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Abstract

Designs for early phase dose finding clinical trials typically are either phase I based on toxicity, 

or phase I-II based on toxicity and efficacy. These designs rely on the implicit assumption that the 

dose of an experimental agent chosen using these short-term outcomes will maximize the agent’s 

long-term therapeutic success rate. In many clinical settings, this assumption is not true. A dose 

selected in an early phase oncology trial may give suboptimal progression free survival or overall 

survival time, often due to a high rate of relapse following response. To address this problem, a 

new family of Bayesian generalized phase I-II designs is proposed. First, a conventional phase 

I-II design based on short-term outcomes is used to identify a set of candidate doses, rather than 

selecting one dose. Additional patients then are randomized among the candidates, patients are 

followed for a predefined longer time period, and a final dose is selected to maximize the long 

term therapeutic success rate, defined in terms of duration of response. Dose-specific sample sizes 

in the randomization are determined adaptively to obtain a desired level of selection reliability. 

The design was motivated by a phase I-II trial to find an optimal dose of natural killer cells as 

targeted immunotherapy for recurrent or treatment-resistant B-cell hematologic malignancies. A 

simulation study shows that, under a range of scenarios in the context of this trial, the proposed 

design has much better performance than two conventional phase I-II designs.
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1 Introduction

1.1 Conventional Dose Finding Designs

Adoptive T-cell therapy uses immune cells engineered to attack a specific disease target. Cell 

therapy has been used to treat leukemia and lymphoma [1, 2], and diseases such as type 1 

diabetes, Parkinson’s disease, and Alzheimer’s disease. The dose-finding design proposed 
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in this paper was motivated by an early phase trial of CD70 CAR natural killer (NK) 

cells as targeted immunotherapy for recurrent or treatment-resistant B-cell hematologic 

malignancies following frontline treatment with chemotherapy or an allogeneic stem cell 

transplant. The therapeutic aims are to achieve a disease remission, and reduce the rate of 

subsequent disease recurrence. Treatment begins with three days of chemotherapy to debulk 

the patient’s disease, followed by one infusion of NK cells at a selected dose. The primary 

scientific goal is to optimize dose among the four values 5.0  × 106, 107, 108, 109  cells.

Initially, a conventional phase I-II design for this trial was based on indicators YR of 

response at one month, and YT of grade 3 or 4 toxicity within one month of cell infusion. 

The plan was to treat up to 48 patients in 16 cohorts of size three, starting at the lowest dose, 

with the following screening rules. For dose d, and binary toxicity and response indicators 

YT and YR, denote πR d, θ = Pr Y R = 1|d, θ , πT d, θ = Pr Y T = 1|d, θ , and Dn the data from 

n patients. Given lower limit .50 on πR d, θ  and upper limit .30 on πT d, θ , a dose d was 

considered acceptable if

Pr πR d, θ > .50 Dn > .10 and Pr πT d, θ < .30 Dn > .10. (1)

Bayesian dose acceptability criteria of this form have been used in many phase I-II designs 

[3, 4, 5]. Subsequently, a more general design was motivated by concerns about response 

durability, since a patient’s disease may recur soon after a response is achieved. The 

investigators planned to follow each patient for up to six months to assess whether they 

were alive with disease in remission at that time. This led to consideration of how data 

from this later evaluation might be used to help choose an optimal dose. The result is the 

generalized phase I-II design presented here, which we call Gen I-II.

Most early phase trials determine a dose using either a phase I design based on YT, or 

a phase I-II design based on bivariate binary or ordinal (YR, YT) and YR. In oncology, 

examples of binary response include 50% reduction of a solid tumor or complete remission 

of acute leukemia. Most of these designs use sequentially outcome-adaptive rules to choose 

doses for successive patient cohorts. Fair randomization among doses seldom is used, due to 

concerns that higher doses may be unacceptably toxic. Many phase I designs [6, 7, 8, 9] and 

phase I-II designs [3, 10, 11, 12, 13, 14, 15, 16] have been proposed. Most of these designs 

use binary outcomes, although phase I-II designs have been proposed for ordinal outcomes 

[17], event times [18, 19], or more than two outcomes [5, 20].

A practical requirement in dose finding trials is that the outcomes, YT or Y = (YR, YT), 

must be evaluated over a time period, [0, t1], short enough to avoid delaying accrual to 

evaluate previous patients’ outcomes to make adaptive decisions. For designs based on event 

times, such as the phase I time-to-event continual reassessment method (TITE-CRM) [37] or 

late-onset efficacy-toxicity phase I-II design [22], follow up intervals must be short enough 

so that outcome-adaptive decisions can be made without unduly suspending accrual.
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1.2 A Dose Finding Trial That Failed

A conventional dose finding design may fail if there is a disconnect between short-term 

response and long term outcomes, such as disease progression or overall survival (OS) time. 

This problem arose in a trial of allogeneic stem cell transplantation for acute leukemia 

[23]. to optimize the dose of vorinostat added to a standard preparative regimen. Six doses 

were studied using the TiTE-CRM with target toxicity probability 0.30, followed by an 

expansion cohort at the selected dose. Toxicity was defined as graft failure or grade 4 or 

5 non-hematologic, non-infectious toxicity, mucositis, or diarrhea within one month, For 

response defined as the patient being alive and engrafted at one month, this definition of 

DLT includes non-response, due to death or graft failure within one month, so this was a 

phase I-II trial. Since very few DLTs were observed, the TiTE-CRM design rapidly escalated 

and selected the highest dose as the MTD, where 51 patients were treated, most as an 

expansion cohort. The final sample sizes were (3, 3, 3, 4, 4, 51) at the six doses. Analysis 

of the final survival data gave the Kaplan-Meier estimates for doses {1, 2, 3, 4, 5} combined 

versus dose 6 in Figure 1, showing that patients treated with the selected dose 6 had worse 

survival than patients given one of the five lower doses. While these results are far from 

confirmatory, they are very troubling. To design a future trial, the highest dose is undesirable 

but a lower dose giving superior survival time cannot be determined reliably from the data. 

Since this trial is unlikely to be repeated, there is no clear path forward. This trial illustrates 

a disconnect between short term outcomes and dose effects on progression or survival time.

1.3 A Flawed Assumption

Phase I and I-II designs assume that, if d is optimal based on a criterion defined using early 

outcomes, then d also maximizes the therapeutic success rate over a long-term follow up 

period [0, t2], for t2 > t1. To account for this in the Gen I-II design, given fixed t1 and t2, we 

define duration of response (DOR), Z, among responders as the time from t1 to relapse or 

death. The long-term treatment success criterion is the probability

ξ d, θ =def Pr Z > t2 − t1 d, θ , (2)

where θ denotes the model parameter vector. Expression (2) is the probability that a patient 

who is alive with disease in remission at t1 is alive without progressive disease (PD) at t2.

The Gen I-II design addresses the common problem in oncology that an early response may 

not be durable, in that a patient who responds by t1 may relapse before t2. Consequently, 

a dose optimizing ϕ d, θ  may not optimize ξ d, θ . Response durability has been discussed 

for radiation oncology [24], donor lymphocyte infusion following relapse after allogeneic 

bone marrow transplantation [25], and many other areas of oncology. The Gen I-II design 

is practical in settings where investigators planning a phase I-II trial intend to follow 

each patient for a longer time t2, to obtain data to estimate response durability. Thus, 

no additional followup is required beyond what already is planned. A dose chosen in an 

early phase trial may be suboptimal because the distribution of (YR, YT) provides little 

information about the time to progression or death as a function of dose. This problem is 

more severe with phase I designs. Since phase I designs have severe flaws compared to 

phase I-II designs[12, 26, 27], we will not consider phase I designs further.
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A Gen I-II design uses the distributions of ordinal YR and YT evaluated over [0, t1] 

and Z evaluated over [t1, t2] among responders to optimize d. Let ϕ d, θ  be an objective 

function, defined in terms of the early outcome distribution p Y |d, θ , used to optimize 

d in phase I-II. Examples of ϕ d, θ  will be given below. Denote the experimental agent 

by X, and let X(d) denote X administered at d, to account for the possibility that effects 

of X(d) and X(d′) on Y or Z may be different for d ≠ d′. While we use the long-term 

success criterion ξ d, θ = Pr Z > t2 − t1 | d, θ , the mean E Z |d, θ  may be used. The implicit 

assumption underlying phase I-II trials is that, if a selected dose dsel, ϕ maximizes an 

estimate of ϕ d, θ  at the end of phase I-II, then dsel, ϕ also maximizes ξ d, θ . The validity 

of this assumption depends on how p Y|d, θ  and p Z |d, θ  vary with d, and associations 

between Z and Y. Conventionally, using ϕ d, θ  rather than ξ d, θ  to optimize d is motivated 

primarily by the desire for logistical convenience when conducting a dose-finding trial.

It is easy to show by example that, for assumed true values ϕtrue d, θ  and ξtrue d, θ , the 

optimal doses dopt, ϕ and dopt, ξ under the two criteria may differ. Several scenarios reflecting 

this possibility are included in the simulations given below in Section 5. Even if Z depends 

on Y, an optimal phase I-II dose dsel, ϕ based on ϕ d, θ  may be suboptimal in terms of 

ξ d, θ . A causal explanation with targeted agents or cellular therapies is that there may be 

direct biological effects of X(d) on Z not mediated by YR. This is a version of the general 

problem when dealing with relationships between short-term and long-term outcomes in 

treatment evaluation, which has been discussed extensively, often with regard to using an 

early outcome as a surrogate for a long-term outcome. Common examples are response and 

PFS time, and the times to PD and death [28, 29, 30, 31].

Section 2 presents the general Gen I-II design paradigm. Dose-outcome models are given in 

section 3. Section 4 describes a utility based version of the Gen I-II design. A simulation 

study of the Gen I-II design and two conventional phase I-II designs is presented in section 

5. We close with a discussion in section 6.

2 A Generalized Phase I-II Design Paradigm

2.1 Overview of the Design

A Gen I-II design begins with a conventional phase I-II design based on ordinal, possibly 

binary YR and YT, to screen out unsafe or ineffective doses, and identify a set C
of acceptable candidate doses for later evaluation, rather than selecting one final dose. 

Additional patients are randomized among the doses in C and followed to evaluate the 

times to progression or death, with a final dose selected to maximize ξ d, θ  for d ∈ C. 

The number of additional patients enrolled after the initial phase I-II portion of the trial is 

determined adaptively, based on C and the numbers of patients treated at its doses, to obtain 

a high probability of correctly selecting a dose to maximize ξ d, θ  for d ∈ C. The additional 

patients may be thought of as a generalized expansion cohort, but randomized among the 

doses in C, rather than being treated at one dose that may turn out to be suboptimal. The 

Gen I-II design is a modular paradigm in that any phase I-II design based on bivariate 

ordinal Y may be used, provided that it includes a dose optimality criterion ϕ d, θ .
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A Gen I-II design has three stages. Stages 1 and 2 together comprise the nominally “phase 

I-II” portion of the trial. In stage 1, a conventional phase I-II design is based on Y evaluated 

over [0, t1]. Any phase I-II design with an objective function ϕ d, θ  characterizing dose 

desirability may be used. In stage 2, doses are chosen using adaptive randomization (AR) 

with probabilities defined in terms of ϕ d, θ . At the end of stage 2, a set C of candidate 

doses with estimated ϕ d, θ  close to the maximum estimate is determined. In stage 3, 

additional patients are randomized among the doses in C, and all patients are followed for 

a longer period [0, t2] to obtain data on (d, Z). At the end of stage 3, the candidate dose 

maximizing the posterior mean of ξ d, θ  is selected.

2.2 Design Construction and Trial Conduct

A Gen I-II design may be constructed in numerous ways, depending on how Y and ϕ d, θ
are defined and the probability models p Y |d, θ  and p Z |d, θ . To make things concrete 

for the Gen I-II design that we will use to illustrate the methodology, we define the early 

outcomes, evaluated over the interval [0, t1], to be a binary indicator variable YT of toxicity 

and a three-level ordinal response variable Y R
′  taking on the possible values Y R

′ = 2 for 

response (RES), Y R
′ = 1 for stable disease (SD), and Y R

′ = 0 for progressive disease or death 

(PD). Denoting the indicator of the event A by I[A], we define the binary response indicator 

Y R = I Y R
′ = 2 . We include the third event SD = RES ∪ PD c = Y R

′ = 1  to accommodate 

settings where RES and PD are not complementary, that is, a patient may not have a 

response but this was not due to early PD. Other early outcomes may be used, including 

ordinal toxicity with three or more levels of severity, or Y R
′  with more than three levels, with 

appropriate modifications of the Gen I-II design parameters. When either YR or YT has three 

or more ordinal levels, a binary version of each must be defined in order to specify the dose 

admissibility criteria (1).

Denote the Gen I-II stage s sample size by ns for s = 1, 2, 3, and overall sample size 

N = n1 + n2 + n3. Values of n1 and n2 are specified at the start of the trial, but n3 is determined 

adaptively at the end of stage 2 to obtain a desired level of final dose selection reliability, 

as described below. Examples of ϕ d, θ  based on bivariate binary Y = (YR, YT) include the 

response probability πR d, θ  [33], the odds ratio defined in terms of πR d, θ  and πT d, θ , and 

the trade-off function f πR d, θ , πT d, θ  used by the EffTox design [3, 34]. If numerical 

outcome utilities, U(Y), are elicited, then the optimality criterion may be the mean utility 

ϕ d, θ   = E U Y |d, θ  [5, 14, 15, 16, 17, 35, 36]. In our construction of a Gen I-II design, 

below, we take a utility based approach with Y = Y R
′ , Y T .

For the ith patient enrolled in a Gen I-II trial, denote the assigned dose by d[i] and let 

Vi be the independent right censoring time of Zi starting from the time t1 when Y i, R
′  is 

evaluated, conditional on Y i, R
′ > 0. The observed time to failure or censoring following t1 is 

thus Zi
o = min Zi, V i . Let δi = 1 if Zi

o = Zi and δi = 0 if Zi
o = V i < Zi, so the data from the first 

n patients enrolled in the trial is

Dn = Y i, R
′ , Y i, T, Zi

o, δi, d i : i = 1, ⋯ , n . (3)
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Stages 1 and 2 of the Gen I-II design include dose acceptability criteria of the form given in 

equation (1), with fixed lower limit πR for response probability and upper limit πT for toxicity 

probability. Denote the set of acceptable doses satisfying (1) by An. During stages 1 and 

2, no patient is treated with an unacceptable dose, and if it is determined that no dose is 

acceptable, the trial is stopped, stage 3 is not conducted, and no dose is selected.

Denote n1, 2 = n1 + n2. For each dose dj, j = 1, ⋯ , J and n = 1, ⋯ , n1, 2, denote 

ϕj, n   = E ϕ dj, θ |Dn . In stage 1, doses are chosen to maximize ϕj, n for n1 patients. In 

stage 2, doses are chosen for n2 patients using AR. Given a fixed shrinkage parameter 

0 < ζ ≤ 1, AR probabilities may be defined to be proportional to ϕj, n
ζ. A formula for the 

AR probabilities is given in the Supplement. Compared to maximizing ϕj, n, AR distributes 

patients more evenly among acceptable doses during stage 2, which gives a more even 

distribution of patients among the candidate doses. While using AR is not a requirement 

of the Gen I-II design, our simulations will show that AR improves final correct selection 

probabilities and reduces additional stage 3 per-dose sample sizes.

At the end of stage 2, given fixed 0 < ρ < 1, the candidate dose set is defined to be all 

dj ∈ An1, 2 with posterior mean desirability close to the maximum value,

C = dj ∈ An1, 2 : ϕj, n1, 2 ≥ ρ max
dl ∈ An1, 2

ϕl, n1, 2 . (4)

The parameter ρ determines how close the estimated optimality criterion of a dose must 

be to the maximum for it to be in C. Preliminary simulations examining several numerical 

values, such as ρ = .60, .70, and .80, should be used to identify a value giving a design with 

good OCs. The value ρ = .70 was chosen for the CAR NK cell Gen I-II trial design.

The stage 3 sample size n3 is determined adaptively using the data Dn1, 2 and the per-dose 

subsample sizes n1, 2 dj : dj ∈ C  at the end of stage 2. The n1, 2 dj  values are random 

because doses are chosen adaptively in stages 1 and 2. Denote the stage 3 sample size of 

dose dj ∈ C by n3 dj , so that n3 = ∑dj ∈ C n3 dj  and the per-dose sample sizes from all three 

stages are N dj = n1 dj + n2 dj + n3 dj . To determine n3 dj  adaptively, we choose a fixed 

overall per dose sample size N d = N dj  for all j that ensures a desired level of reliability 

for selecting an optimal dose from C at the end of the trial. Since C is a random set, the 

value of N (d) may be chosen from several feasible values, such as N(d) = 10, 15, or 20. 

This is done based on simulations of the trial, for given n1, n2, ρ, and assumed true values 

of the long term success probabilities, ξtrue = ξtrue d1 , · · · , ξtrue dJ , and short term success 

probabilities, ϕtrue = ϕtrue d1 , ⋯, ϕtrue dJ . Each n3 dj = N dj − n1, 2 dj  depends on C and 

the values of n1,2(dj) for the candidate doses dj ∈ C. For example, if J = 4, C = d3, d4 , 

n1,2(d3) = 12, and n1,2(d4) = 6, then N(d) = 20 requires n3(d3) = 8 and n3(d4) = 14. Thus, in 

stage 3 a total of 22 additional patients would be randomized between d3 and d4, restricted to 

obtain overall per-dose sample sizes of 20.
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To illustrate the per-dose sample size determination process between stages 2 and 3, we use 

scenario 3 of our simulation study, which is given in detail in Table S1 of the supplementary 

materials. We consider three different combinations of the total sample size n2 used in 

stage 2 and total sample N(d) at d, specifically (n2, N(d)) = (39,9), (33,15), and (27,21). 

Simulations of the Gen I-II design under scenario 3 using each of these sample size 

configurations show that (n2, N(d)) = (39,9) gives very slightly worse results than (33,15) 

in terms of both the optimal dose selection percentages (70.0% vs 70.5%) and average 

total sample sizes (53.2 vs 52.7). The combination (27,21) gives the highest optimal dose 

selection percentage of 74.9%, but larger average total sample size 65.2. The sample size 

setting (n2, N(d)) = (33, 15) was chosen by considering the tradeoff between correct true 

optimal dose selection percentage and sample size. In this setting, if the investigators were 

willing to treat an expected total of about 65 – 48 = 17 more patients in stage 3, rather than 

53 – 48 = 5 more, as the price to obtain an improvement from 70.5% to 74.9% in optimal 

dose selection percentage, then the third pair (n2, N(d)) = (27, 21) could be used.

For the final dose selection, we require each d ∈ C to satisfy the additional long-term 

success probability acceptability requirement

Pr ξ d, θ > ξ   DN > .10, (5)

where ξ is a fixed lower limit for ξ dj, θ . Denote the final set of acceptable doses in C
by AN

ξ . The futility requirement (5) reduces the chance of selecting a dose from a set of 

candidates that all are unlikely to have a long term success rate at least ξ. In practice, ξ
may be the historical mean of ξ with standard therapy. The final selected optimal dose in 

the acceptable dose set AN
ξ  is defined to maximize the posterior mean long term success 

probability,

dN
sel, ξ = argmax

dj ∈ AN
ξ

E ξ dj, θ DN .
(6)

Figure 2 provides a schematic for Gen I-II design conduct. The design parameters include 

values required to specify the phase I-II design and objective function ϕ d, θ  used in stages 

1 and 2, including t1, n1, n2, cohort size c, acceptability limits πE and πT, and the exponent 

ζ used to define the AR probabilities. For stage 3, one must specify the long-term follow up 

time t2, ρ, ξ, and the overall per-dose sample size N(d) required for each dj ∈ C.

We assume a Bayesian model to exploit the Bayesian paradigm’s ability to fully account 

for uncertainty and provide shrinkage toward the prior for posterior criteria used to 

make decisions. For the Bayesian model, one must specify hyperparameters θ1 of the 

noninformative prior p θ1 |θ1  in the model for p Y|d, θ1 , and hyperparameters θ2 of the 

noninformative prior p θ1 |θ2  in the conditional failure time distribution p Z |d, Y, θ2 .
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3 Dose Outcome Models

We assume the following Bayesian multinomial-Dirichlet model for the early outcome 

Y = Y R
′ , Y T . More elaborate models may be used, but we found that this model gives 

a design with good properties while avoiding possibly restrictive assumptions. For each 

dose d1, …, dJ, and outcome indices a = 0, 1, 2 for Y R
′  and b = 0, 1 for YT, denote the 

joint probability pa, b dj = Pr Y R
′ = a, Y T = b   |   dj , with p dj = p0, 1 dj , ⋯ , p1, 2 dj . Thus, the 

model parameter vector is θ1 = p d1 , · · · , p dJ . For each dose dj and interim sample size 

n, we assume that the six-dimensional outcome count vector

Xn dj = ∑
i = 1

n
I Y = 0, 0 , ⋯ , I Y = 2, 1 I d i = dj

is multinomial with parameters n(dj) and p(dj), and that p(dj) follows a Dirichlet prior with 

parameter 1/6 in each cell. While this model does not borrow strength between doses, it is 

robust since it makes no assumptions about dose-response curves, and facilitates posterior 

computation because p dj |Xn dj  is Dirichlet with parameters 1/6, ⋯ , 1/6 + Xn dj  for each 

dj. The early outcome objective function is the mean utility

ϕ dj, θ1 = U dj, θ1 = ∑
a = 0

2
∑
b = 0

1
U a, b pa, b dj for j = 1, ⋯ , J . (7)

This Multinomial-Dirichlet model and definition of ϕ dj, θ1  may be extended easily to 

accommodate any discrete bivariate ordinal Y T, Y R
′ .

For the distribution of Z, due to limited sample size a flexible but parsimonious model is 

needed. We thus assume that Z follows a Weibull distribution with pdf

fZ z Y T, dj, θ2 = α
λ

z
λ

α − 1
exp − z/λ α , z > 0,

where α > 0 is the shape parameter and the rate parameter λ is given by

λ Y T, dj, θ2 = exp β0 + βT Y T + γj (8)

with γ1 = 0. We denote θ2 =   α, β0, βT, γ2, ⋯ , γJ  and θ = θ1, θ2 . Because the Weibull is an 

accelerated failure time model, the parameters in (8) are effects on Z, with βT for toxicity, 

and γj the dj versus d1 effect, for j ≥ 2. There is no YR effect since Z is defined only if YR 

= 1. A different distribution may be used, provided that it includes parameters for YT and dj. 

Non-informative N(0, 102) priors for elements of θ2 and a Gamma(0.01, 0.01) prior for α 
are assumed. The likelihood for data Dn is given in Supplement.
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4 A Utility Based Gen I-II Design

Because patients in the CAR-NK cell trial have active disease at enrollment, to define Y R
′

for the 1-month evaluation, PD is defined as worsening of disease compared to its baseline 

severity, and RES as complete remission. To establish a utility, we first fixed U(1, 0) = 0 

for the worst and U(0, 2) = 100 for the best possible outcome, and then determined the 

four remaining intermediate values, subject to the admissibility constraints U(a, 0) ≤ U(a, 

1) ≤ U(a, 2) for a = 0, 1, and U(1, b) ≤ U(0, b) for b = 0, 1, or 2. This formalizes the idea 

that either better disease status or absence of toxicity is more desirable. Table 1 gives the 

utility function used for the simulations. The short term outcome objective function is the 

mean utility (7). During stages 1 and 2, given interim data Dn, the posterior mean utility is 

u dj, Dn = E U dj, θ |Dn . Stage 1 of the Gen I-II design is conducted as follows.

Steps for Stage 1

Step 1. Treat the first cohort of patients at the lowest dose d1.

Step 2. For each new cohort, update the posterior distribution and compute the admissible 

dose set An and u dj, Dn  for each j = 1, 2, 3, 4.

Step 3. If An is empty, stop the trial and select no dose.

Step 4. If An is not empty, treat the next cohort of patients at the dose in An maximizing 

u dj, Dn , subject to the constraint that an untried dose may not be skipped when escalating.

Step 5. If An is not empty and the current dose dj is the highest untried dose and satisfies 

Pr πT dj, θ < πT |Dn > .10, escalate one dose level. This requirement supersedes Step 4.

6. Repeat steps 1–5 until n1/c cohorts have been treated and their values of Y evaluated. We 

include Step 5 because, due to simplicity of the assumed model, p(dj) cannot be estimated 

for untried dj. Step 5 reduces the chance getting stuck at a locally optimal but globally 

suboptimal dose, because it provides a way to explore untried doses.

Stage 2

Adaptively randomize up to n2/c additional cohorts of patients among the doses in An1, 2. The 

admissible dose set An is updated after each cohort’s outcomes Y have been evaluated. In 

the trial, c = 3, n1 = 15, and n2 = 33, so stage 1 includes up to five cohorts, stage 2 includes 

up to 11 cohorts, and ζ = 0.5 is used to define the AR probabilities.

Stage 3

Fairly randomize an additional n3 = ∑dj ∈ C n3 dj  patients among the doses in C. The per-

dose stage 3 sample sizes are chosen adaptively to ensure that a three-stage total of 

n1, 2 dj + n3 dj = N dj  patients are treated at each dj ∈ C. Thus, the stage 3 sample sizes 

n3 dj   = N dj − n1, 2 dj  are random. Long term treatment success is the event Z > t2 − t1  that 

a patient is alive with disease in remission at t2, and ξ d, θ = SZ t2 − t1 | Y R
′ > 0, dj, θ . Denoting 

final overall sample size by N, a dose dopt, ξ is chosen at the end of stage 3 to maximize 
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E ξ dj, θ |DN . We defined C using ρ =  0.70 based on preliminary simulations, the value 

N(dj) = 15 was chosen adaptively, and the long term success event was [Z > 5]. We used 

JAGS to run Markov chain Monte Carlo to generate posterior samples.

For the different long-term goal of choosing a dose to maximize expected PFS time over [0, 

t2], a simpler approach would be to randomize a predetermined sample of patients among 

the doses, follow all patients until treatment failure (progression or death) up to time t2, and 

use the right-censored PFS time data to choose an optimal dose. To protect patient safety, 

an additional monitoring rule to shut down excessively toxic doses would be required. A 

Gen I-II design thus provides a practical approach, based on both Y and Z, that may be 

considered intermediate between a conventional phase I-II design based on Y evaluated over 

[0, t1], and the simpler approach of randomizing and evaluating PFS time over [0, t2].

5 Simulation study

In this section, we present a simulation study to evaluate OCs of the utility based Gen 

I-II design, using the CAR-NK cell trial to specify design settings. We investigated 

scenarios with a variety of different patterns for ϕ dj
true, ξ dj

true, and outcome distributions. 

Figure 3 shows the assumed true dose-outcome curves πT
true dj = Prtrue Y T = 1|dj , 

πR
true dj = Prtrue RES |dj , and ξtrue dj   = Prtrue Z > 5 . As comparators, we used two more 

conventional utility-based phase I-II designs, Conv 1 and Conv 2. The Conv 1 design 

consists of stages 1 and 2 of the Gen I-II design, and selects an optimal dose to maximize the 

posterior mean utility u dj, Dn . While Conv 1 may appear to be a straw man, since the Gen 

I-II design is almost certain to outperform it, we include Conv 1 because it is what would 

be used in practice. The Conv 2 design is nearly identical to Conv 1, with the one difference 

that more patients are randomized in stage 2 in order to match the Gen I-II design’s sample 

size, as a more fair comparison. Formulas for distributions used to generate Y R
′ , Y T  and Z 

in the simulations are given in the Supplementary Material. We simulated 5,000 trials under 

each scenario using each design.

Table 2 summaries OCs of the Gen I-II, Conv 1, and Conv 2 designs, including dose 

selection percentages, mean number of patients treated at each dose, and mean overall 

sample size. The number tabled under “dose 0” is the percentage of trials stopped early with 

no dose selected. A summary statistic to evaluate performance by comparing the selected 

optimal dose to the truly optimal dose is R dsel, ξ = ξ dsel, ξ /ξ dopt, ξ, which has domain [0, 

1], with R dsel, ξ = 1 corresponding to always selecting the dose that maximizes long term 

treatment success probability. Using R dopt, ξ  rather than only the empirical probability of 

selecting dopt, ξ to quantify how well a method behaves is useful in scenarios where two 

or more doses have ξ d true close to ξ dopt, ξ , so choosing a nearly optimal dose is a good 

decision.

Scenarios 1 and 2 are null cases where no dose has both acceptably low πT
true dj  and 

acceptably high ξ d true. In scenario 1, the Gen I-II design terminates the trial early 93.5% of 

the time compared to 56.2% and 57.7% for Conv 1 and Conv 2. In scenario 2, the Gen I-II 
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design terminates the trial early 83.8% of the time. Because d1 and d2 both have large πR
true dj

and the conventional designs ignore Z, both conventional designs have only about a 3% 

chance of stopping early, and a 73% chance of incorrectly selecting d1 as optimal. Scenario 

2 illustrates the advantage that the Gen I-II design includes an admissibility requirement 

defined in terms of ξ d true, while the conventional designs do not, and consequently they 

both have a high risk of selecting a dose with a low long term success rate. In scenarios 1 

and 2, because no truly optimal dose exists, R is undefined.

In scenarios 3 and 4, multiple doses are nearly optimal in terms of Utrue dj  based on Y, but 

only one dose is optimal based on the long-term criterion ξtrue dj . In scenario 3, d3 and d4 

have similar mean utilities near 75, while d4 is truly optimal with highest ξtrue d4 = 0.70, 

compared to ξtrue d3 = 0.50. In scenario 4, d2, d3 and d4 have similar mean utilities 

Utrue dj  near 81, but d3 is truly optimal with ξtrue d3 = 0.65, compared to ξtrue d2 = .45 and 

ξtrue d4 = .50. The Gen I-II design has a 69.1% chance of correctly selecting d3 in scenario 

3, whereas the Conv 1 and Conv 2 designs have 31% and 32% chances of selecting d3, and 

are about as likely to select d2 or d4, because both conventional designs ignore Z.

In scenarios 5 and 6, the truly optimal dose in terms of ξtrue dj  and the dose with highest 

mean utility Utrue dj  differ. In scenario 5, d4 is truly optimal with the highest ξtrue d4 = 0.65, 

whereas d3 has the highest mean utility Utrue d3 = 82.3. In scenario 6, d2 is truly optimal 

with the highest ξtrue d2 = 0.70, whereas d4 has highest mean utility Utrue d4 = 77.8. The 

Conv 1 and Conv 2 designs both have over a 60% chance of incorrectly selecting d3 as 

optimal in scenario 5, about a 50% chance of incorrectly selecting d4 as optimal in scenario 

6, and both have below 15% and around 25% chances of correct optimal dose selection in 

scenarios 5 and 6. In contrast, the Gen I-II design has correct dose selection rates 59.1% in 

scenario 5 and 68.4% in scenario 6. In scenarios 7 and 8, the truly optimal dose and the dose 

with highest mean utility are identical. The Gen I-II design still outperforms the Conv 1 and 

Conv 2 designs, with a 25% higher correct optimal dose selection percentage in scenario 7. 

In scenario 8, the Gen-II design and the Conv 2 have similar correct optimal dose selection 

percentages of 56.9% and 54.0%, respectively. In scenario 9, πR d true is flat and πT d true

increases with d, so the mean utility Utrue dj  decreases monotonically with d, but the truly 

optimal dose in terms of ξtrue dj  is d3. In this case, the Gen-I-II design outperforms both 

Conv 1 and Conv 2, with about a 35% higher correct selection percentage.

In summary, in all scenarios, the Gen I-II design outperforms the conventional phase I-II 

designs substantially, with the highest R, that is at least 10% higher in each of scenarios 3 

– 7. The three designs have similar patient allocation distributions, essentially because all 

designs allocate patients based on short-term outcomes, while Z is only used in the final 

optimal dose selection of the Gen I-II design.

We performed additional sensitivity analyses to explore several other aspects of the Gen 

I-II design. The results are summarized in the online supporting information. Table S1 

summarizes the effects of including AR in stage 2. The design “with AR” is the Gen I-II 
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design that allocates n1 = 15 patients for the stage 1 and n2 = 33 patients for stage 2 with 

AR; “without AR” is a modified Gen I-II design that combines stages 1 and 2, does not 

include AR, and allocates up to 48 patients with dose-finding done to maximize u dj, Dn

for all cohorts. Table S1 shows that, compared to the original “with AR” version of Gen 

I-II, the “without AR” version has substantially inflated sample sizes, with at most a mild 

gain of ≤ 5% in true optimal dose selection percentage. This shows that AR is a very useful 

component of the Gen I-II design that provides a large savings in sample size.

Recall that we fixed ρ =  0.70 for defining a candidate dose set. Table S2 summarizes the 

OCs of the Gen I-II design for values of ρ ranging from 0.60 to 0.90. The results indicate 

that larger ρ is more favorable under the null scenarios 1 and 2, while smaller ρ is more 

favorable when a truly optimal dose exists, in scenarios 3 – 9. In practice, ρ should be 

chosen, based on preliminary simulations, to accommodate the application at hand.

Table S3 shows effects of changing patient allocation between stages 2 and 3. Given the 

values (n2, N(d)) = (33,15) used in Table 2, we considered the two alternative pairs, (39,9) 

and (27,21). The results show that the allocation (33,15) and the alternative (39, 9) give very 

similar design performances, and that both give better OCs compared to (27,21) in terms of 

the tradeoff between correct true optimal dose selection percentage and sample size.

6 Discussion

By using data on duration of response, the Gen I-II design addresses an important problem 

with conventional phase I-II methods. The design is modular, since Y can be any ordinal 

early outcomes used by a phase I-II design, and any criterion ϕ d, θ  can be used for 

stages 1 and 2. Thus, a Gen I-II design can be tailored to accommodate the particular 

clinical setting at hand. The Gen I-II design is practical in settings where investigators 

plan to follow patients long enough to assess response duration, which commonly is done 

in oncology trials. The main additional requirement is the sample of patients randomized 

among candidate doses in stage 3. Our simulations showed that about 15 more patients per 

candidate dose gives a reliable design. While we have investigated a utility-based Gen I-II 

design with a simple Bayesian model, the large advantages over conventional designs in 

our simulations suggest that other Gen I-II designs also will provide a large benefit over 

conventional designs.

Guo and Yuan [32] proposed a dose-ranging approach to optimizing dose (DROID) 

for oncology drug development. The Gen I-II design and DROID design share some 

high-level design strategies, including identifying an admissible dose set based on short-

term endpoints, randomizing patients within the admissible dose set, and using both short-

term and long-term endpoints for logistical convenience and identifying an optimal dose. 

However, they focus on different clinical settings. DROID considers binary toxicity and a 

continuous surrogate efficacy endpoint, e.g. pharmacodynamics, whereas Gen I-II considers 

early phase I-II toxicity and efficacy endpoints and a long term event time endpoint. This 

difference requires very different dose-outcome models. Stages 1 and 2 of a Gen I-II design 

follow the phase I-II paradigm [12], while DROID identifies both a minimal active dose 

(MAD) and MTD. The randomized portion of the DROID design, used for inference and 
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decision making, does conventional dose-ranging, whereas stage 3 of the Gen I-II design 

is similar to a multi-arm randomized trial and identifies the dose with largest response 

duration.

A caveat is that, in settings using survival time rather than response duration to define long 

term treatment success, a Gen I-II design’s behavior wil depend on relationships between 

Y and survival time. This is a complex issue involving persistence of biological treatment 

effects over time, and effects of salvage therapy given at relapse on subsequent survival. 

How the Gen I-II paradigm behaves compared to conventional phase I-II designs in such 

settings is an important area for future research. R code for implementing the Gen I-II 

design is available from https://github.com/yongzang2020.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Kaplan-Meier plot of overall survival (OS) for the acute leukemia phase I trial by dose 

group, defined as Low (doses 1–5 combined) or High (dose 6).
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Figure 2: 
Schematic for the Gen I-II design.
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Figure 3: 
Dose-outcome curves for the scenarios in the simulation study. The red, green, and 

blue curves are πT
true dj , πR

true dj , and ξtrue dj = Prtrue Z > t2 − t1 |Z > 0, dj , respectively. The 

horizontal lines show the fixed upper limit .30 for πT(dj) and fixed lower limit .50 for πR(dj) 

in the dose admissibility rules, and the fixed lower limit 0.40 for ξ(dj) for long-term success 

probability.
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Table 1:

Numerical utilities for the early outcomes Y = Y T, Y R
′ .

Y R
′

2 = RES 1 = SD 0 = PD

Y T 0 = No DLT 100 50 20

1 = DLT 60 30 0

Pharm Stat. Author manuscript; available in PMC 2023 September 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Thall et al. Page 20

Table 2:

Selection % and mean number of patients treated at each dose level, mean sample size, and 

R = ξ dsel, ξ /ξ dopt, ξ  under the Gen I-II, Conv 1 and Conv 2 designs. The true long term success probability at 

dj is ξtrue dj = Prtrue Z  > 5|Y R
′ > 0, dj . Boldface indicates results for the true optimal decision. The numbers 

in the brackets indicate the Monte Carlo simulation standard errors.

Dose levels Sample

Designs 0* 1 2 3 4 size R %

Scenario 1

πT
true dj 0.10 0.20 0.40 0.50

πR
true dj 0.30 0.40 0.50 0.55

Utrue dj
59.1 62.5 60.9 59.9

ξtrue dj
0.05 0.1 0.15 0.3

Gen I-II Selection % 93.5(0.3) 0 0.50 2.6 3.3 35.6 NA

Patients 9.5 13.5 8.8 3.7

Conv 1 Selection % 56.2(0.7) 6.5 22.6 12.4 2.2 34.9 NA

Patients 9.4 13.2 8.7 3.6

Conv 2 Selection % 57.7(0.7) 5.6 22.1 12.4 2.2 35.4 NA

Patients 9.4 13.4 8.8 3.7

Scenario 2

πT
true dj 0.05 0.20 0.40 0.50

πR
true dj 0.60 0.65 0.55 0.40

Utrue dj
76.7 68.0 54.0 40.4

ξtrue dj
0.1 0.15 0.15 0.15

Gen I-II Selection % 83.8(0.5) 2.3 9.6 4.1 0.2 48.2 NA

Patients 21.5 16.4 7.4 2.8

Conv 1 Selection % 3.2(0.2) 73.3 22.4 1.1 0 46.9 NA

Patients 21.2 15.9 7.0 2.8

Conv 2 Selection % 3.1(0.2) 73.2 22.8 0.9 0 48.2 NA

Patients 21.4 16.6 7.3 2.9

Scenario 3

πT
true dj 0.04 0.06 0.08 0.10

πR
true dj 0.40 0.50 0.60 0.60

Utrue dj
61.2 67.0 74.2 75.0

ξtrue dj
0.20 0.40 0.50 0.70

Gen I-II Selection % 2.9 0.3 7.0 19.3 70.5(0.6) 52.7 91.0

Patients 10.6 13.0 14.9 14.3

Conv 1 Selection % 2.2 4.6 13.5 39.7 39.9(0.7) 47.4 79.1

Patients 9.6 11.7 13.3 12.7
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Dose levels Sample

Designs 0* 1 2 3 4 size R %

Conv 2 Selection % 2.2 3.6 13.2 40.2 40.8(0.7) 52.8 79.9

Patients 10.5 13.1 14.9 14.3

Scenario 4

πT
true dj 0.01 0.03 0.06 0.08

πR
true dj 0.6 0.7 0.70 0.70

Utrue dj
72.1 80.9 81.3 80.6

ξtrue dj
0.4 0.45 0.65 0.50

Gen I-II Selection % 0.1 4.3 9.2 69.1(0.7) 17.2 58.1 91.5

Patients 13.9 15.1 14.8 14.4

Conv 1 Selection % 0 8.7 33.0 31.1(0.7) 27.7 48.0 80.1

Patients 11.5 12.7 12.1 11.6

Conv 2 Selection % 0.1 7.0 33.2 32.3(0.7) 27.3 58.1 80.6

Patients 13.8 15.3 14.8 14.1

Scenario 5

πT
true dj 0.03 0.05 0.1 0.15

πR
true dj 0.4 0.6 0.75 0.65

Utrue dj
63.1 75.2 82.3 72.7

ξtrue dj
0.3 0.45 0.5 0.65

Gen I-II Selection % 1.2 1.4 14.2 24.1 59.1(0.7) 54.3 89.1

Patients 10.5 14.7 15.8 13.3

Conv 1 Selection % 1.0 2.2 22.8 61.3 12.8(0.5) 47.7 77.1

Patients 9.1 13.0 14.1 11.4

Conv 2 Selection % 1.1 1.6 20.1 64.6 12.6(0.5) 54.3 77.5

Patients 10.2 14.9 16.2 13.1

Scenario 6

πT
true dj 0.02 0.04 0.07 0.10

πR
true dj 0.4 0.60 0.65 0.75

Utrue dj
54.4 72.6 72.5 77.8

ξtrue dj
0.45 0.70 0.5 0.45

Gen I-II Selection % 0.6 5.4 68.4(0.7) 15.7 9.8 54.3 90.0

Patients 10.0 14.4 14.7 15.2

Conv 1 Selection % 0.9 1.4 25.1(0.6) 25.3 47.2 47.7 75.2

Patients 8.8 12.9 12.8 13.2

Conv 2 Selection % 1.1 1.0 23.9(0.6) 23.6 50.5 54.2 74.6

Patients 9.9 14.6 14.5 15.1

Scenario 7

πT
true dj 0.03 0.05 0.1 0.15
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Dose levels Sample

Designs 0* 1 2 3 4 size R %

πR
true dj 0.4 0.5 0.6 0.50

Utrue dj
66.1 70.3 73.5 68.6

ξtrue dj
0.3 0.45 0.65 0.4

Gen I-II Selection % 3.3 2.0 15.0 70.9(0.6) 8.8 52.2 90.6

Patients 11.2 13.7 15.1 12.1

Conv 1 Selection % 2.8 11.4 26.2 42.9(0.7) 16.6 47.4 78.9

Patients 10.1 12.5 14.0 10.7

Conv 2 Selection % 2.8 10.2 26.2 44.6(0.7) 16.3 52.2 79.7

Patients 11.1 13.9 15.3 11.8

Scenario 8

πT
true dj 0.15 0.20 0.25 0.40

πR
true dj 0.6 0.70 0.6 0.50

Utrue dj
71.8 77.8 68.5 56.4

ξtrue dj
0.45 0.60 0.45 0.40

Gen I-II Selection % 9.1 23.4 56.9(0.7) 9.0 1.6 47.7 90.5

Patients 17.7 14.8 9.9 5.30

Conv 1 Selection % 9.1 29.3 52.9(0.7) 8.2 0.5 44.2 89.5

Patients 16.5 14.1 9.0 4.60

Conv 2 Selection % 9.0 28.3 54.0(0.7) 8.4 0.3 47.7 89.8

Patients 17.4 15.2 10.0 5.10

Scenario 9

πT
true dj 0.02 0.1 0.2 0.5

πR
true dj 0.6 0.6 0.6 0.6

Utrue dj
76.3 73.5 70.2 60.4

ξtrue dj
0.4 0.45 0.6 0.65

Gen I-II Selection % 1.3 18.2 22.5 51.2(0.7) 6.8 51.6 88.7

Patients 17.2 15.6 12.8 5.9

Conv 1 Selection % 0.9 50.6 31.0 16.5(0.5) 1.0 47.7 75.2

Patients 16.1 14.4 11.9 5.2

Conv 2 Selection % 1.1 49.6 31.8 16.9(0.5) 0.6 51.5 75.2

Patients 17.2 15.4 13.1 5.7

*
The number under d = 0 is the percentage of trials terminated early with no dose is selected.

Pharm Stat. Author manuscript; available in PMC 2023 September 27.


	Abstract
	Introduction
	Conventional Dose Finding Designs
	A Dose Finding Trial That Failed
	A Flawed Assumption

	A Generalized Phase I-II Design Paradigm
	Overview of the Design
	Design Construction and Trial Conduct

	Dose Outcome Models
	A Utility Based Gen I-II Design
	Steps for Stage 1
	Stage 2
	Stage 3

	Simulation study
	Discussion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Table 1:
	Table 2:

