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Abstract

Chronic pain conditions frequently co-occur, suggesting common risks and paths to prevention 

and treatment. Previous studies have reported genetic correlations among specific groups of pain 

conditions and reported genetic risk for within-individual multi-site pain counts (≤7). Here, we 

identified genetic risk for multiple distinct pain disorders across individuals using 24 chronic pain 

conditions and genomic structural equation modeling (Genomic SEM). First, we ran individual 

genome-wide association studies (GWASs) on all 24 conditions in the UK Biobank (N ≤ 436,000) 

and estimated their pairwise genetic correlations. Then we used these correlations to model their 

genetic factor structure in Genomic SEM, employing both hypothesis- and data-driven exploratory 

approaches. A complementary network analysis enabled us to visualize these genetic relationships 

in an unstructured manner. Genomic SEM analysis revealed a general factor explaining most of 

the shared genetic variance across all pain conditions and a second, more specific factor explaining 

genetic covariance across musculoskeletal pain conditions. Network analysis revealed a large 

cluster of conditions and identified arthropathic, back, and neck pain as potential hubs for cross-

condition chronic pain. Additionally, we ran GWASs on both factors extracted in Genomic SEM 

and annotated them functionally. Annotation identified pathways associated with organogenesis, 

metabolism, transcription, and DNA repair, with overrepresentation of strongly associated genes 
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exclusively in brain tissues. Cross-reference with previous GWASs showed genetic overlap with 

cognition, mood, and brain structure. These results identify common genetic risks and suggest 

neurobiological and psychosocial mechanisms that should be targeted to prevent and treat cross-

condition chronic pain.

1. Introduction

Chronic pain is a well-documented burden on the patient [1,26,46,79,98,109] and the 

healthcare system [114]. The costs of pain management are driven by an incomplete 

understanding of pain chronification mechanisms, which impedes effective prevention and 

treatment. It is now widely understood that chronic pain is complex and involves changes in 

brain pathways as well as peripheral mechanisms [94, 102, 113]. This understanding has led 

to the introduction of chronic primary pain disease codes in version 11 of the International 

Classification of Diseases (ICD-11) [123]. Nonetheless, with few exceptions [134], pain 

conditions are still classified largely based on the body site affected and either treated in the 

primary care setting [110] or referred to specialists by body site (back pain to orthopedists, 

irritable bowel syndrome to gastroenterologists, etc.). Unfortunately, the processes that drive 

chronic pain across conditions remain insufficiently understood, and most current treatments 

do not work for most patients [31,132]. There is an urgent need for a fundamentally different 

approach.

Recent work in mental health epidemiology has revealed extensive co-occurrence across 

disorders, leading to identification of common factors underlying multiple conditions 

[14,54,89]. Co-occurrence across pain conditions with different pathologies (e.g., migraine 

with irritable bowel syndrome [IBS]) has also been documented [3,67,74,106,116]. 

Furthermore, chronic pain conditions are heritable (with estimates up to 45% [47]), and 

genetic risks for pain are shared across conditions [84]. Two recent genome-wide association 

studies (GWASs) in the UK Biobank (UKBB) identified genetic variants related to multi-

site pain [57,60]. These important studies, however, focused on pain widespreadness 

(quantitative 0–7 [57] or binarized: 1 versus 2 or more affected body sites [60]), without 

tracking whether genetic risks were shared across conditions. Widespreadness may either 

arise from co-occurring pain conditions or itself be a pain condition that affects a number of 

musculoskeletal body sites [20]. Given that five of the seven body sites used in both studies 

are musculoskeletal, including the most prevalent site, back pain), the genetic associations 

they assessed are likely driven by the genetic risk for widespread musculoskeletal pain and 

may not identify genes that cut across distinct disorders.

Here, we examine shared genetic risks across 24 distinct pain conditions in over 400,000 

individuals in the UK Biobank (UKBB) [13]. We use Genomic Structural Equation 

Modeling (SEM) [43] to identify common genetic factors across conditions. Genomic SEM 

applies the traditional techniques of SEM, a widely used method for latent factor modeling 

[61], to genetic correlations estimated from genome-wide association statistics. Then we 

annotate the factors with associated biological pathways.

Figure 1 provides a graphical overview of the study. The specific questions we address 

are: (1) Is there a general, condition-agnostic genetic risk factor for chronic pain? (2) 
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Are there additional genetic factors underlying subsets of pain conditions? (3) Does the 

genetic structure correspond to organization of pain by symptom location or hypothesized 

etiology? (4) What biological pathways and tissues are associated with these genetic factors? 

Addressing these questions may shed light on trans-diagnostic causes of chronic pain and 

potential targets for prevention and treatment.

2. Methods

The main steps in the analysis included: (1) GWAS, yielding association effect sizes for 

genetic variants (single-nucleotide polymorphisms, SNPs) with chronic pain conditions; (2) 

genetic correlations, which use the GWAS association effect sizes to estimate shared genetic 

risk across pain conditions; (3) Genomic SEM to identify common factors and compare 

factor models; (4) factor GWAS to identify SNPs associated with common factors; and 

(5) functional annotation of factor-associated SNPs in terms of likeliest implicated genes, 

pathways, and tissues.

2.1 Cohort

Participants in the UKBB were aged 40–69 and were recruited between 2006 and 2010 

(UKBB data-request application 16651). The current standard in genetics is to limit analyses 

to samples of homogeneous ancestral background to avoid introducing confounds from 

population stratification [119]. We analyzed data from White Europeans, identified using 

UKBB-provided genomic principal components 1–4 [13], given that no other group had a 

sufficient sample size for our analyses (see Supplementary Table S2 for descriptive statistics 

of South Asians, the next highest sample size). Analyses in different ancestral groups will be 

a high priority when more data become available. Individuals who withdrew from the study 

by August 2020 were removed. Up to 435,971 people (54% female) were included in the 

analysis, with sample size varying by phenotype (Table 1).

2.2 Phenotypes

The selected phenotypes were either chronic pain conditions, such as migraine or back pain 

lasting longer than three months, or conditions with persistent pain as a prevalent symptom, 

such as osteoarthritis. We drew an initial list of 91 phenotypes from five UKBB Categories: 

Medical conditions (100074), Health outcomes (713), Self-reported medical conditions 

(1003), Health and medical history (100036), and First occurrences (1712), downloaded 

in May 2021. We were able to greatly expand the number of pain conditions included in 

this study compared to previous studies [57,58,60,122], because of the First Occurrences 

dataset. This dataset gave researchers access to primary care and death register records to 

supplement self-reports and ICD-10 diagnoses that had been earlier available exclusively 

from hospital intake records. This updated UKKB dataset thus had, for the first time, more 

accurate case prevalences for a large number of conditions. We recoded these conditions 

into binary phenotypes (Supplementary Table S1) and pruned them to remove those that 

fell into one of the following categories: 1. heterogeneous disorders or groups of other 

conditions already included, such as ”Other diabetic polyneuropathies”; 2. branching traits 

(answers to questions dependent on endorsement of a previous question, with the exception 

of DF6159: ”Pain type(s) experienced in last month”, which was included as the branching 
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question for pain experienced for more than three months); 3. disorders with case count < 
500; 4. disorders that were not sufficiently related to genetics, with SNP heritability (see 

Section 2.2.1 below) less than or equal to 2 standard errors above zero (h2
SNP - 2 ∗ SE <= 

0), (see Supplementary Note). Genomic SEM models genetic covariances, and traits with 

low heritability cannot show significant genetic covariance with other traits; hence they were 

not included here. This pruning left 33 heritable chronic pain conditions (Table 1), which 

were further reduced to 24 during factor analysis (see Section 2.2.2 below).

2.3 GWAS

To prepare the data for GWAS, we used Plink [17], a commonly used, open-source 

toolset for genetic analyses (details in Supplementary Note). For the next step, GWAS, 

we estimated associations between each SNP and each chronic pain condition (phenotype) 

of interest using logistic regression, with the SNP variant as the predictor and the pain 

condition as the outcome. For these analyses, we used Regenie (details in Supplementary 

Note).

2.4 Factor analysis and structural equation model

2.4.1 Heritability and genetic correlations—We used linkage disequilibrium score 

regression (LDSC) software [12] to determine SNP heritability, h2
SNP, and to estimate 

genetic correlations between every pair of pain conditions. For heritability, LDSC uses the 

pattern of SNP effects to estimate the variance in the phenotype that is attributable to all 

measured SNPs in aggregate (details in Supplementary Note). Table 1 reports the h2
SNP for 

each condition, on a liability scale (Supplementary Note). For genetic correlations, LDSC 

determines the extent to which the pattern of genetic associations for one phenotype is 

correlated with the pattern of genetic associations for another phenotype. The resulting 

matrix of pairwise genetic correlations across pairs of chronic pain conditions is in Figure 

2A. These genetic correlations provide the basis for factor analysis in Genomic SEM.

2.4.2 Factor analysis and Genomic SEM—We used Genomic SEM to test for 

evidence of shared genetic risk. SEM analyses test whether a hypothesized factor structure 

can adequately capture the observed correlations across a set of observed phenotypes 

(indicators). Genomic SEM applies the same method but to genetic correlations instead 

of phenotypic correlations; thus, the indicators are chronic pain conditions, but the data 

constitute correlations of genetic effects on phenotypes rather than phenotypic scores 

themselves. In confirmatory factor analysis (CFA), one specifies a series of hypothesis-

driven models and compares their ability to accurately reproduce the pattern of correlations 

across conditions. Each model comprises a specification of which conditions load on which 

factors and whether the factors are themselves correlated. In exploratory factor analysis 

(EFA), one allows for the factor loadings to be determined in a data-driven fashion, 

identifying which groupings of conditions are best supported.

Our main analysis goal was to test for common factors without rigidly specifying groupings 

a priori. Thus, our main strategy combined EFA and CFA, using EFA to select the number of 

factors and their loadings and then evaluate the goodness of fit and compare with alternative 

models (see below for details). EFA-CFA, evaluated in [38] and recently used in [19,24,65], 
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is a partially data-driven approach that captures observed groupings in the data while still 

permitting structure and inferences based on theory.

CFA can also be used to compare alternative theories about which types of common factors 

best explain observed correlations across chronic pain conditions. Here, we compared our 

EFA-guided model with two hypothesis-based CFA models: One based on shared genetic 

risks across conditions with similar body sites (‘anatomic’) and one based on shared risk for 

inflammatory conditions (‘etiologic’). The anatomic model included one general factor (on 

which all disorders load) and 6 specific factors that group conditions based on body site: 

Cranial, Gastrointestinal, Joint, Leg/Foot, Pelvic, and Torso. The etiologic model included 

the general factor and a specific factor for inflammatory conditions, which was the only 

putative etiology with a substantial number of representative conditions. We discussed a 

variety of other groupings, but as biological etiology is often unknown – a central problem 

in pain research – we did not reach clear consensus on additional etiological factors.

For all three models, the goal was to test a bifactor structure, which consisted of a general 

factor with loadings for all conditions and specific factors that are orthogonal to the general 

factor and have loadings for specific subsets of conditions. This type of model allowed us to 

test whether a common genetic factor underlay all tested pain conditions, while still allowing 

for shared variance for particular groups of conditions. Similar approaches have been used 

to model other multidimensional constructs, including personality [18] and psychopathology 

[9].

For the EFA portion of the EFA-CFA approach, we used the fa function in the ‘psych’ 

R package; a scree plot (Supplementary Figure S1) suggested three factors, allowing for 

correlations among factors using oblique rotation. The factor loadings were thresholded to 

define a CFA model for subsequent validation in Genomic SEM. The final model structure is 

shown in Figure 2C.

The use of EFA to guide model development requires validating the model’s fit on 

independent data, to avoid overfitting [33]. For this validation, we used a split-genome 

approach [34,42]. We developed a model using the EFA-CFA procedure described above 

in odd autosomes (1,3,...21), and assessed the fit of the final CFA in even autosomes 

(2,4,...22). This split created two independent sets, given that SNPs are not correlated across 

chromosomes (Mendel’s law of independent assortment).

Using an odd-even autosome split assumes that traits are polygenic (many genes contribute) 

and that relevant genes are distributed across autosomes, so that an estimate of genetic 

correlations from odd autosomes can be replicated in even ones. The polygenic nature of 

pain conditions, like other complex traits, was evident in this dataset (Supplementary Figure 

S2). However, to be conservative, we excluded conditions whose genetic associations were 

not heritable in both odd and even autosomes (Supplementary Note). This validation step 

led to a further exclusion of 7 conditions (arthropathy of carpometacarpal joint, diabetic 

neuropathy, Crohn’s disease, fibromyalgia, prostatitis, seropositive rheumatoid arthritis, and 

urinary colitis), whose heritability estimates were not significantly above 0 in at least one 

holdout set (Table 2). This final exclusion left 24 pain conditions for the validation step, 
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which we also used in the main analysis and in the two hypothesis-driven approaches for 

consistency and comparability.

Models were evaluated using CFI (comparative fit index), which quantifies the extent 

to which the model fits better than a baseline model (one in which the variables are 

uncorrelated), and SRMR (standardized root mean residual), which quantifies the mean 

absolute difference between the observed correlations and the correlations predicted by the 

model [50]. A well-fitting model should generally have a CFI ≥ .95 and an SRMR ≤ .08 

[50]. The models were additionally compared using AIC, (Akaike information criterion), 

which is a goodness-of-fit index favoring more parsimonious models (lower values indicate 

better fit) [61].

2.5 Factor GWAS

Common factors may have associations with genetic variants that are not detectable in 

analysis with individual conditions. To identify the SNPs with the largest associations 

with common chronic pain factors, we ran a factor GWAS in Genomic SEM (userGWAS 
function) (Supplementary Figure S3).

One issue to address when calculating GWAS on common factors is whether SNPs are 

associated primarily with the common factor or instead are more strongly associated with 

individual conditions that contribute to it. To assess each SNP for disproportionately strong 

or directionally opposing effects on a subset of conditions, we conducted a heterogeneity Q 

test [43,52] and discarded SNPs with heterogeneous effects as well as those correlated with 

them (Supplementary Note).

2.5.1 GWAS annotation—GWAS yields a list of SNPs significantly associated with 

a trait. Follow-up analyses are then needed to characterize those SNPs in terms of genes 

and pathways. Functional Mapping and Annotation (FUMA) of GWAS [137] is a platform 

developed to facilitate a number of standard GWAS follow-up analyses. To functionally 

characterize the genetic contributors to both individual phenotypes and the two factors, we 

submitted all GWAS results to FUMA for gene prioritization and functional annotation, 

using several integrated databases [137]. These analyses consisted of: 1. prioritizing SNPs 

based on their effect sizes and independence from each other; 2. mapping significant 

SNPs to genes as described below; 3. conducting a genome-wide gene-based association 

analysis using FUMA-implemented MAGMA (https://ctg.cncr.nl/software/magma) for gene 

analysis and gene property analyses; 4. gene set analysis for enrichment in known biological 

pathways; 5. gene property analysis, or testing for preferential expression of associated 

genes with 53 Gene-Tissue Expression repository (GTEX), version 8, tissues. We used 

FUMA’s default and standard significance thresholds and parameters, including p < 5×10−8 

for lead SNPs (independent at r2 < 0.1); p < 0.05 for all other SNPs; r2 threshold for 

independent significant SNPs used for further annotations, including gene mapping: 0.6; 

reference panel population = UKB release 2b 10K European; minimum minor allele 

frequency = 0.01; maximum distance between LD blocks to merge into a locus = 250 

kilobases. The r2 threshold represents a squared pairwise correlation for SNP variant alleles. 

The sample sizes for the two factors (general and musculoskeletal) identified in the final 
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EFA-CFA model were 422,752 and 468,929, respectively, calculated using the method 

described in [76]. Variants from the reference panel that were in LD with GWAS lead SNPs 

were included to increase the chance of including causal variants.

Mappings of independent significant (as defined in FUMA, p < 5×10−8 and r2 < 0.6) SNPs 

onto genes was based on (1) positional distance (within 10 kilobases of gene start and stop 

coordinates); (2) statistical associations with transcription levels (expression quantitative 

trait locus, eQTL); and (3) chromatin interaction mapping, physical interactions with gene 

chromatin states (indicative of transcriptional accessibility). Only protein-coding genes were 

included, and the major histocompatibility (MHC) region was excluded from annotation. 

MAGMA analysis for gene-based (versus SNP-based) associations [23] was conducted with 

SNP assignment within windows of 10 kilobases of gene start and stop coordinates, and 

GTEx, version 8, [73] was used for gene expression analysis in 53 tissues. Given that the 

highest association statistic is not necessarily correlated with its relative importance (see 

this recent publication discussing negative selection as a mechanism for purging high-effect 

variants in critical gene loci [95]), our approach was to prioritize genes based on: 1. an a 

priori association p cut-off to ensure statistical rigor; and 2. convergent lines of evidence for 

functional importance, i.e. overlap in the three mapping approaches. In the resulting set, we 

interpret our findings in their entirety, without deference to the top association.

The gene-tissue expression analysis tested for association between highly expressed genes 

in 53 GTEx tissues and GWAS effect sizes for the same genes, which tests the relationship 

between the genes highly associated with the pain factors and highly expressed in different 

tissues (details in Supplementary Note). The parameters are summarized in Supplementary 

Table S3.

We used REVIGO [113] to assign, prune, and summarize biological pathways to the 25 

genes with overlapping mappings (details in Supplementary Note).

2.6 Network analysis

While CFA has many strengths in permitting model comparison, some groups have 

emphasized that relationships among clinical conditions can have a complex causal 

structure that can be characterized in terms of networks of interacting variables [131]. 

We made no strong claims about the underlying causal structure and complemented the 

factor-analytic models with a network-based approach to characterize genetic relationships 

among conditions in terms of multiple local causes instead of a few latent causes. Network 

characterization and visualization was done in igraph in R [22]. Genetic correlations of the 

final 24 pain conditions were filtered for positive significant correlations, using a threshold 

of 0.01 false discovery rate (FDR)-corrected, calculated with fdrtool in R. We calculated 

two graph theoretic properties for each pain condition: (1) strength, calculated as the number 

of edges (genetic correlations with other pain conditions) weighted by their magnitude 

[7]; and (2) betweenness-centrality, the number of shortest paths between pairs of pain 

conditions that go through the pain condition in question) [11]. Strength identifies ‘hub’ 

conditions that are robustly genetically related to many other conditions and may thus 

be prominent indicators of multi-disorder susceptibility. Betweenness-centrality identifies 

‘connector hubs’, conditions that are genetically related to multiple other conditions that 
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are themselves less interrelated. ‘Connector hubs’ are thus key indicators of shared genetic 

vulnerability. These measures may themselves be correlated, and if so, combined into an 

overall index, as we did here (described below). At the network level, we estimated the 

largest clique, complete subgraph of intercorrelated pain conditions [29], which identifies 

a group of genetically interrelated conditions that may together serve as indicators of multi-

disorder susceptibility.

2.7 Summary score

To summarize the evidence for which conditions are the most consistent key indicators 

of multi-disorder vulnerability, we combined results from Genomic SEM and network 

analysis, obtaining an overall measure of interconnectedness for each pain condition. Thus, 

we derived summary scores for all pain conditions using general factor loadings from 

EFA-CFA, network strength, and betweenness centrality, which are intercorrelated, r =.935 

(general factor and strength), r =.614 (general factor and betweenness), r =.693 (strength and 

betweenness). We calculated a geometric mean of these 3 measures, after vector-normalizing 

them using the norm function in R.

3. Results

The work reported here is part of a project pre-registered on Open Science Foundation, OSF 

(Identifying and characterizing genetic susceptibility and its overlap with psychosocial traits, 

https://osf.io/4p5e3).

3.1 Univariate pain condition GWAS curation and annotation

We considered 91 potentially relevant pain phenotypes in the UK Biobank and selected 24 

that (a) were indicative of chronic pain conditions, (b) had sufficient case counts (>500), 

and (c) were significantly heritable (see Methods; Table 1 and Supplementary Table S1). 

The sample size available for case assessment varied by condition and ranged from 63,982 

(chest pain during physical activity) to 435,971 (several conditions). Prevalence ranged from 

0.002 (772 cases, diabetic neuropathy) to 0.473 (119,216 cases, back pain). SNP heritability 

(variance in the phenotype explained by variance in the genotype) ranged from 0.03(SE, 
0.008) for cystitis to 0.20(SE, 0.029) for gout.

Summaries of results from univariate GWAS are reported in Table 1 (SNP heritabilities), in 

Supplementary Figures S2 and S4 for Manhattan and quantile-quantile (QQ)-plots, and in 

Supplementary Table S14 for numbers of significant SNPs and genes.

3.2 Pain condition genetic correlations

Pairwise genetic correlations for the 24 pain conditions, Figure 2A, show a large cluster of 

interconnected vertices. This main cluster includes etiologically and anatomically diverse 

conditions, such as back pain, oesophagitis, irritable bowel syndrome (IBS), and carpal 

tunnel, suggesting shared genetic susceptibility among these disparate syndromes. Headache 

and migraine form a tight mini-cluster (top left), and cystitis, hip arthrosis, enthesopathies of 

the lower limb and gout show weaker correlations, suggesting more specific genetic risks for 

each of these four conditions.
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A natural question is whether genetic correlations are potentially inflated when estimated in 

individuals with comorbid conditions. The answer is no. Conditions are primarily comorbid 

due to shared genetic risks or shared environmental risks. However, conditions with shared 

environmental risks would not correlate genetically, because alleles of different genes 

segregate independently from each other (Mendel’s law of independent assortment). Thus, 

given distinct genetic profiles for two conditions, the risk alleles for one condition would not 

correlate with the risk alleles for another. A similar genetic profile in many individuals with 

comorbid conditions indicates a true common predisposition.

3.3 Structural equation modeling

Using three approaches – hypothesis-driven anatomic (1) and etiologic (2), and largely 

data-driven exploratory-then-confirmatory (3) factor analyses (EFA-CFA) – we fit a bifactor 

model to test the loadings of all conditions onto a general factor, with differences in specific 

factor groupings in each approach. The anatomic model based on body site (Supplementary 

Figure S5, CFI= .875 and SRMR = .087) and the etiologic model, based on a grouping 

of inflammatory disorders (Supplementary Figure S6, CFI= .905, SRMR= .095) both had 

suboptimal fit (CFI≤ 0.95 and SRMR≥ .08), see Methods. The EFA-CFA model, shown in 

Figure 2C, produced an adequate overall fit (CFI= 0.956, SRMR = 0.075).

All pain conditions loaded positively and significantly onto the general factor. The specific 

factor had substantial positive loadings for arthropathies (which include osteoarthritis), 

carpal tunnel, enthesopathies of lower limb, other enthesopathies, hip arthrosis, hip pain, 

knee arthrosis, knee pain, leg pain, pain in joint, and rheumatoid arthritis. Given the 

pronounced musculoskeletal component among these indicators, we interpreted the specific 

factor as musculoskeletal. This factor is in line with the World Health Organization’s 

grouping of pain diseases of the musculoskeletal system, which groups conditions that 

affect joints, bones, muscles, the spine, and multiple body areas or systems [135]. The EFA-

CFA was superior (AIC=4849.164) to both the anatomic (AIC=13184.43) and the etiologic 

(AIC=10024.93) models. In addition, the latter models had non-significant loadings on their 

specific factors (Leg/Foot, Pelvic, and Torso for the anatomic, Supplementary Figure S5, and 

Inflammatory for the etiologic, Supplementary Figure S6, suggesting that shared variance 

for those indicators was mainly explained by the general factor (details in the Supplementary 

Note). We validated this model by using the same approach, EFA on odd (CFI= .884 and 

SRMR= .123) and CFA testing on even (CFI= 0.903 and SRMR= .129) autosomes (details 

in the Supplementary Note). These comparable metrics in the odd/even and whole-genome 

datasets suggest that using EFA and CFA on the same dataset did not result in substantial 

overfitting.

3.4 Network analysis and central conditions

Network analysis provided additional evidence for substantial genetic overlap across 

pain conditions with a different theoretical model. Graph-theoretical properties of the 

network (Figure 2B) indicate shared genetic susceptibility, and node size corresponds 

to strength (magnitude-weighted number of connections). There is a complete subgraph 

of 19 interconnected conditions, highlighted in yellow: arthropathies, back pain, neck/

shoulder pain, hip pain, knee pain, leg pain, chest pain (baseline and during physical 
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activity), rheumatoid arthritis, knee arthrosis, joint pain, carpal tunnel, enthesopathies, 

widespread pain, gastritis, oesophagitis, stomach pain, headache, and IBS. Consistent with 

the CFA model, these conditions affect diverse body sites and span inflammatory and 

non-inflammatory as well as musculoskeletal and non-musculoskeletal forms of pain. Gout, 

hip arthrosis, enthesopathies of the lower limb, cystitis, and migraine lie outside the large 

cluster, but they still have more than 10 connections each. Overall, the network reveals a 

large core of pain syndromes with shared genetic vulnerability.

Some conditions were particularly central in the network, in several ways. Arthropathies, 

back, and neck/shoulder pain had the highest betweenness centrality (the highest number of 

shortest paths between node pairs that go through the index node), indicating that genetic 

associations between many conditions share genetic vulnerability with at least one of these 

three.

The summary score derived from the general factor, network node strength, and betweenness 

centrality, Figure 2D, reflects the highest degree of genetic overlap with other conditions. 

Once again, the top highest scorers were neck/shoulder pain, back pain, and arthropathies.

3.5 Factor GWAS and annotation

After running factor GWASs, we excluded QSNPs, which showed evidence of effects 

specific to certain pain conditions (not through the common factors), and conducted 

functional annotation of the GWAS output for each of these factors.

3.5.1 General Factor—The general factor GWAS yielded 33 genome-wide independent 

significant SNPs, Supplementary Table S4, Figure 3. FUMA mapped these to a total of 

241 genes, using at least 1 of 3 methods (positional, eQTL, and chromatin interactions, see 

Methods), Supplementary Table S5: 26 by positional, 52 by eQTL, and 57 by chromatin 

interaction mappings. All 3 annotations were identified for 25 genes, highlighted in green in 

Supplementary Table S5.

REVIGO pathway analysis suggested that the pathways represented by these genes cover a 

broad range of biological processes, including organ development (gut, heart, muscle and 

brain), metabolism, catabolism, signaling, immunity, neuronal development, transcription, 

and DNA repair (Supplementary Table S6). FUMA gene set annotation showed a significant 

enrichment for a pathway involved in learned vocalization behavior or vocal learning (p 
= 8.93×10−07, Bonferroni-corrected p = .0138). Additionally, this analysis showed a trend 

towards significance in several other pathways involved in mechanosensory behavior, several 

neuronal development processes, and several biosynthesis and calcium channel regulation 

processes (Supplementary Table S7). Although these pathways did not reach corrected 

significance, we note them, because they are supported by previous findings [58, 60, 83, 

117] and may be useful for hypothesis-generation purposes. We note, additionally, that 

biological pathways have roles in multiple functions, and our results do not imply a direct 

link between pain and the functions, such as vocal learning, associated with these pathways.

MAGMA-based tissue expression analysis, as implemented in FUMA, tested for association 

between highly expressed genes in 53 GTEx tissues and GWAS effect sizes for the same 
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genes (Supplementary Note). Associations were significant only in brain tissues: cortical 

regions (the cerebral cortex, dorsomedial prefrontal cortex BA9, and anterior cingulate 

cortex BA24), nucleus accumbens, basal ganglia, amygdala, hippocampus, hypothalamus, 

and cerebellum, Figure 3D.

Additionally we used FUMA to cross-reference SNPs and genes with other GWAS reports. 

Of note is the overlap in SNPs (Supplementary Table S8), and significant enrichment 

for genes reported to be associated with chronic pain conditions (back pain, Crohn’s 

disease, IBS, and multi-site chronic pain), brain structural traits, anthropometric traits, 

cognition and intelligence-related phenotypes, sleep-related phenotypes, neuroticism, and 

mood phenotypes (Supplementary Figure S7). Genetic overlap with non-pain conditions is 

suggestive of the complexity of factors contributing to chronic pain and suggest potential 

pathways of susceptibility to pain chronification. Furthermore, DCC, the top gene associated 

with the general factor, is also the top gene reported in a recent study of chronic overlapping 

pain conditions, which used pain for more than 3 months in different body sites from the 

UKBB (head, face, neck/shoulder, back, stomach, hip, knee, all over the body) [60]. Of the 

241 genes mapped to independent significant SNPs from the general factor GWAS, FKBP5 
is the only one previously targeted in a candidate gene study (as opposed to GWAS) for 

posttraumatic musculoskeletal pain [10, 71, 148].

3.5.2 Musculoskeletal Factor—The musculoskeletal factor GWAS yielded 7 genome-

wide significant lead SNPs (Supplementary Table S9 and Supplementary Figure S8). 

Positional mapping yielded 5 unique genes; eQTL mapping yielded 18 genes; and chromatin 

interaction mapping yielded 19 genes, with 5 genes mapped using all 3 methods, green: 

DPYD, MAPK6, GLIS3, COL27A1, and SLC44A2 (Supplementary Table S10).

REVIGO pathway analysis showed associations with genes involved in bone and neuronal 

development, cell cycle, transcription regulation and signal transduction, Supplementary 

Table S11. Gene set annotation showed a Bonferroni-corrected significant enrichment for 

regulation of RNA biosynthetic process and nominally significant (p < 0.05) enrichment 

for several other regulatory processes, chromatin organization, cell migration involved in 

heart development, and DNA damage response (Supplementary Table S12). MAGMA tissue 

expression analysis found no significant association between gene expression and GWAS 

effect sizes for 53 tissues (Supplementary Figure S8D).

Cross-referencing with other GWAS reports identified previously reported SNP associations 

with anthropometric traits (height, hip circumference, offspring birth weight), hip or knee 

osteoarthritis, sleep-related phenotypes, and type 2 diabetes (Supplementary Table S13), and 

significant overlap with genes reported to be associated with inflammatory skin disease, 

palmitic and stearic acid levels (Supplementary Figure S9). None of the genes previously 

targeted in candidate gene studies for pain [146] mapped to independent significant SNPs 

for the musculoskeletal factor.
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4. Discussion

We ran Genomic SEM on 24 pain conditions in the UKBB to examine the structure of 

their shared genetic risk and characterize the genetic variants common to them. Our results 

identify a general factor that explains substantial genetic variance in pain conditions with 

different suspected etiologies and anatomic presentations and points to their shared systemic 

pathophysiology. Additionally, a second factor explains some of the shared genetic variance 

across musculoskeletal conditions. The two-factor model explains the pattern of genetic 

associations among disorders better than either the anatomic or etiologic grouping of known 

inflammatory disorders. The shared genetic burden is also apparent in our network analyses.

We identified 184 novel targets for cross-condition chronic pain (Supplementary Tables S5). 

Two lines of evidence suggest that genes associated with our general pain factor have an 

important role in the central nervous system (CNS). First, the genes most associated with 

the general factor for pain also have the highest expression in brain tissues. Second, the 

pathways of these genes include CNS development and maintenance. Our study further adds 

to existing evidence for the role of DCC [60, 104, 118], an axonal guidance mediator [144], 

in chronic pain. Beyond CNS, the pathways of genes associated with the general pain factor 

also implicate a broad range of other functions, such as gut development, locomotion, and 

protein secretion, suggesting that susceptibility to chronic pain may involve other systemic 

biological changes. The new molecular targets we identify can be cross-referenced with 

animal models in ‘reverse-translation’ approaches to better understand the pathophysiology 

of chronic pain and develop novel treatments.

We note overlap between the genetic variants associated with our general factor and those 

previously reported in GWAS for cognitive, structural, mood, sleep, and personality traits, 

regulation of inflammation and neuroplasticity, and psychiatric disorders. This overlap 

underscores the highly multifaceted nature of pain as a biopsychosocial condition, while 

elucidating the key genes and systems involved [15, 20, 21, 77, 128, 129]. This pleiotropy, 

or the association of genes with multiple conditions, together with the polygenic nature of 

the general factor we identified, exemplifies the frequently observed many-to-many mapping 

between genes and traits [136]. Identifying links between polygenic risk profiles of different 

disorders can provide important information on susceptibility and treatment.

As might be expected, the genes associated with the musculoskeletal factor are fewer, and 

their pathways are less diverse. They implicate skeletal development, choline transport, 

signalling, and transcription machinery. Notably, they do not implicate the nervous 

system. Overlap with previous GWAS results suggests involvement of variants affecting 

anthropometric traits and thereby body-structural mechanisms. Similar associations have 

been shown for musculoskeletal pain conditions before: genetic overlap in osteoarthritis 

with height and BMI [28], back pain [35] and multi-site musculoskeletal pain [124] with 

structural-anatomic genes.

Our work builds on earlier genetic analyses of combinations of pain conditions selected 

based on anatomic proximity or hypothesized etiology [45,75,99,133,140]. While most 

studies have been conducted in twins, several large-scale chronic pain GWAS, with strengths 
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complementary to twin studies [36], have been published on pain in the past three years [35, 

82, 83, 85, 86, 87, 117]. These reports, which used earlier releases of the UKBB prior to 

primary care data availability, include three on multi-site pain [57, 58, 60]. Most recently, 

another study reported a polygenic risk score for pain spreading that was associated with a 

phenotypic profile dominated by mood, sleep, and neuroticism [118].

Studies of multi-site pain differ from our study in a critical way. They may show genes 

associated with only one of the constituent conditions to be associated with the average 

count of pain sites (widespreadness), if that condition is present in several combinations of 

comorbid pain sites. Thus, given a genetic variant associated with hip pain and two three-site 

combinations -- hip, knee, back pain and hip, neck, stomach pain -- this variant will appear 

to be associated with a widespreadness score of 3 without having associations with any 

of the other constituent conditions in this example. Analyses of association with multi-site 

pain are thus not designed to identify the genetic variants shared among multiple distinct 

conditions. On the other hand, Genomic SEM is designed to identify genetic variants that are 

truly common to different conditions, and it enabled us to capture genetic risk for chronic 

pain, regardless of etiology or symptomatology.

The existence of cross-condition genetic risk factors challenges the current clinical practice 

of grouping and treating chronic pain conditions based on location of symptoms on the body 

or suspected etiology [30]. Evidence for central processes beyond local pathophysiology has 

been accumulating. Biopsychosocial factors [20, 21, 77, 128, 129], neuroinflammation and 

neuroplasticity [5, 6, 27, 37, 53, 88, 92, 97, 125, 147], and neuroimaging traits [2, 4, 16, 44, 

47, 62, 68, 69, 78, 91, 96, 101, 107, 143], have all been reported to modulate pain experience 

and chronic pain risk. This work has culminated in a new classification system for chronic 

pain in ICD-11, which shifts pain category assignment to a hierarchical approach: etiology, 

then pathophysiology, then body site [122]. It also includes chronic primary pain as a 

diagnosis “agnostic with regard to etiology” [93]. These changes are important steps 

toward aligning diagnosis with pathophysiology, and genetics is an important piece of the 

puzzle. Our Genomic SEM model suggests that, in addition to condition-specific genetic 

susceptibility, there is a genetically encoded pathophysiology common to different chronic 

pain conditions and supports the view of chronic pain as a disorder involving systemic 

pathology [141]. This study further identifies genetic risk markers that are shared across 

distinct pain conditions contributing to a new, biologically grounded way of conceptualizing 

chronic pain conditions. The strong association between expression of chronic pain risk 

genes in the brain and cross-condition chronic pain provides additional evidence that the 

common genetic risk markers we identified may be associated with central sensitization and 

chronic primary pain, which have both been linked to alterations in the brain and spinal cord 

(135,141).

4.1 Limitations

There are several notable limitations of this study. First, although the annotated genetic 

associations for the general factor suggest a combination of systemic biological and 

psychological predispositions, the precise mechanisms underlying these predispositions need 

to be elucidated in future studies before they can be translated to clinical applications. In 
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service of this goal, the pathways implicated by the SNPs and genes we have identified, can 

be targeted in follow-up studies to further elucidate the systemic mechanisms that lead to 

chronic pain.

The second limitation lies in the reliance of annotations obtained from FUMA on the 

information available in existing data repositories, which may be restricted by insufficient 

resolution or small sample sizes. Thus, although we did not find associations with 

inflammatory cytokines, evidence for their role in pain is abundant [41, 56, 112] and should 

be investigated further.

Third, we do not expect the genetic patterns we identified to be either selective or sufficient 

to explain cross-condition chronic pain. This is due to both pleiotropy (the effects of one 

gene on several different conditions) and environmental effects, which are certain to play a 

large part in the development of chronic pain.

Fourth, the genetic scores of our common factors should be validated for association with 

chronic pain using either association analysis in an independent sample. This validation 

would require obtaining a polygenic score and is the aim of a follow-up study.

Fifth, given sample size limitations in the UKBB for non-European individuals, we were not 

able to test our model for generalizability across ancestral populations, which we attempted 

to do in the next largest sample: South Asians (Supplementary Table 2).

By establishing genetic risk factors in a large sample, this study paves the way for 

more detailed assessments of pain prognosis and treatment response in targeted studies. 

For example, the ongoing Acute to Chronic Pain Signatures (A2CPS) study aims to 

establish risk factors for post-surgical pain from genetic, multi-omics, psychosocial, and 

neuroimaging measures in another large sample (2,800 patients; a2cps.org). Our factor 

scores could be tested alongside previously identified genetic patterns for multi-site pain and 

compared to them as prognostic risk factors for chronic post-surgical pain.

4.2 Conclusion

In summary, our findings confirm that there is a genetic susceptibility common to a 

broad range of diverse chronic pain conditions. The shared pathophysiology for the 

conditions examined here appears to lie partly in the CNS and partly scattered across many 

different systems and functional processes. Additionally, there is a body-wide, suggestively 

musculoskeletal system-specific genetic factor. Our study calls for new ways to diagnose 

and treat chronic pain, whereby a given chronic pain condition is not considered as only 

a symptom of a localized somatic disease by the clinician specializing in it, but is seen 

as a manifestation of an underlying shared pathology with concurrent risk for other pain 

conditions and previously unexplored centralized treatment targets. Future work will go 

beyond pain conditions and explore genetic links with psychological and physical traits to 

help identify patients who would benefit most from specific interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Scheme of study methods and analyses.

Abbreviations: GWAS, genome-wide association study; LDSC, linkage-disequilibrium score 

regression; EFA, exploratory factor analysis; CFA, confirmatory factor analysis; Genomic 

SEM, genomic structural equation modeling; CFI, comparative fit index.
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Figure 2. 
Genetic correlations, network, and Genomic SEM model.

Abbreviations: hdch, headache; mgrn, migraine; cyst, cystitis; back, back pain; nksh, 

neck/shoulder pain; hipP, hip pain; CWP, chronic widespread pain; pnjt, joint pain; gast, 

gastritis; oesp, oesphagitis; chDs, chest pain/discomfort; chPh, chest pain during physical 

activity; IBS, inflammatory bowel syndrome; stmP, stomach pain; hipA, hip arthrosis; 

crpl, carpal tunnel; enth, enthesopathies; rhAt, rheumatoid arthritis; arth, arthroses; kneA, 

knee arthrosis; kneP, knee pain; legP, leg pain; enLL, enthesopathies in lower limbs. (a) 

Genetic correlations for 24 pain conditions estimated using linkage disequilibrium score 

regression (LDSC) implemented in Genomic SEM. (b) Network of genetic correlations 

for 24 pain conditions, pruned for significance at FDR 0.01. The 19 conditions in 

yellow form a clique, complete subgraph. The 3 conditions in blue have the highest 

betweenness centrality, shortest path between 2 other nodes. Node size corresponds to 

strength, magnitude-weighted number of connections with other nodes. (c) EFA-CFA 

model for 24 pain conditions with residual covariances (~~) estimated for same body-site 
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conditions (table in top left): hip arthrosis and pain; knee arthrosis and pain; headache 

and migraine; chest pain at baseline and during physical activity. F1 is the general factor 

with positive loadings from all conditions, and F2 is the musculoskeletal factor. CFI, 

comparative fit index; SRMR, standardized root mean squared residual. All loadings shown 

are significant at α=0.05. (d) Summary scores (overall measure of interconnectedness for 

each pain condition) obtained using F1 loadings from EFA-CFA and network strength 

and betweenness centrality, vector-normalized geometric means (y-axis). (More information 

on all conditions in Supplementary Table 1 (https://docs.google.com/spreadsheets/d/1S-

vFvnwkD5iCP16La_iyjRDTxIqBoMRqAOV6SXpKhN8/edit#gid=0).
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Figure 3. 
F1 factor GWAS output.

Genome-wide association study (GWAS) results for general pain factor (F1). SNP 

Manhattan (a) and quantile-quantile, QQ, (b) plots for F1 GWAS. (c) Gene-based genome-

wide association Manhattan plot, with the top 31 associated genes labelled. Full gene names 

taken from the NCBI gene database, https://www.ncbi.nlm.nih.gov/gene/: ARPC5L, Actin-

Related Protein 2/3 Complex Subunit 5-Like Protein; BSN, Bassoon Presynaptic Cytomatrix 

Protein; C6orf106, inflammation and lipid regulator with UBA-like and NBR1-like domains; 

CAMKV, CaM Kinase Like Vesicle Associated; CDHR4, Cadherin-Related Family Member 

4; CTD-2330K9.3, Coats disease; DCC, Colorectal cancer suppressor; ERBB3, Erb-B2 

Receptor Tyrosine Kinase 3; FOXP2, Forkhead Box P2; GNAT1, G Protein Subunit Alpha 

Transducin 1; IP6K1, Inositol hexakisphosphate kinase 1; IP6K3, Inositol hexakisphosphate 

kinase 3; LANCL1, LanC Like Glutathione S-Transferase 1; MAML3, Mastermind Like 
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Transcriptional Coactivator 3; MARVELD3, MARVEL (Membrane-Associating) Domain 

Containing 3; MON1A, MON1 homolog A, secretory trafficking associated; MST1, 

macrophage stimulating 1; MST1R, macrophage stimulating 1 receptor; NCAM1, neural 

cell adhesion molecule 1; RBM5, RNA binding motif protein 5; RBM6, RNA binding 

motif protein 6; RERG, RAS like estrogen regulated growth inhibitor; RNF123, ring finger 

protein 123; ROBO2, roundabout guidance receptor 2; SAMD5, sterile alpha motif domain 

containing 5; SCAI, suppressor of cancer cell invasion; SEMA3F, semaphorin 3F; TRAIP, 

TRAF interacting protein; UBA7, ubiquitin like modifier activating enzyme 7; UQCC2, 

ubiquinol-cytochrome c reductase complex assembly factor 2; WDR38, WD repeat domain 

38. (d) Gene property analysis for association between factor GWAS gene effects and gene 

expression levels in 53 specific tissues from GTEx, version 8.
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Table 1:

Pain condition descriptive statistics

Condition Full name Cases Controls Preva-lence h2
SNP(SE) Reported h2

SNP Citations

*aCMC Arthropathy of carpometacarpal 
joint

1837 201439 0.009 0.09 (0.036) NA NA

arth Arthropathies
(non-specific, incl. osteoarthritis)

80737 157458 0.339 0.09 (0.005) NA NA

back Back pain 119216 132641 0.473 0.09 (0.005) 0.11/0.12/0.076 [83, 35, 114]

chDs Chest pain/discomfort 72156 359415 0.167 0.08 (0.004)

chPh Chest pain during physical activity 2938 61044 0.046 0.13 (0.032)

*Crhn Crohn’s Disease 1826 201030 0.009 0.13 (0.038) 0.47 [121]

crpl Carpal tunnel 11912 424059 0.027 0.16 (0.011) 0.02/0.01 [135, 102]

CWP Chronic widespread pain 6021 427884 0.014 0.14 (0.014) 0.10 [56]

cyst Cystitis 15371 189253 0.075 0.03 (0.008)

*dbNr Diabetic Neuropathy 772 435199 0.002 0.13 (0.051) 0.11 [85]

enLL Enthesopathies of lower limb 7000 195713 0.035 0.06 (0.014)

enth Enthesopathies 28754 175077 0.141 0.06 (0.007)

*FM Fibromyalgia 2149 433822 0.005 0.10 (0.025) 0.14 [25]

gast Gastritis 41746 179970 0.188 0.07 (0.006)

gout Gout 15069 192253 0.073 0.20 (0.029)

hdch Headache 40222 345292 0.104 0.13 (0.008) 0.21 [81]

hipA Hip arthrosis 17676 193048 0.084 0.14 (0.012)

hipP Hip pain 41907 381055 0.099 0.08 (0.005) 0.12 [83]

IBS Irritable bowel syndrome 28419 182876 0.134 0.07 (0.008)

kneA Knee arthrosis 31267 184763 0.145 0.14 (0.009)

kneP Knee pain 78507 334812 0.190 0.10 (0.005) 0.08 [82]

legP Leg pain 41484 108241 0.277 0.10 (0.008)

mgrn Migraine 21586 189874 0.102 0.12 (0.009) 0.15 [39]

nksh Neck/Shoulder pain 72952 329192 0.181 0.08 (0.004) 0.11 [84]

oesp Oesophagitis 13003 195329 0.062 0.06 (0.010)

rhAt Rheumatoid arthritis 8685 198125 0.042 0.08 (0.014)

**plrh Polymyalgia rheumatica 2460 433511 0.006 0.09 (0.023)

pnjt Pain in joint 12016 423955 0.028 0.05 (0.008)

*prst Prostatitis 3604 199950 0.018 0.06 (0.020)

*seRA Seropositive rheumatoid arthritis 839 201957 0.004 0.15 (0.064)

stmP Stomach pain 21417 396116 0.051 0.08 (0.006) 0.14 [83]

**ulcC Ulcerative colitis 4211 199773 0.021 0.12 (0.022)

*urCl Urinary colic 4743 198679 0.023 0.06 (0.016)
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h2SNP is SNP heritability, variance in the phenotype explained by variance in genotypes (SNPs). S.E. is standard error. Reported h2SNP is 

provided where available.

*
phenotypes that did not have a significant h2SNP in either the odd or even autosome set.

**
phenotypes that did not load significantly onto either the common or specific factor in the EFA-informed CFA.
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Table 2:

SNP heritability in whole genome, odd and even chromosomes

Condition Whole genome h2
SNP (SE) Odd chroms. h2

SNP (SE) Even chroms. h2
SNP (SE)

*aCMC 0.09 (0.036) 0.09 (0.026) 0.00 (0.023)

arth 0.09 (0.005) 0.05 (0.004) 0.04 (0.004)

back 0.09 (0.005) 0.04 (0.003) 0.05 (0.003)

chDs 0.08 (0.004) 0.04 (0.003) 0.04 (0.002)

chPh 0.13 (0.032) 0.09 (0.025) 0.05 (0.023)

*Crhn 0.13 (0.038) 0.08 (0.029) 0.05 (0.025)

crpl 0.16 (0.011) 0.07 (0.008) 0.08 (0.009)

cyst 0.03 (0.008) 0.01 (0.006) 0.02 (0.006)

*dbNr 0.13 (0.051) 0.02 (0.033) 0.11 (0.038)

enLL 0.06 (0.014) 0.03 (0.010) 0.03 (0.009)

enth 0.06 (0.007) 0.03 (0.005) 0.03 (0.005)

*FM 0.10 (0.025) 0.06 (0.017) 0.04 (0.019)

gast 0.07 (0.006) 0.03 (0.004) 0.04 (0.004)

CWP 0.14 (0.014) 0.07 (0.010) 0.07 (0.010)

gout 0.20 (0.029) 0.08 (0.013) 0.12 (0.024)

hdch 0.13 (0.008) 0.06 (0.004) 0.07 (0.007)

hipA 0.14 (0.012) 0.07 (0.009) 0.07 (0.008)

hipP 0.08 (0.005) 0.04 (0.003) 0.04 (0.003)

IBS 0.07 (0.008) 0.04 (0.005) 0.03 (0.004)

kneA 0.14 (0.009) 0.07 (0.005) 0.08 (0.007)

kneP 0.10 (0.005) 0.05 (0.003) 0.05 (0.003)

legP 0.10 (0.008) 0.05 (0.005) 0.05 (0.005)

mgrn 0.12 (0.009) 0.06 (0.006) 0.06 (0.007)

neck 0.08 (0.004) 0.04 (0.003) 0.04 (0.003)

oesp 0.06 (0.010) 0.03 (0.007) 0.03 (0.006)

rhAt 0.08 (0.014) 0.05 (0.010) 0.04 (0.010)

**plrh 0.09 (0.023) 0.05 (0.016) 0.03 (0.015)

pnjt 0.05 (0.008) 0.03 (0.006) 0.02 (0.005)

*prst 0.06 (0.020) 0.03 (0.014) 0.04 (0.013)

*seRA 0.15 (0.064) 0.17 (0.043) −0.02 (0.047)

stmP 0.08 (0.006) 0.04 (0.004) 0.04 (0.005)

**ulcC 0.12 (0.022) 0.07 (0.016) 0.05 (0.015)

*urCl 0.06 (0.016) 0.02 (0.012) 0.03 (0.012)

h2SNP is SNP heritability, variance in the phenotype explained by variance in genotypes (SNPs). S.E. is standard error.

*
phenotypes that did not have a significant h2SNP in either the odd or even autosome set.
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**
phenotypes that did not load significantly onto either the common or specific factor in the EFA-informed CFA. Condition definitions are in 1, 

and details are in Supplementary Table S1.
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