alleles of each SSV and the distance (bp) between the GWAS SNP and the SSV.
Horizontal axis is the absolute value between the reference allele and the alternate allele 

for disruption of TF binding as estimate by MotifbreakR. Vertical axis is the distance (bp) 

between the GWAS SNP and the start of the SSV. (A) Entire set of data for all SSVs 

analyzed. (B) Inset that is restricted to data where the distance between the GWAS SNP and 

SSV is ≤ 200Kb.
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TABLE 2.

Single-cell differential expression results for genes and transcription factors identified by the bioinformatics 

pipeline.

Cell type Gene log2(FC) ROSMAP log2(FC) Morabito FDR p value ROSMAP FDR p value Morabito

Astrocytes APOE 0.35 −0.30 0.082 0.060

Astrocytes IRF7 0.60 −0.22 0.039 0.038

Astrocytes PPARG 0.26 −0.42 0.051 0.001

Astrocytes TBX2 0.78 −0.20 0.063 0.015

Astrocytes TP63 0.83 0.59 0.075 0.057

Astrocytes VAX2 0.53 0.46 0.095 0.070

Excitatory neurons GLIS3 0.31 −0.21 0.087 0.089

Pericytes ATF4 −0.86 −0.42 0.069 0.067

Pericytes JUND −2.18 −0.27 0.038 0.068
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