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Abstract

The present study examines the association between grey matter volume and cognition. Studies 

that have examined this issue have focused primarily on older adults, whereas the present 

study examines the issue across the entire adult lifespan. A total of 463 adults, ages 20–88 

at first assessment, were followed longitudinally across three assessments over 8–10 years. 
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Significant individual differences in a general cognition measure comprised of measures of speed 

of processing, working memory, and episodic memory were observed, as well as in measures 

of cortical and subcortical grey matter. Parallel process latent growth curve modeling showed 

a reliable relationship between decreases in cortical matter and cognitive decline across the 

entire adult lifespan, which persisted after controlling for age effects. Implications of these 

findings in relation to progression towards dementia, risk assessment, cognitive intervention, and 

environmental factors are discussed, as well as implications for theories of cognitive aging.
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1. Introduction

Cognitive decline in later life is an established fact of human aging, with a broad array 

of cognitive processes affected, including episodic memory, speed of processing, working 

memory, and reasoning (Park et al., 2002; Salthouse, 2016; Verhaeghen & Salthouse, 1997). 

Accompanying this decline is structural deterioration of the brain that includes shrinkage 

of cortical and subcortical grey matter (Raz et al., 2003, 2005; 2010), as well as cortical 

thinning (Fjell et al., 2014; Rast et al., 2018, and see Kennedy & Raz, 2015 for a review). 

Many studies have suggested directly or indirectly that the loss of grey matter appears to be 

an important mechanism underlying the decline of cognitive function in later life (Cox et 

al., 2019, 2021; Head et al., 2008, Nickl-Jockshat et al., 2012; Park & Reuter-Lorenz, 2009, 

Reuter-Lorenz & Park; 2014), and this coupling of changes in grey matter with changes 

in cognition (i.e. change-change association) has been supported by several longitudinal 

studies assessing change-change associations in brain structure and cognitive performance. 

For example, Fletcher et al. (2018) found via latent variable modeling that change over 2 

years in general cognition was strongly associated with longitudinal change in whole-brain 

grey matter volume in a cohort of 454 older adults. Hunt et al. (2021) found that change in 

cortical thickness mediated the association between a measure of socioeconomic status and 

change in a range of cognitive assessments in a sample of 601 older adults. Similarly, Vonk 

et al., (2022) identified a strong relationship between global brain atrophy (grey and white 

matter) and longitudinal decline in general cognitive ability in a sample of 989 middle-aged 

and older adults, although notably this association was stronger in later life.

As the above-summarized studies demonstrate, global measures of brain atrophy are 

strongly related to measures of general cognition in older adults. However, while this 

relationship is most pronounced – and more consequential – in later life, volumetric grey 

matter loss and cognitive decline are expressed to a lesser degree in middle- and even early 

adulthood (Bethlehem et al., 2022; Fjell et al., 2021; Salthouse, 2016; Walhovd et al., 2016). 

Studies of older adults have consistently reported age differences in the association between 

grey matter volume and cognitive performance at baseline assessment (Fletcher et al., 2018; 

Head et al., 2008; Hunt et al., 2021; Nickl-Jockshat et al., 2012; Raz et al., 2008; Vonk et 
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al., 2022). To fully understand human development of brain and cognition, it is necessary 

to also study how loss of cortical volume influences cognitive trajectories in middle - and 

potentially early – adulthood. The present study examines the association of grey matter 

with cognition across the entire adult lifespan, as the extant data on this important issue is 

surprisingly limited.

There are a few studies that have examined this relationship in middle age and younger 

adults. Vonk et al. (2022), as discussed above, identified a weaker but still observable 

coupling between rates of whole brain atrophy and changes in cognitive function in adults 

aged 40 to 59, compared to older adults of age 60 and greater, demonstrating that indeed 

individual rates of brain atrophy and cognitive decline are related to one another beginning 

in middle age at the latest. As for findings pertaining to early adulthood, Lagnes et al. 

(2020)’s examination of the relationship between anterior and posterior hippocampal volume 

and episodic memory performance identified a similar pattern – change in hippocampal 

volume was reliably related to change in memory performance in their sample ranging 

from 4 to 91 years of age, although with a stronger relationship later in life. Persson et 

al. (2016), similarly identified a coupling of individual rates of change in prefrontal white 

matter and change in fluid intelligence in an adult lifespan sample (19–79 years of age). In 

aggregate these studies demonstrate that the general principle of a relationship between brain 

atrophy and cognitive decline occurs at midlife, and, at least in the case of the two specific 

relationships described by Lagnes et al., (2020) and Persson et al., (2016), early adulthood as 

well.

The present study aimed to further our understanding of how cognitive and brain structural 

change interrelate across the adult lifespan using the Dallas Lifespan Brain Study (DLBS) 

which followed 463 adults aged 20–88 for 8–10 years across three sampling waves and 

assessed both measures of brain structure and a wide array of cognitive measures. To 

assess the potential influence of grey matter atrophy on cognitive decline, the present study 

examined longitudinal changes in grey matter volume using used parallel process latent 

growth curve modeling (PLGC, Duncan, Duncan, & Stryker, 2013). This technique allows 

for the assessment of covariance changes (captured as longitudinal slopes of change over 

time) in grey matter volume (computed as a latent variable from lobular volumes) with 

parallel changes in cognition (derived from latent measures of speed of processing, working 

memory, and episodic memory). We elected to take a general approach to these issues 

similar to other recent studies (Rast et al., 2017; Cox et al., 2019, 2021; Fletcher et al., 

2018) by examining the effect of latent grey matter volume on a latent general measure of 

cognition.

In the current study, this modeling approach was used to (a) determine whether there 

are individual differences in decline in cognition and grey matter volume, (b) incorporate 

individual differences in change for each variable in our models, and (c) ultimately 

determine whether the grey matter volume and cognition measures follow similar 

trajectories of change over time. In other words, we were interested in how tightly bound 

grey matter volume change is to cognitive change within individuals. We hypothesized that 

these two factors will be significantly coupled at the individual level not just in later life, but 

throughout the adult lifespan.
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A second goal of the current study was to assess if observed rates of change in cognition 

and grey matter volume differ in magnitude at different points in the adult lifespan. Evidence 

from longitudinal assessments indicates that, in healthy individuals, loss of cortical grey 

matter is a continuous processes expressed throughout the lifespan (Bethlehem et al., 2022; 

Fjell et al., 2014), with accelerated decline observed in select cortical and subcortical 

regions (see Kennedy & Raz 2015 for a review). Similarly, there is ample evidence that 

general cognitive ability decreases throughout the adult lifespan, with accelerated decline 

with later age (Salthouse, 2016; and see Verhaeghen & Salthouse, 1997 for a meta-analytic 

review). We hypothesized that we would indeed observe an acceleration of decline in both 

factors over time, and that the change-change relationship between these two factors will 

be detectable and significant across the entire adult lifespan, although relatively weakest in 

early adulthood.

2. Method

2.1 Participants

An adult lifespan sample of 463 adults was recruited for the DLBS. Participants were invited 

to complete three assessments over approximately eight to ten years, and all participants 

completed at least one and a maximum of three occasions. Assessment 1 was completed in 

the first two years of the study and Assessment 2 occurred approximately four years later 

(Mtime = 3.9 years, SDtime = .39 years) with a range of 2.47 to 5.8 years. Assessment 3 

took place about eight years (Mtime = 8.85 years, SDtime = 1.04 years) after Assessment 

1 with a range of 6.11 to 10.65 years. Participant age at first assessment ranged from 

21 to 88 years (Mage = 55.83 years, SDage = 16.87 years) with at least 40 participants 

at each decade. A total of 308 participants (66.5% of the initial sample) completed a 

second assessment, and 175 of those participants (37.8% of the initial sample) went on to 

complete the third assessment as well. Sex representation at Assessment 1 was 62% female, 

38% male. All participants had an MMSE score greater than or equal to 26 at the first 

assessment, were recruited locally from the community, and were right-handed with normal 

or corrected to normal vision. Participants were screened (via self-report) for neurological 

and psychiatric disorders, loss of consciousness for more than ten minutes, a history of drug 

or alcohol abuse, and a history of major heart surgery or chemotherapy within five years. 

Participants’ characteristics are summarized in Table 1. All participants completed both a 

cognitive battery and an MRI scan at each assessment. This study was approved by and 

conducted in accordance with the University of Texas at Dallas and the University of Texas 

Southwestern Medical School institutional review boards. All participants provided written 

informed consent.

2.2 Cognitive Measures

Cognition was examined using six tasks that served as indicators of three cognitive 

constructs: speed of processing, working memory, and episodic memory. The tasks are 

described below.
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Speed of Processing.

Digit Comparison Task (DComp).: (Hedden et al., 2002; adapted from Salthouse & 

Babcook 1991). Participants were asked to compare strings of simultaneously presented 

digits (span varying between 3 and 9) and identify if each was identical or different. The 

outcome measure was the number of correct comparisons performed in 45 seconds.

Digit-Symbol Substitution (DSST).: This is a subtask from the 3rd revision of the Weschler 

Adult Intelligence Scale (WAIS-III; Weschler, 1997). Participants were asked to translate a 

string of digits into a series of non-familiar symbols using a substitution cypher, with the 

outcome measure being the number of digits translated correctly within 90 seconds.

Working Memory.

Spatial Working Memory (SWM).: This task is a subtask of the Cambridge 

Neuropsychological Test Automated Battery (CANTAB; Robbins et al. 1994). Participants 

are given an abstract figure that is a probe item (“blue token”) and are asked to search a 

number of simultaneously presented boxes (spanning 4–8) to locate and then move the token 

to a final depository. Then a new token is hidden, and this routine continues until a token has 

been discovered in all boxes. Within a given trial, participants must maintain which boxes 

they have already searched in working memory in order to avoid erroneously revisiting a box 

that they have already searched as each box never has a token twice. The outcome measure 

of this task is the inverse-coded number of search errors performed throughout all trials.

Letter-Number Sequencing (LNS).: This is a subtask of the WAIS-III battery (Weschler, 

1997). Participants are presented with mixed strings of verbally presented letters and 

numbers in random order that range from two to eight in length. They are required to 

reorganize the string of items by providing an oral listing of the string, with the numbers 

in ascending order followed by letters in alphabetical order. The length of the string is 

incremented by one for each of three correct responses given. The outcome measure of this 

task is the total number of correct responses given before failure, or before the maximum 

number of trials (24) is reached.

Episodic Memory.

Immediate and Delayed Memory (HVLT):  Hopkins Verbal Learning Test (Brandt, 1991). 

In the Immediate Recognition Task (IRT), participants were verbally presented with a list 

of 12 words sequentially, which they are required to recall immediately after exposure. The 

outcome measure of this task is the number of words remembered correctly. The Delayed 

Recognition Task (DRT) is administered 40 minutes later and ask participants to identify 

which 12 of 24 verbally and sequentially-presented words they were previously exposed to 

in the IRT. The outcome measure of the DRT is the number of words out of 12 that the 

participant correctly identified as having been previously seen. The outcome of the IRT and 

DRT were summed to create a single measure of memory performance (HVLT).

Verbal Recognition Memory (VRM):  CANTAB (Robbins et al., 1994). The Immediate 

Recognition task is a similar recognition task to the one utilized in the HVLT, though using 

a different set of stimuli presented visually. Participants are exposed to a series of 12 printed 
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words presented sequentially. Participants are then shown a sequential list of 24 printed 

words, of which 12 were included in the immediately preceding wordlist. Performance in 

this task is the number of out of 12 that the participant correctly identifies as belonging to 

the immediately preceding wordlist.

2.3 Grey Matter Measures

Both cortical and subcortical grey matter volume were collected using the procedures 

described below.

2.3.1 MRI Acquisition.—Participants were scanned using a 3T Philips Achieva scanner 

with an 8-channel head coil at all three timepoints. At the third assessment, 50 participants 

were scanned on a newer 3T Philips Achieva scanner, which was installed in 2011, using an 

8-channel head coil and identical scanning parameters. High-resolution anatomical images 

were collected with a T1-weighted magnetization-prepared rapid gradient-echo sequence 

(MP-RAGE) with 160 sagittal slices, field of view (FOV) = 204 × 256 × 160 mm; voxel 

size: 1 × 1 × 1 mm3; time to repetition: 8.1 ms; echo time: 3.7 ms; flip-angle: 12°.

2.3.2 Brain Volume Estimates.—Cortical reconstruction and volumetric segmentation 

of the MP-RAGE images taken at all three timepoints was conducted with the FreeSurfer 

5.3 image analysis suite (Desikan et al., 2006; http://surfer.nmr.mgh.harvard.edu/), using 

procedures described in prior publications by others (Dale, Fischl, & Serena, 1999; Dale & 

Sereno, 1993; Fischl & Dale, 2000; Fischl et al., 2002; Fischl, Salat, et al., 2004; Fischl, 

Sereno, & Dale, 1999; Fischl, Sereno, Tootell, & Dale, 1999; Fischl, Van Der Kouwe, et 

al., 2004b; Han et al., 2006; Jovicich et al., 2006; Ségonne et al., 2004). Manual dura 

removal and control point edits for the parcellation derived from the FreeSurfer-standard 

regional labels were performed by a trained research team and independently assessed by 

an expert, as described in a prior publication (Savalia et al., 2017). Bilateral lobular volume 

estimates were calculated by summing the cortical parcellation constituting each of the 

frontal (caudal anterior cingulate, caudal middle frontal, frontal pole, medial orbitofrontal, 

paracentral lobule, pars opercularis, pars orbitalis, pars triangularis, posterior cingulate, 

precentral gyrus, rostral anterior cingulate, rostral middle frontal gyrus and superior frontal 

parcellations), parietal (postcentral gyrus, precuneus, superior parietal lobule, supramarginal 

gyrus, and isthmus parcellations), occipital (cuneus, lateral occipital lobe, lingual gyrus and 

pericalcarine parcellations) and temporal (banks of the superior temporal sulcus, entorhinal 

cortex, fusiform gyrus, inferior temporal gyrus, middle temporal gyrus, parahippocampal 

gyrus, superior temporal gyrus, temporal pole, transverse temporal) lobes. Considering 

FreeSurfer’s documented difficulty in consistently segmenting subcortical regions (Mulder 

et al., 2014; Srinivasan et al., 2020), we elected to utilize the estimate of total bilateral 

subcortical grey matter volume produced by the segmentation process rather than examine 

specific subcortical volumes. The resulting lobular cortical, and subcortical grey matter 

volume estimates were used in subsequent analyses.

2.4 Analysis Plan

2.4.1 Principal Component Analysis of Cognitive Measures.—The cognitive 

data from all subjects at Assessment 1 were cast into a principal component analysis (PCA) 
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to assess the accurate assignment of our a priori constructs (Speed of Processing, Working 

Memory, and Episodic Memory). The results of this PCA informed our modeling of latent 

cognition within the univariate and parallel process latent growth curve models defined in 

section 2.4.3. This analysis was conducted using the InPosition package (Beaton et al., 

2014) in R 4.2.2 (R Core Team, 2021). See Supplemental section S.1 for further details.

2.4.2 Missingness Analysis.—Due to the attrition exhibited over the three 

assessments of the DLBS, we ran a series of linear mixed effect models relating our 

independent and dependent variables of interest (DComp, DSST, SWM, LNS, VRM, 

HVLT, Cortical GMV, Subcortical GMV) as well as pertinent control variables (Age, Sex, 

Education, MMSE) to the number of assessments completed by each participant. The full 

specifications of this analysis can be found in supplementary section S.1

2.4.3 Latent Growth Curve Modeling—A latent-growth curve structural equation 

modeling approach (Duncan, Duncan, & Strycker, 2013) was utilized to analyze these 

data. All analyses were implemented in the lavaan library (Rossel, 2012) in R 4.2.2 

(R Core Team, 2021), with full information maximum likelihood estimation (FIML) 

implemented under missing-at-random assumptions to use all available data for each 

participant. Goodness of fit of all models was assessed via comparative fit index (CFI), 

root-mean-square error of approximation (RMSEA), and standardized root-mean-square 

residual (SRMR). As recommended by Hu and Bentler (1999) good model fit is indicated by 

RMSEA <= .06. SRMR <= .08, and CFI >=.95, with acceptable fit indicated by RMSEA <= 

.08 and CFI >= .9.

2.4.3.1 Latent Univariate Growth Curve models.: We first developed independent 

univariate growth models to identify the individual developmental trajectories of the 

cognitive and grey matter variables over time. These time-based models had three occasions 

of measurement and scaled linear change across these three time points (e.g., McArdle 

& Nesselroade, 2014). We also specified residual covariances over time for each variable, 

capturing specific sources of stable variance for each variable (Hertzog & Nesselroade, 

2003). We fit both a no-growth model for each variable as well as a linear growth curve 

model that focused on intra-participant change across time. Three growth models were fit, 

one each for cortical grey matter volume, subcortical grey matter volume, and cognition. 

Based on the results of our principal component analysis (described in section 2.4.1 and 

supplemental section S.1, results reported in section 3.1 below) we calculated a single latent 

growth curve reflecting latent general cognitive ability (GenCog) from all administered 

cognitive measures. Similarly, we calculated a single latent growth curve reflecting latent 

cortical grey matter volume (CGMV) from the lobular volume estimates assessed at each 

time point. The growth curve fit to latent subcortical grey matter volume (SCGMV) was 

calculated from the single subcortical grey matter volume estimate assessed at each time 

point. Data from all participants were included, with missing data accounted for using R’s 

FIML estimation procedures to account for missing data. For latent variables with multiple 

indicators (e.g., GenCog), the regressions of variables on factors (e.g., Episodic Memory 

on GenCog) were constrained to be equal across the three waves of measurement (model 
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comparisons not reported here showed that imposing invariance in factor loadings over time 

had no impact on model fit, justifying the assumption of longitudinal factor invariance).

2.4.3.2 Hypothesis testing using parallel-process latent growth curve models.: To 

assess inter-relations between change-over-time in cortical and subcortical grey matter 

volume and general cognitive performance, we combined the univariate growth models 

described above into a single parallel-process latent growth curve model, as visualized in 

Figure 1. In this model, the latent slope and intercept values of each of our three variables 

of interest (GenCog, CGMV, SCGMV) were allowed to freely covary. All other model 

constraints are consistent with those applied in the univariate models described above. 

Figure 1 presents the measurement model for the analysis. Section A (at the top of the 

model), presents the measures used to create a latent construct for cortical grey matter 

volume (CGMV) at each of the three assessments. These indicators of CGMV are comprised 

of the lobe volume for frontal, parietal, temporal, and occipital lobes based on FreeSurfer 

estimates. Section B, on the right side of the model, pertains to subcortical grey matter 

volume (SCGMV). Due to the limited scope of our subcortical grey matter volume measure, 

we further simplified the univariate growth model applied to the subcortical volumetric data 

to ensure identification of the model. Specifically, residual covariances between assessments 

of cortical/subcortical GMV were set to 0, and residual variances of each assessment were 

constrained to equal one-another. Sections C and D at the bottom of the figure reflect the 

latent growth curve describing general cognition, with Section C describing the slope and 

intercept fit to latent cognition at each assessment, and Section D indicating the individual 

cognitive measure which were used to estimate latent cognition at each assessment. We 

note that repeated measures of a given cognitive variable were allowed to freely covary, to 

account for repeated measures effects. Additionally, the loadings of each measured variable 

onto the superseding latent variable were equated across time points.

2.4.3.3 Assessing age effects via conditional models.: Thus far, we have not tested the 

effects of age on our model. To do this, we developed a conditional version of the model 

displayed in Figure 1 above that allowed us to determine if observed relationships differed 

as a function of age. This conditional model included regression terms for the direct effect 

of (baseline) age, as well as linear (age*time) and quadratic (age2*time) interaction terms 

applied to the latent cognition and structural variables, and is otherwise identical to the 

model presented in Figure 1.

3. Results

3.1 Principal Component Analysis of Cognitive Measures.

To check whether our specification of a single general cognition variable at each time 

point was accurate, we conducted a PCA on our time-1 cognitive data which identified a 

single significant (p = .001) component that explained 52.8% of the variance in cognitive 

measures at the first assessment (see supplementary section S.1). The first component was 

comprised of all six of the cognitive measures administered (see section 2.2) with each 

contributing strongly and unidirectionally to the first component. Considering this strong 
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general component, we elected to fit all six cognitive measures to a single latent general 

cognition component in our growth models, as described above in section 2.4.3.

3.2 Missingness Analysis.

The full specifications and results of this analysis are reported in the supplementary material, 

section S2. To summarize, we found significant effects of age, β = .19, t(454) = 3.08, p 
= .002, cortical GMV, β = .22, t(454) = 3.27, p = .001, LNS, β = .1, t(454) = 2.17, p 
= .031, and VRM, β = .1, t(454) = 2.18, p = .03, on number of assessments completed 

after controlling for all other variables of interest. Importantly, all identified variables 

were positively related to number of assessments completed, meaning participants who 

were older, with greater cortical grey matter volume, and greater performance on the letter-

number sequencing and verbal recall memory measures were more likely to return for repeat 

assessments. These findings support the inclusion of participants that attrited during data 

collection, due to a systematic difference observed between the one-, two-, and three-session 

cohorts on several variables of interest. Summary statistics for each cohort can be found in 

Table 1.

3.3. Preliminary descriptive statistics.

As can be observed in Figure 2, panel A, at the first assessment, all cognitive measures 

demonstrated the expected pattern of differences between age groups, closely mirroring 

earlier cross-sectional studies of cognitive aging (e.g., Park et al., 2002). However, we note 

that in Figure 2A there is considerable separation of measures among the 20- to 29-year-old 

participants which systematically decreases with age. Grey matter volume shows a similar 

pattern of decline across age groups at the first assessment, as depicted in Figure 2, panel B, 

though this pattern is less pronounced.

Mean cognitive measures (A) and grey matter volume (B) over time are visualized in 

Figures 3 and 4, respectively. In terms of grey matter volumes, decline was observed across 

the lifespan with mean patterns being approximately linear. Participants between 20 and 39 

years of age at time of first assessment expressed steeper decline of cortical grey matter 

volume than what would be expected based on past literature (see Figure 3, panels A-D), 

although at least one study has reported a tendency for grey matter loss in the form of 

cortical thinning to slow over the adult lifespan (Rast et al., 2018). Our oldest participants 

(80+ years of age at time of first assessment) also appear to express slower decline than the 

other age bins visualized on Figure 3, particularly in the parietal and occipital lobes (panels 

B and C), though this is very likely the expression of survivorship bias as only the healthiest 

octogenarians are likely to be able volunteer for a longitudinal cognitive assessment.

In terms of cognitive measures, all examined tasks demonstrate the expected pattern of 

increasing speed of decline with age (see Figure 4), which is most pronounced in our 

working and episodic memory measures (panels C-F). Again, our oldest participants appear 

to decline slower than other groups on several of these measures, reflecting a likely 

survivorship bias in our 80+ sample.
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3.4. Univariate Growth Models.

As shown in Table 3, both general cognition and cortical grey matter were best fit by models 

that demonstrated a negative linear slope as a function of time (assessments 1–3), as well 

as significant variance in both intercept and slope. The reliable intercept variances reflect 

expected individual differences in level of cognition. The reliable slope variances suggest 

that there are measurable amounts of individual differences in rate-of-change of these two 

variables, even though the mean slopes show both variables decrease on average over time. 

The model fit to subcortical GMV also demonstrated a significant negative linear slope, but 

only demonstrated significant variance in intercept, not slopes.

Interestingly, the univariate latent growth models fit to general cognition and CGMV both 

exhibited significant intercept-slope covariance, but in opposite directions. These models 

are shown in Table 3. Specifically, the GenCog model exhibited a positive intercept-slope 

covariance, while the CGMV model demonstrated a negative intercept slope covariance. 

Individuals with higher cognitive scores at baseline declined at a slower rate on general 

cognition than did participants with a lower cognitive scores at baseline. At the same 

time, higher cortical grey matter volume at baseline was associated with steeper volumetric 

decline. This is not an unprecedented finding: Rast et al., (2018) demonstrated, in a sample 

of 249 middle-aged and older adults, a reverse quadratic function of cortical thinning across 

the cortex over 8 years of assessment, i.e. a slowing of cortical thinning over time.

Although the univariate model was unable to reliably detect variance in the slope of 

subcortical grey matter change, it is likely that this finding reflects power issue rather than 

a true lack of individual variance of that term. In order to test this, we next conducted a 

2-degrees of freedom generalized likelihood ratio test (Hertzog et al., 2008) to assess the 

power of the univariate growth model to detect variance in slope in the subcortical GMV 

dataset. This test trended towards significance, Χ2(2) = 4.76, p =.092. Considering this, we 

elected to retain the subcortical GMV variable in the full PLGC model presented below.

3.5 Parallel Latent Growth Curve Model

3.5.1 The Unconditional Model.—The parallel-process latent growth curve model 

combined the univariate growth models fit to cortical GMV, subcortical CMV, and general 

cognition and allowed those latent intercept and growth terms to be free to covary. This in 

turn allowed us to examine the degree to which change in these three variables was related 

with one another. The model demonstrated acceptable-to-good fit across all examined 

measures of fit (CFI = .91, RMSEA = .07, SRMR = .08). Factor loadings of measured 

variables to first-order latent variables in this model are reported in Table 4. Covariance 

estimates for this model are reported in Table 5. Note that this unconditional model was 

not corrected for age – age and the age*time interaction factor were accounted for in the 

Conditional model reported in section 3.5.2.

3.5.2 The Conditional Model Accounting for Age and Age*Time.—After fitting 

the unconditional parallel linear growth curve model, we next fit a conditional PLGC model 

controlled for the effects of age as well as the age*time interaction, as explained in section 

2.4.3.3. This conditional model also demonstrated acceptable-to-good fit across all examined 
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measures of fit (CFI = .91, RMSEA = .07, SRMR = .07). Covariance estimates for the 

conditional model are reported in Table 6.

3.5.3 Relation of Variables at Baseline.—Assessment of the intercept-intercept 

covariances of the PLGC model allowed us to test if our calculated latent variables were 

related at a baseline level. The latent intercepts (i.e., baseline) of all the fit growth curves 

(CGMV, SCGMV, GenCog) were strongly inter-correlated, at p’s < .001 (see Table 5). 

The relationship was positive in all cases, indicating that individuals with higher cortical/

subcortical grey matter volumes at baseline also tended to have higher cognition at baseline. 

However, these relationships dropped to non-significance after accounting for the direct 

effect of age and the age* time interaction on the latent intercepts (see Table 6), indicating 

that latent cognition, cortical GMV, and subcortical GMV are all independently related to 

participants’ Age.

3.5.4 Relation of Variables at Baseline to Rates of Change.—Assessment of the 

intercept-slope covariances of the PLGC model allowed us to test whether the examined 

variables at baseline were related to change in the examined variables over time. Looking at 

the relationship of baseline values of a given variables with rate of change of that variable, 

the within-domain intercept-slope covariances in the parallel-process model recapitulated 

those relationships seen in the univariate models. That is, latent intercept and slope of 

general cognition demonstrated a significant positive relationship (z = 3.18, p = .001) 

whereas latent intercept and slope of CGMV demonstrated a negative relationship (z = 

−3.07, p = .002). The within-domain intercept-slope covariance of subcortical GMV was not 

significant (z = 1.54, p = .12). These results indicate that a higher cognitive baseline was 

related to a slower decline in general cognition over the study, whereas a higher baseline 

cortical GMV was related to a faster decline in cortical GMV over the study. This negative 

relationship between cortical GMV baseline and rate of change persisted after controlling 

for age (z = −5.53, p <.001, see Table 6). This result suggests that the observed relationship 

is not due to aging alone, but rather that higher cortical volume baseline is associated 

with faster decline of cortical volume at any point in the adult lifespan. Interestingly, the 

intercept and slope of general cognition trended towards a significant, negative interaction 

in the conditional model as well (z = −1.93, p =.054), demonstrating that not only was the 

previously observed positive covariance a likely age effect, but that above-and-beyond age, 

cognition may show a similar pattern of increased rate of atrophy with greater initial ability. 

Considering that both cortical GMV and general cognition exhibit a negative relationship 

between baseline value and slope of change after controlling for age, this pattern of results 

may be indicative of regression to the mean.

A number of significant cross-domain relationships between baseline values and rate of 

change were also identified, all demonstrating positive associations. Specifically, the latent 

intercept of general cognition was positively related to the latent slope of subcortical GMV 

(z = 2.13, p = .033), the latent intercept of cortical GMV was positively related to the 

latent slopes of both general cognition and subcortical GMV (GenCogs z = 3.6, p <.001, 

SCGMVs z = 2.6, p = .009), and the latent intercept of subcortical GMV was positively 

related to the latent slope of cortical GMV (z = 4, p <.001). As all of these cross-domain 
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intercept-slope covariances were positive, these results indicate that in all significant cases 

higher baselines were related to slower declines in the unconditional model. However, all of 

these associations were reduced to non-significance after controlling for age and age*time 

interaction (p <= .144 in all cases, see Table 6), suggesting the latent baselines of CGMV, 

SCGMV, and general cognition were serving as a proxy for age in these relationships.

3.5.5 Slope-Slope Covariances.—Assessment of the slope-slope covariance in our 

PLGC model allowed us to test if change over time in our examined latent variables was 

related to change in any other of the examined latent variables. Pertinent to our primary 

hypothesis, change in both cortical and subcortical GMV was positively related to change 

in general cognition (CGMV z = 2.45, p = .014; SCGMV z = 2, p = .046), indicating that 

individual change in both GMV tended to align with individual change in cognition over 

the study. However, the latent slope of cortical and subcortical GMV did not significantly 

covary (z = 1.65, p = .098). The relationship between slope of general cognition and slope 

of cortical GMV remained significant even after accounting for the effects of age and the 

age*time interaction (z = 2.08, p = .038). This result supports our primary hypothesis that 

change in grey matter and change in cognition are coupled factors across the entire age 

range examined by this study.

3.5.6 Significance of Age and Age*Time Interaction Terms.—The conditional 

PLGC model allowed us both to examine relationships between latent variable in absence 

of age effects, but also to directly assess the power of age and the age*time interaction to 

explain variance in those variables. As reported on Table 6, the baseline age was found to 

significantly relate to the latent estimates of baseline cortical GMV (z = −10.12, p <.001), 

subcortical GMV (z = −8.67, p <.001), and general cognition (z = −12.59, p <.001). The 

negative direction of this association indicates a general reduction of all three capacities at 

older ages – at older ages individuals tended to have smaller (cortical and subcortical) grey 

matter volumes, and lower cognition. This age covariate was also significantly related to the 

slope of general cognition (z = −2.9, p = .004), again with a negative direction indicating 

faster loss of cognition in later life. This relationship is confirmed by the significant 

contribution of the linear and quadratic age*time interaction terms to the slope of latent 

cognition (linear z = 2.47, p = .013; quadratic z = −2.1, p = .036), indicating an increasing 

rate of cognitive decline at later ages and over time. Notably, these interaction terms did not 

significantly relate to either the latent cortical or subcortical GMV slope terms, suggesting 

that the rate of change in both grey matter measures is relatively linear throughout the 

lifespan.

4. Discussion

The major findings from this study are as follows, with each discussed below in turn: a) 

individual change in cortical and subcortical grey matter volume was reliably related to 

individual change in general cognitive performance; b) higher initial grey matter volume 

(both cortical and subcortical) and cognitive ability were associated with slower cognitive 

decline over the study period, though this effect was mitigated after accounting for age; c) 

latent general cognition demonstrated accelerated rate of decline in later life, but the latent 
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grey matter measures did not, and; d) contrary to our hypothesis, there was evidence that 

higher initial cortical grey matter volume was related to faster decline in cortical GMV.

4.1 Grey Matter Change is Reciprocally Related to Cognitive Change at the Individual 
Level.

As discussed earlier in this manuscript, there is ample evidence tying longitudinal change 

in grey matter to cognitive function (Head et al., 2008; Lagnes et al., 2020; Nickl-Jockshat 

et al., 2012; Park & Reuter-Lorenz, 2009), particularly in older adults (Fletcher et al., 

2018; Hunt et al., 2021; Vonk et al., 2022), and this relationship was replicated across the 

entire adult lifespan sample in the present study. Specifically, the parallel process model 

fit to our data demonstrated a strong, positive covariance between cognitive change over 

time and cortical grey matter volume change over time – in other words, individuals who 

lost more grey matter also lost more cognitive function. Similarly, those who declined in 

cognition showed a decrease in grey matter. Importantly, this relationship was significant 

after accounting for the effects of age, indicating that this relationship between individual-

level change in grey matter volume and cognition is exhibited regardless of age in the 

lifespan sample examined in this study. These findings add to the small body of work that 

has demonstrated that change in grey matter volume and change in cognition are related 

in samples that include middle-aged and younger adult participants (Lagnes et al., 2020; 

Persson et al., 2016; Vonk et al., 2022). This coupling of cognitive and grey matter change 

throughout the adult lifespan highlights the importance of identifying factors which may 

differentiate patterns of neurocognitive development in middle age or earlier, for the purpose 

of understanding how to engender cognitively healthy later life.

4.2 Accelerating Cognitive Decline and Stable Grey Matter Decline.

Our findings broadly replicated past findings regarding the trajectory of lifespan grey 

matter and cognitive decline (Bethlehem et al., 2022; Fjell et al., 2014, Salthouse, 2016; 

Verhaeghen & Salthouse, 1997), i.e. the rate of cognitive decline accelerated throughout the 

lifespan, while the rate of grey matter decline (both cortical and subcortical) remained linear. 

This pattern is discernible when visualizing the baseline measures used to calculate the 

latent GMV and cognitive slopes – lobular and subcortical grey matter volumes (see Figure 

2A) demonstrated a clear linear decline, while individual cognitive measures (see Figure 

2B) demonstrated varying degrees of acceleration over time. Interestingly, the four cortical 

volumes demonstrated very similar patterns of atrophy over time, validating our decision to 

use a single latent measure of aggregate cortical volume, and replicating previous findings 

suggesting that a widely-expressed mechanism of cortical atrophy is impactful on later life 

cognitive decline (Cox et al., 2021; Fletcher et al., 2018). This pattern of results, coupled 

with the significant relationship between cortical and cognitive change observed across all 

ages in this study, indicates that older adults are exhibiting relatively more cognitive change 

than younger adults coupled with an equivalent change in cortical GMV. While we did not 

directly assess directionality of these effects in our analysis, a possible interpretation of these 

results is that equivalent cortical atrophy has a larger effect on the cognitive ability of older 

adults compared to the cognitive ability of younger adults, if a grey matter -> cognition 

directional effect is assumed.
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4.3 The Paradoxical Relationship of Cortical Volume to Cortical Atrophy and Cognitive 
Decline.

Somewhat unexpectedly, baseline cortical grey matter volume demonstrated opposite effects 

on the rate of cortical GMV and rate of cognitive decline – higher baseline cortical GMV 

was related to slower rates of cognitive decline, but faster rates of decline in cortical 

GMV over time at the individual level. This counterintuitive relationship between baseline 

cortical GMV and rate of cortical change is not entirely without precedent. As mentioned 

above, Rast et al. (2018) found a similar pattern of results to what the present study 

presents. Specifically, Rast et al. found that the rate of decline in cortical thickness was 

slowed throughout the observation period (~7 years) in all regions of interest examined in a 

middle-aged and older cohort. This pattern of slowing decline followed an inverse quadratic 

function, so that an individual with higher cortical thickness at any given time point was 

likely to express a greater rate of thickness loss – highly similar to the pattern we see in 

the present study. However, if this pattern was expressed universally in our sample, we 

would expect younger adults on average to decline more rapidly than older adults over the 

same span of time (considering the higher individual GMV of younger adults than older, 

on average). The lack of a significant age or age*time effect on the slope of cortical GMV 

loss suggests that this is not the case – on average, the rate of cortical GMV loss appears 

to be stable across the adult lifespan, while at the individual level higher baseline cortical 

GMV is related to faster atrophy. A parsimonious explanation of such a finding would be 

regression towards the mean – a pattern of extreme scores falling closer to the group average 

at later assessments could lead to this pattern of a greater negative slope of CGMV change 

associated with higher baseline values. This finding will need to be replicated to verify that 

it is reliable.

Conversely, higher baseline cortical GMV was related to a slower rate of cognitive decline 

in the unconditional PLGC model. While this relationship might be interpreted as some sort 

of protective factor, the effect was entirely accounted for after including the age covariate in 

the conditional PLGC model. Therefore, this relationship is likely age-mediated – younger 

participants tended to have higher cortical grey matter volume coupled with slower cognitive 

decline.

4.4 Contribution of Measured to Latent Variables

A key benefit of using the parallel process models implemented above, aside from allowing 

us to examine patterns of covariance among our variables of interest, is that it allowed us to 

assess the relative contribution of our measured variables to the latent variables calculated 

in the model. In terms of cognitive measures, the two included measures of processing 

speed (Digit Comparison and DSST) had relatively stronger contribution to the calculated 

latent cognition variable than did any of our other cognitive measures (β = ~1.1 vs β 
= ~.7, see Table 4). This is an interesting finding in light of the known sensitivity of 

processing speed measures to age-related cognitive decline (Salthouse, 1996). However, the 

significant contribution of all six measures to the latent cognition construct suggest that what 

we are capturing in the present study is indeed a broad cognitive construct, rather than a 

speed-dominated one.
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In terms of cortical grey matter measures, occipital volume was found to be 

underrepresented in the latent cortical volume construct compared to volume of the other 

three lobes (β = ~.7 vs β = ~1). This relative lack of contribution of the occipital lobe to 

the latent cortical grey matter construct may be a reflection of relatively little variance over 

time in occipital regions of the brain, as has been documented by earlier studies (Raz et al., 

2005; Raz & Kennedy, 2009), though note that occipital volume in our sample does express 

decline over time (see Figure 1, panel D and Table 1). Occipital volume did significantly 

contribute to the cortical GMV construct despite this relatively lower weighting, indicating 

a reduced but still present contribution of occipital volume variance to the latent cortical 

variable examined in the model above.

4.5 Implications for Theories of Cognitive Aging

The key finding of this paper is that the processes of cortical grey matter loss and cognitive 

decline are coupled on an individual level, not just in later life but across the adult lifespan. 

The implication of this finding is that the processes which serve to differentiate individual 

patterns of neurocognitive decline are similarly operating throughout the lifespan. Aging 

research has been incrementally bolstering our understanding of the nature of cognitive 

and structural change in midlife and earlier, and the results of the present study further 

emphasize the importance of understanding cognitive and brain aging as a lifelong process, 

where earlier deviations in cognitive and brain health may very well have downstream 

consequences on cognitive performance in later age.

We note that the findings are partially supportive of the Scaffolding Theory of Aging 

and Cognition (STAC) proposed by Park and Reuter-Lorenz (2009) and revised by Reuter-

Lorenz and Park (2014). The model proposes that the cognitive and structural decline 

observed exhibit bidirectional influences which serve to differentiate induvial patterns 

of decline – structural and functional alterations lead to age-related cognitive decline, 

while scaffolding processes operating in the functional (i.e., compensatory recruitment), 

structural (i.e., neurogenesis), and cognitive (i.e., learning, strategy adoption) domains work 

to counteract this decline. The revised STAC model presented in 2014 (Reuter-Lorenz 

& Park, 2014) further posits that these opposing enrichment and depletion processes are 

lifespan processes, rather than only impactful in later life. The findings of the present 

study validate specifically the individual coupling of structural and cognitive change factors 

proposed by the STAC model, as well as that this relationship is relevant throughout the 

adult lifespan. Importantly, the present study does not allow us to disambiguate between 

compensatory and decline processes – the covariance of individual rates of cortical and 

cognitive change supports that these processes are reciprocally linked, but this does not 

grant us any insight onto the specific mechanisms influencing individual patterns of decline. 

These mechanisms are in all likelihood heterogeneous between individuals – one participant 

showing a slow rate of decline may be engaging in successful scaffolding procedures, 

while another might experience slower rates of neurocognitive change due to preexisting 

(genetic/environmental) advantages, for example. Further study is needed to disambiguate 

these competing influences on neurocognitive decline processes.
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4.6 Limitations and Future Directions

As with any study, the present results should be interpreted with consideration of its 

limitations. First, retention was found to be related to higher cognitive performance and 

more robust grey matter at baseline assessment across nearly all measures examined (see 

Table 1 and supplementary section S.2), indicating that cognitively healthier individuals with 

more baseline grey matter were more likely to return for following assessments. Practically, 

this means that we have, in all likelihood, underestimated the rate of both cognitive and 

structural decline observed in this study, as only those individuals who expressed less 

decline in either or both categories returned for follow-up assessments. This implies that our 

results are most generalizable to a healthier sample. This is not an unprecedented finding 

(Rast et al., 2018; Salthouse, 2014), and indeed this self-selection of healthier retained 

participants is a confound relevant to most if not all longitudinal studies in the field. A 

second limitation is that, despite the large sample size, our model was sufficiently complex 

to preclude statistically powerful investigation of subgroup effects within this model, which 

inhibited our ability to examine specific effects. We can best address this issue by designing 

simpler models with lower power requirements than the present model, although the models 

will likely have lower correspondence to actual brain/behavior relationships than the present 

more complex model does. A promising approach to solving the power problem will be to 

adopt a large, collaborative effort to aggregate MRI data from multiple such longitudinal 

studies of cognitive aging, as Bethlehem et al., 2022 did. Overcoming recruitment and 

retention hurdles is a perennial challenge in longitudinal research, and while large efforts 

such as the DLBS and many others have succeeded in creating usable datasets that have 

produced insightful results, the limitations of the present paper are representative of the 

limitations that most such studies face.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Individual change in grey matter volume was related to change in general 

cognition.

• Higher grey matter volume and cognition were related to slower cognitive 

decline.

• General cognition demonstrated accelerated rate of decline in later life.

• Grey matter demonstrated a constant rate of decline across all age ranges.
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Figure 1. Measurement Diagram for Parallel Latent Growth Curve Model.
Sections A, B, C, and D, represent cortical grey matter (CGMV), subcortical grey matter 

(SCGMV), general cognition (GenCog/GC), and individual cognitive tasks, respectively. 

Subscripts a1-a3 refer to measures taken at assessment 1, 2, or 3, respectively. Subscripts 

s and i refer to latent slopes and intercepts, respectively. FG = Frontal Grey Matter Volume/

FGMV; PG = Parietal Grey Matter Volume/PGMV; OG = Occipital Grey Matter Volume/

OGMV; TG = Temporal Grey Matter Volume/TGMV; GC = General Cognition/GenCog; S1 

= Digit Comparison; S2 = DSST; W1 = Letter-Number Sequencing; W2 = Spatial Working 

memory; E1 = Verbal Recall Memory; E2 = Hopkins Memory/HVLT.
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Figure 2. Cognitive and Structural Measures by Decade of Life, as Measured at First 
Assessment.
Cognitive (A) and structural (B) measures as assessed at Assessment time 1. All measures 

presented in normalized units (Z). Measures visualized on panel A include the digit 

comparison task (DComp), Digit-Symbol Substitution Test (DSST), Spatial Working 

Memory (SWM), Letter-Number Sequencing (LNS), Visual Recall Memory (VRM), and 

Hopkins Verbal Learning Test/HVLT (Hopkins). Measures visualize on panel B include 

standardized grey matter volume estimates of the frontal lobe (FGMV), parietal lobe 
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(PGMV), temporal lobe (TGMV), occipital lobe (OGMV), and aggregate subcortical grey 

matter volume (SCGMV).
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Figure 3. Grey Matter Volume by Age (Years).
Frontal (A), parietal (B), occipital (C), temporal (D), and subcortical (E) grey matter volume 

over time and across age. Trend-lines represent mean value over time with 95% confidence 

intervals for each of the following age bins: 20–39, 40–59, 60–79, and 80+ years (age at first 

assessment). Age bins are for illustrative purposes only and were not utilized in analysis.

Smith et al. Page 25

Neurobiol Aging. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Cognitive Measures by Age (Years).
Digit Comparison (A), DSST (B), Letter-Number Sequencing (C), Spatial Working Memory 

(D), and Verbal Recall Memory (E), and HVLT (F) standardized performance over time 

and across age. Trend-lines represent mean value over time with 95% confidence intervals 

for each of the following age bins: 20–39, 40–59, 60–79, and 80+ years (age at first 

assessment). Age bins are for illustrative purposes only and were not utilized in analysis.
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Table 1

Summary of Demographic Characteristics and Volumetric Measures for the Sample, Grouped by Total 

Number of Assessments Completed.

All Participants Single Assessment Only Two Total Assessments Three Total Assessments F p

N 463 155 133 175 - -

Age 58.24 (18.12) 60.45 (19.4) 59.09 (18.13) 55.65 (16.68) 3.12 .045

Female % 62% 57% 66% 63% 1.46 .233

Education (years) 15.75 (2.41) 15.35 (2.62) 15.65 (2.45) 16.18 (2.1) 5.07 .007

MMSE 28.33 (1.8) 28.07 (2.6) 28.29 (1.3) 28.58 (1.15) 3.37 .035

Years in Study - - 4.83 (2.45) 8.51 (1.82) - -

Frontal GMV 178×103 (25×103) 174×103 (25×103) 177×103 (26×103) 183×103 (23×103) 5.05 .007

Parietal GMV 119×103 (16×103) 117×103 (17×103) 119×103 (17×103) 122×103 (14×103) 4.14 .017

Temporal GMV 99×103 (13×103) 96×103 (14×103) 98×103 (14×103) 101×103 (12×103) 5.42 .005

Occipital GMV 42×103 (6×103) 41×103 (6×103) 42×103 (7×103) 43×103 (6×103) 4.49 .012

Subcort. GMV 56×103 (7×103) 51×103 (7×103) 56×103 (6×103) 57×103 (6×103) 2.75 .065

DComp .06 (.96) −.08 (1.01) −.01 (1.1) .25 (.83) 5.28 .005

DSST .1 (.97) −.09 (.97) 0 (1.03) .36 (.87) 10.12 <.001

SWM −.05 (1) −.15 (1.02) .22 (1.02) .15 (.93) 6.12 .02

LNS 0 (.99) −.19 (.88) −.15 (.99) .28 (1.03) 11.92 <.001

VRM 0 (.93) −.19 (.91) −.12 (.87) .26 (.95) 11.12 <.001

HVLT .02 (.97) −.16 (.96) −.08 (.94) .25 (.98) 8.66 <.001

Note. Columns summarize participant groups based on total number of assessments completed. All measures are as recorded at assessment one. 

Age is presented in years. Cortical and subcortical grey matter volumes (GMV), are presented in cubic millimeters (mm3). Cognitive assessments 
(including DComp/digit comparison test, DSST/digit symbol substitution test, SWM/spatial working memory test, LNS/letter-number sequencing 
test and HVLT/Hopkins verbal learning test) are presented in z-score units. Standard deviations are in parentheses. MMSE = Mini-Mental State 
Exam.
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Table 3

Parameter Estimates for Univariate Growth Models

General Cognition CGMV SCGMV

β (SE) p β (SE) p β (SE) p

Mean 

 Intercept .05 (.04) .176 .18 (.05) <.001 .09 (.05) .04

 Slope −.16 (.02) <.001 −.35 (.02) <.001 −.2 (.02) <.001

Variance 

 Intercept .61 (.06) <.001 1.01 (.07) <.001 .88 (.06) <.001

 Slope .03 (.01) <.001 .07 (.01) <.001 .011 (.01) .169

Covariance 

 Int. by Slope .04 (.01) .004 −.05 (.02) .002 .02 (.02) .314
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Table 4

Contribution of Measured Variables to First-Order Latent Variables

General Cognition measured variables 

β SE z p 

DComp 1 - - -

DSST 1.1 .04 26.64 <.001

SWM .76 .05 15.37 <.001

LNS .77 .05 15.79 <.001

VRM .66 .05 13.63 <.001

HVLT .67 .05 14.05 <.001

Cortical Grey Matter Volume measured variables 

β SE Z p 

Frontal GMV 1 - - -

Parietal GMV .95 .01 70.03 <.001

Temporal GMV .98 .01 67.95 <.001

Occipital GMV .78 .02 37.74 <.001

Note. First-order latent variables were calculated for both general cognition and cortical grey matter volume at each assessment. Factor 
contributions were constrained to be equal across waves.
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Table 5

Parameter Estimates Describing Parallel Growth in Cortical GMV, Subcortical GMV, and General Cognition

Within-Domain Covariances

β SE z p 

GenCogi with GenCogs .04 .01 3.18 .001

CGMVi with CGMVs −.05 .02 −3.07 .002

SCGMVi with SCGMVs .03 .02 1.54 .124

Intercept-Intercept Covariances 

β SE Z p 

GenCogi with CGMVi .4 .05 8.79 <.001

GenCogi with SCGMVi .34 .04 8.02 <.001

CGMVi with SCGMVi .77 .06 13.11 <.001

Cross-Domain Intercept-Slope Covariances 

β SE Z p 

GenCogi with CGMVs .02 .01 1.77 .076

GenCogi with SCGMVs .03 .02 2.13 .033

CGMVi with GenCogs .06 .02 3.6 <.001

CGMVi with SCGMVs .05 .02 2.6 .009

SCGMVi with GenCogs .06 .01 4 <.001

SCGMVi with CGMVs .002 .02 .12 .902

Slope-Slope Covariances 

β SE z p 

GenCogs with CGMVs .01 .004 2.45 .014

GenCogs with SCGMVs .01 .004 2 .046

CGMVs with SCGMVs .01 .01 1.65 .098
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Table 6

Parameter Estimates Describing Parallel Growth Model After Accounting for Age and Age by Time 

Interaction.

Within-Domain Covariances

β SE z p 

GenCogi with GenCogs −.02 0.01 −1.93 0.054

CGMVi with CGMVs −.07 0.01 −5.53 <.001

SCGMVi with SCGMVs ~0 0.01 −0.04 0.971

Intercept-Intercept Covariances 

β SE Z p 

GenCogi with CGMVi .02 .02 .993 .321

GenCogi with SCGMVi −.01 .02 −.319 .75

CGMVi with SCGMVi .002 .01 .188 .851

Cross-Domain Intercept-Slope Covariances 

β SE Z p 

GenCogi with CGMVs .003 .01 .35 .724

GenCogi with SCGMVs .01 .01 .5 .616

CGMVi with GenCogs −.003 .01 −.25 .802

CGMVi with SCGMVs .02 .01 1.46 .144

SCGMVi with GenCogs .002 .01 .19 .851

SCGMVi with CGMVs −.02 .01 −1.5 .134

Slope-Slope Covariances 

β SE z p 

GenCogs with CGMVs .01 .004 2.08 .038

GenCogs with SCGMVs .01 .004 1.27 .203

CGMVs with SCGMVs .02 .013 1.46 .144

Regression Coefficients 

β SE z p 

Age ~ GenCogi −.65 .05 −12.59 <.001

Age ~ GenCogs −.08 .03 −2.9 .004

Age~ CGMVi −.67 .07 −10.12 <.001

Age~ CGMVs −.04 .03 −1.35 .177

Age~ SCGMVi −.57 .07 −8.67 <.001

Age~ SCGMVs −.05 .04 −1.32 .186

Age*Time ~ GenCogi .02 .03 0.61 .54

Age*Time ~ GenCogs .15 .06 2.47 .013

Neurobiol Aging. Author manuscript; available in PMC 2024 September 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Smith et al. Page 32

Age*Time ~ CGMVi .04 .04 1.09 .275

Age*Time ~ CGMVs .01 .04 .35 .729

Age*Time ~ SCGMVi .01 .04 .34 .736

Age*Time ~ SCGMVs .06 .04 1.61 .107

Age2*Time ~ GenCogi .06 .04 1.58 .115

Age2*Time ~ GenCogs −.13 .06 −2.1 .036

Age2*Time ~ CGMVi .06 .05 1.22 .223

Age2*Time ~ CGMVs −.01 .05 −.11 .913

Age2*Time ~ SCGMVi .002 .05 .036 .971

Age2*Time ~ SCGMVs −.05 .04 −1.03 .305
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