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Summary

Human T cells have a diverse T cell receptor (TCR) repertoire that endows them with the ability 

to identify and defend against a broad spectrum of antigens. The universe of possible antigens 

that T cells may encounter, however, is even larger. To effectively surveil such a vast universe, 

the T cell repertoire must adopt a high degree of cross-reactivity. Likewise, antigen-specific and 

cross-reactive T cell responses play pivotal roles in both protective and pathological immune 

responses in numerous diseases. In this review, we explore the implications of these antigen-driven 

T cell responses, with a particular focus on CD8+ T cells, using infection, neurodegeneration, 

and cancer as examples. We also summarize recent technological advances that facilitate high-

throughput profiling of antigen-specific and cross-reactive T cell responses experimentally, as well 

as computational biology approaches that predict these interactions.
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TCR repertoire size, T cell number, and antigen space

The discovery of TCR genes almost 40 years ago marks the beginning of an exciting era in 

immunology1,2. Using V(D)J recombination, human T cells generate an enormously large 

repertoire of T cell antigen receptors (TCR). The estimated potential diversity could be in 

the range of 2×1019 unique receptors,3,4 orders of magnitude larger than the TCR repertoire 

of any individual. Jenkin et al5, did an exhaustive count of naïve T cells in mice, estimating 

that an adult mouse has about 8×107 α/β TCR+ T cells in the secondary lymphoid 

organs and another 5×106 in the blood. Of these, about 70% of the cells are of a naïve 
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phenotype 5. Thus, about 2.6×107 non-naïve T cells exist in secondary lymphoid organs 

and blood of healthy mice under specific pathogen-free conditions. Tissue resident memory 

T cells constitute a major population in both mice and humans6,7. Using a quantitative 

immunofluorescence microscopy8 strategy to analyze the distribution of CD8 T cells in 

a TCR (P14) transgenic mouse 120–150 days after LCMV infection, it was estimated 

that about 43% of the memory P14 pool was localized in secondary lymphoid organs, 

29% in circulating blood and marginated pool (including i.v. Ab+ cells from all tissues 

examined), and 28% in nonlymphoid tissues (including i.v. Ab− cells within liver, lung, 

kidney, pancreas, salivary gland, uterus, vagina and cervix, small intestine, large intestine, 

stomach, and thymus). Combining these two pieces of information and taking 2:1 for CD4 

to CD8 T cell ratio, there are about 0.9×107 T cells in nonlymphoid tissues. This puts the 

total number of T cells in a mouse to be around 9.4×107. By extrapolation based on body 

weight, an adult human has about 4.7×1011 T cells, which is in the same order of magnitude 

estimated by human T cell weight9,10.

Don Mason showed an elegant derivation of the size of potential antigen space by 

considering the fraction of possible peptide binding to MHC11. But even a conservative 

estimate of 12 amino acids in peptide length and 20 possible amino acids in each position 

puts a rough estimate of the potential antigen space to 4.1×1015. This is about four orders of 

magnitude larger than the total number of T cells in a human. Thus, in order to avoid holes 

in TCR coverage, an individual T cell must recognize at least 10,000 antigens. The degree 

of cross-reactivity is likely to increase as the T cell clonal expansion significantly reduces 

the number of TCR diversity in the total number of T cells each individual harbors12–18. 

Another complexity is that single antigens are recognized by polyclonal T cells. It is 

extremely inefficient for each antigen to be recognized by only one cell as studies in mice 

and humans in both CD4 and CD8 T cell compartments12–18 have shown that precursor T 

cell frequency is about 1 in 105 to 1 in 106.

As a result, the interactions between a TCR repertoire and the antigen space can be 

described as a complex and dynamic mesh network, where multiple TCRs can recognize 

a single antigen and multiple antigens can be recognized by a single TCR. The interactions 

between TCRs and antigens in a given context greatly impact how T cells surveil, 

contribute to disease protection, or become dysregulated in disease. Exploring examples 

from TCR-antigen interaction across infection, neurodegeneration, and cancer highlights 

the complexity and importance of understanding the context-dependent antigen specific 

and cross-reactive T cell response. Therefore, this review will cover data published across 

these fields to explore: (1) Methodologies to identify antigen-specific T cells and their 

fundamental properties such as TCR affinity and functionality; (2) Examples of variable 

antigen-specific and cross-reactive T cell responses in infection, neurodegeneration, and 

cancer; (3) Computational approaches in TCR-antigen binding prediction; (4) An outlook of 

experimental and computational needs to facilitate TCR-antigen discovery.

Technologies in peptide antigen and antigen-specific TCR discovery

Since the paradigm-shifting finding that TCR recognizes peptides presented by MHCs19–26, 

there has been a widespread interest to identify peptide antigens and their cognate T 
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cells. This effort has been facilitated by the development of mass spectrometry27. Mass-

spectrometry-based immunopeptidomics has also enabled the discovery of noncanonical 

antigens28—antigens derived from sequences outside protein-coding regions, such as cryptic 

peptide discovered in neurodegenerative diseases and cancer (see below), or generated 

by noncanonical antigen-processing mechanisms, such as some of the cancer antigens 

(see below) or fusion peptides, such as those discovered in type 1 diabetes29. Recently, 

tremendous advances have been made in resolving proteins in a small number of cells. 

Multiple improvements have been made to increase the sensitivity and throughput of 

single cell proteome measurement30. At the same time, various technologies have been 

developed for single-molecule protein sequencing31. These technological advancements 

will undoubtedly change the landscape of antigen discovery. On the other side, many 

approaches to exchange peptides bound to MHC molecules have been developed32–36 as 

well as higher valency of peptide-MHC (pMHC) multimers37,38 and affinity matured MHC-

II molecules39,40 to enhance the binding to lower affinity TCRs, especially on CD4+ T cells. 

Combining technologies from these areas will open many possibilities of high-throughput 

antigen-specific and cross-reactive TCR discovery in future studies.

There are two main categories of methods for antigen-specific TCR discoveries: pMHC 

multimer binding based and functional test based. In the last decade, significant progress 

was made in both categories and was comprehensively summarized in a recent review by 

Joglekar et al41. The application of some of these methods is discussed throughout the 

current review. Recently, there are additional technologies developed in pairing TCR with 

antigens. Dahotre et al42 developed a droplet digital PCR based method to count DNA 

barcoded pMHC bound on T cells, which could be more accurate in numerating antigen 

specific T cells than sequencing-based methods. Ma et al43 combined DNA-barcoded pMHC 

tetramer linked TCR sequencing with single cell gene expression and DNA-barcoded 

phenotyping antibodies to develop a multi-dimensional integrated profiling of antigen-

specific T cells, named TetTCR-SeqHD. TetTCR-SeqHD enables the direct profiling of 

phenotypes and functional states of antigen specific T cells without any stimulation, which is 

critical in studying the roles of antigen specific T cells to disease initiation and pathogenesis. 

Liu et al44 developed a FucoID method that uses glycosyltransferase-mediated tagging to 

label and capture antigen-specific T cells in a cell interaction-dependent manner. Using an 

updated in vitro T cell expansion method, Arnaud et al45 developed NeoScreen to increase 

the efficiency of in vitro expansion of cancer antigen specific T cells infiltrated to tumor. 

This, in combination with the above technologies mentioned, could significantly increase 

cancer antigen specific TCR discovery. V-CARMA46 and ENTER47 represent another group 

of methods recently developed that take advantage of lentiviral-based display and delivery 

platform to identify and isolate antigen-specific T cells, and deliver cell-specific genetic 

cargo at the same time. Although the throughput of generating pMHC expressing viral 

particles is still limited, V-CARMA and ENTER are great methods to deliver cargo to T 

cells in an antigen-specific manner.

In addition to chemical interactions, mechanical interactions among macromolecules have 

emerged as another modality that impacts receptor-ligand interactions. A classic example 

can be found within adhesion molecules, such as selectins and integrins, that need to 

overcome sheer stress when helping leukocytes exit blood vessels. Initial increase of force 
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results in an increase of bond lifetime between adhesion molecules and their ligands (catch 

phase). However, further increase of force results in a decrease of bond lifetime between 

adhesion molecules and their ligand (slip phase). Thus, the molecular interactions that 

contain both catch phase and slip phase are known as “catch bonds”, while the molecular 

interactions that contain only the slip phase are known as “slip bonds”. Slip bonds48 and 

catch bonds49 were predicted theoretically in 1978 and 1988, respectively. Although slip 

bonds were detected in many molecules, the catch bond was only first detected by Cheng 

Zhu’s lab in 2003 in selectins50 then again in integrins51 when bond lifetime measurements 

were developed and implemented. Later, it was demonstrated that TCRs also exhibit a 

catch-bond property when interacting with agonist and partial agonist ligands, but exhibit 

slip bonds when interacting with antagonist and weak agonist ligands52. Recently, it was 

shown that catch bonds could be used to distinguish specific antigens from cross-reactive 

antigens53 (see below). Thus, catch bond analysis could be integrated into TCR based 

therapeutic development.

Large scale of epitope screens on pathogens

Understanding the epitopes that T cells target during infection and vaccination is of great 

value to understanding the T cell responses and designing better vaccines. Using a variety 

of approaches, including multiplexing pMHC multimers with flow cytometry54, mass 

cytometry55–57 or NGS58 as readouts, immunopeptidomics59, activation-induction60–63, 

antigen presentation array-based64 assays, and others reviewed recently41, a litany of T 

cell targets to a variety of pathogens have been unveiled. These types of screens have laid 

the groundwork to deepen our understanding of the principles that govern TCR:pMHC 

interactions, the phenotypes that ensue, and how to intervene in order to induce more 

favorable outcomes.

SARS-2 and hCOVs/pre-existing immunity

One perplexing aspect of COVID-19 is the wide variability in disease severity. An early 

hypothesis was that memory specific to other coronaviruses that cause the common cold 

(hCOVs) could cross-react to SARS-CoV-2 and provide some protection. Early investigation 

of infections in healthcare workers revealed that individuals with abortive seronegative 

SARS-CoV-2 titers exhibited an expansion of pre-existing SARS-CoV-2 specific T cells in 

the blood65. A later study built on this rationale, finding T cells specific to the same antigens 

in the airways of pre-pandemic samples that correlated to the response to corresponding 

hCOV antigens66.

Several other studies have also corroborated the existence of pre-existing T cell immunity 

in the blood. Using both pMHC tetramer and stimulation-based assays, several groups have 

observed non-naïve, spike and non-spike specific T cells in the blood of pre-pandemic 

individuals over several HLA backgrounds67–69. These SARS-CoV-2 specific cells were 

often of an effector memory phenotype and could exhibit T cell effector functions, 

suggesting a potential capacity to play a role during infection. In one of these studies, 

Schulian, et al also showed that these cross-reactive TCRs were of comparable affinity to 

SARS-CoV-2 and hCOV specific TCRs. Using flow cytometry70 and single cell sequencing-
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based tetramer approaches58, two independent studies revealed that the degree of pre-

existing cross-reactivity was dependent on the HLA background. Both studies implicate 

a nucleocapsid protein-derived, HLA-B*07:02-restricted (B7/NP105) epitope as highly 

dominant, eliciting expanded T cells in both pre-existing and post-infection repertoires 

(Table 1). Interestingly, both studies report a limited number of shared TCR features across 

donors compared to other SARS-CoV-2 epitopes, underpinned by distinct V/J gene usage 

and promiscuous α/β chain pairing. Nguyen et al70 also observed differences in the number 

of N-insertions in the CDR3s of pre-pandemic versus post-infection TCRs specific to B7/

NP105, suggesting differential pressures on the repertoires before and after COVID-19.

Given that B7/NP105 is only a single amino acid point mutation from other beta 

coronaviruses, it is possible that differences in the antigen presentation capacity of different 

HLA backgrounds may dictate the degree of pre-existing immunity, thereby impacting 

disease severity. In fact, another large study found an association between mild disease 

and a B7/NP105 response71. In addition to observing usage of pre-existing immunity, high 

functional avidity, and effector functions, the authors also reported stronger maintenance 

of memory in convalescence compared to other epitopes. Possibly related to the abortive 

seronegative healthcare workers described early in the pandemic65, Kendu et al reported a 

larger number of IL2-secreting nucleocapsid specific T cells in individuals before and after 

close contact COVID-19 exposures who remained PCR-negative versus those who tested 

positive72. Although the authors did not test a direct relationship with HLA background, it is 

possible that some of the protection provided in their study was due to a strong response by 

pre-existing B7/NP105 specific T cells. It is thus possible that prior stimulation through prior 

encounters with hCOVs causes B7/NP105 specific cells to engage in a more robust secondary 

immune response and long-lived phenotypic state. Furthermore, Nguyen et al also showed 

that B7/NP105 specific T cells can respond to the variants of concern (VOCs) at the time 

(Alpha, Beta, Gamma, Delta), suggesting a capacity to continue providing protection under 

the selective pressure of a mutating virus70.

Cross-reactivity between SARS-CoV-2 and persistent viruses

Several risk factors have emerged as predictors of developing severe COVID-19. HIV 

infection73, cancer74, Type 1 and 2 Diabetes75, age76, and obesity77 are some of many 

pre-dispositions associated with cases of severe COVID-19. One less clear, yet interesting, 

example of COVID-19 comorbidity is infection with persistent viruses. Persistent viral 

infections, such as Epstein-Barr virus (EBV) and cytomegalovirus (CMV), are common in 

the population. In health they generally pose no threat, but in the immunocompromised and 

in infants they can present serious problems78,79. Infection with persistent viruses have also 

been linked to autoimmune diseases, such as multiple sclerosis80,81, revealing their capacity 

to elicit aberrant immune programs. The specific mechanisms of the observed immune 

aberrancy, however, remains unclear.

Infection with persistent viruses has also been linked to broad phenotypic changes in T 

cells82,83. It is well established that CMV infection decreases the naïve T cell repertoire, 

as well as increases senescent memory cells, which has been reviewed extensively84. 

These senescent memory cells often have an impaired ability to divide upon stimulation. 
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Interestingly, these broad phenotype changes have often been paralleled to changes that 

accumulate with age. In COVID-19, CMV infection has been highlighted as a potential 

risk factor for developing severe disease, specifically in non-geriatric patients (< 60 

years)85. Such a phenomenon may be a consequence of CMV’s imprinting of an aged-

like repertoire on younger immune systems. Interestingly, an independent study observed 

CD4+ and CD8+ T cells that could cross-react with both CMV and SARS-CoV-2 epitopes 

in SARS-CoV-2 unexposed individuals86. The authors also specifically delineated HLA-

B*35:01-restricted CD8+ T cells binding to CMV pp65 and SARS-CoV-2 Spike epitopes in 

multiple individuals, rooted in a public TCR. Although the peptides share little homogeny 

(22%, Table 1), in silico structure analysis revealed a similar backbone conformation may 

be adopted in both pMHC structures. These cross-reactive T cells generally took either 

effector memory (EM) or effector memory RA (EMRA) phenotypes but did not activate 

during acute COVID-19. It is possible that these cross-reactive T cells bear a degree of 

immune senescence imparted by CMV infection that prevents them from participating in 

clearance of SARS-CoV-2. In support of this paradigm, another study observed a higher 

number of CD57+ (a marker indicative of cellular senescence in CD8+ T cells87) precursor 

SARS-CoV-2 specific CD8+ T cells in unexposed CMV seropositive versus seronegative 

individuals, mirroring that of the aged immune system88. A deeper understanding of how 

persistent viruses affect independent immune responses mechanistically could lead to better 

therapeutic interventions in cases of comorbidities.

T cell immunity to viral mutagenesis

Preservation of immunity to mutating viral strains is of great concern in vaccinology. 

Accumulation of mutations that abrogate binding of the repertoire can significantly cripple 

a vaccine’s effectiveness. A recent update in COVD-19 mRNA vaccines toward a bivalent 

formulation, containing both ancestral and omicron strains, is one such example that has 

been used in attempts to combat a drifting virus. Another prominent example is that of 

influenza vaccination, which requires annual updates to keep pace with a rapidly mutating 

virus. Due to the extensive length of production time in manufacturing seasonal influenza 

vaccines, variability in mutation predictions can lead to a wide range in efficacy. These 

inconsistencies highlight a critical need to deepen our knowledge of the immune response to 

mutagenesis. On the other end of the spectrum, HIV mutates at such a rapid rate that even 

seasonal vaccine updates would not be feasible. Such a phenomenon is one of the reasons 

that has made design of effective HIV vaccines an immense challenge. The following 

section will discuss mutation rates in SARS-CoV-2, influenza, and HIV and some of their 

immunological consequences.

Tracking propagation of mutations within the SARS-CoV-2 genome has thus been of 

great concern since its emergence in 2019. Due to proofreading machinery, SARS-CoV-2 

accumulates mutations at a modest rate relative to other viruses – roughly 10−5 to 10−3 

substitutions per base per infection cycle92. The sheer number of infections in the population 

(>760 million confirmed cases globally as of March 2023 according to the WHO health 

Emergency Dashboard); however, has led to many opportunities for the virus to mutate. 

As such, several variants of concern (VOCs) have emerged, often followed by cycles of 

increased infection rates. Several studies characterizing vaccine-induced antibody responses 
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and therapeutic monoclonal antibodies have revealed a significant reduction in neutralization 

toward most VOCs, particularly toward the more recent Omicron lineages93,94. Newer 

bivalent formulations of the vaccine, which include Omicron spike glycoprotein-encoding 

mRNA, also do not appear to improve antibody neutralization compared to the old 

formulation95,96. In contrast, T cell immunity has been revealed to remain durable against 

Omicron lineages97–99, even contributing to preventing infection in some cases100.

A lack of mutations on immundominant epitopes may be a substantial reason that the 

T cell response to SARS-CoV-2 remains durable. To date, only five of the top twenty 

most cited immune epitope database (IEDB)101 SARS-CoV-2 spike-derived epitopes have 

been mutated in any dominant lineage – most of which are single amino acid point 

mutations. Building on this paradigm, a recent study revealed that a strong T cell response 

to these unmutated, immunodominant epitopes was associated with milder COVID-1938. 

One specific example of a mutated SARS-CoV-2 immunodominant epitope, however, is 

an HLA-A*24:02-restricted (A24/S448) epitope. In Delta and BA.4/5 lineages, an L452R 

substitution has been shown to increase infectivity89 (Table 1). Furthermore, CD8+ T cells 

from vaccinated donors respond poorly to the mutated epitope, suggesting lack of consistent 

cross-reactivity in the vaccine-induced repertoire102. It is thus possible that if SARS-CoV-2 

continues to accumulate mutations, new variants will emerge that will not be durably 

cross-protected by previous T cell immunity.

Mutations in influenza A virus (IAV) are also a major concern. Although a CD8+ T cell 

response is not generally elicited by seasonal influenza vaccination, universal T cell epitopes 

have been characterized through immunopeptidomics59. Furthermore, as with SARS-CoV-2, 

T cell contribution during IAV infection is an important aspect of viral clearance103. T cells 

cross-reactive to several IAV strains have also been characterized structurally and via flow 

cytometry90 (Table 1), revealing a structural conservation of pMHC amongst the variants 

that likely underpins the high degree of observed cross-reactivity in the repertoire. Such a 

finding supports the argument for T cell consideration in seasonal influenza vaccination. 

In fact, significant effort has been directed toward the development of universal flu 

vaccines that could provide an immunological safeguard in the event of vaccine mismatches. 

Several clinical and pre-clinical studies involving T cell-based influenza vaccines have been 

reviewed recently104. Wide-spread implementation of safe and effective versions of these 

vaccines could lead to dramatic changes in the way we develop and think about vaccinology 

in general.

Even more so than SARS-CoV-2 and influenza, HIV provides an example that has been 

immensely challenging to design effective vaccines against. The high degree replicative 

errors within in the HIV genome makes it a particularly problematic example of mutation-

based immune evasion. Unlike SARS-CoV-2, HIV contains quite promiscuous replication 

machinery. Being so, HIV-1 has been shown to accumulate on the order of 0.1 to 1 

mutations per genome replication105–108. Such a high mutation burden is one of the 

major contributing factor of CD8+ T cell-mediated immune escape during chronic HIV 

infection109.

Jiang et al. Page 7

Immunol Rev. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although rare, there have been many cases of HIV-infected individuals, categorized as 

elite controllers and long-term non-progressors, that are capable of controlling virus below 

detection without therapeutic intervention for 10+ years110. An early connection between 

viral control and CD8+ T cells came from a study that linked long-term non-progressors 

to HLA-B*57:01111. The functional properties of CD8+ T cells have also been associated 

with viral control. Specifically, the ability to proliferate112 and kill113 upon stimulation 

with HIV antigens was consistently greater in controllers versus progressors. In contrast, 

cellular activation alone was not indicative of control as activated cells from progressors 

often exhibited exhausted phenotypes. Furthermore, HIV-specific CD8+ T cells remained 

exhausted after prolonged anti-retroviral treatment (ART)114. Although the imprinting of 

a defective CD8+ T cell phenotype is apparent, the mechanism of this imprinting remains 

unclear. Do these dysfunctional phenotypes in HIV mirror those observed in persistent 

viruses, other chronic infections, or uncontrolled cancer? Teasing apart the presence or lack 

of these inter-disease relationships could prove incredibly useful toward treatments of each 

of these contexts independently.

Comprehensive evaluation of the HIV specific repertoire remains a tremendous challenge 

due to the intra- and inter-infection diversity of the HIV genome. Typically, assays are 

limited to the response to a single reference strain, which may not be true to in vivo biology. 

However, strong and diverse responses to Gag have been affiliated with lower viral load, 

regardless of HLA background and mutation load115,116. Furthermore, modeling regions 

of Gag targeted by controllers versus progressors revealed structural biases indicative of 

mutational constraints117. Crystallographic analysis of the regions targeted by controllers 

also revealed a preference toward targets in interconnected regions of the protein118. Not 

only were mutations in these regions shown to impair viral fitness in general, but CD8+ 

T cells targeting these regions in elite controllers tended to target regions less mutated at 

TCR contact sites and MHC anchor residues. Cross-reactive, or promiscuous, public TCRs 

have also been associated with HIV control in an HLA-dependent manner119–122. Although 

cross-reactive TCRs alone do not discriminate progressors from non-progressors, these 

results further suggest certain repertoire characteristics may be favorable in some contexts. 

While it may not be a strict rule, certain HLA backgrounds may pre-dispose an individual 

to producing TCRs that target favorable regions of the HIV proteome and/or resist immune 

escape through TCR promiscuity. It is possible that TCR-intrinsic properties influence the 

functional outcomes shown to be indicative of viral control. For instance, persistent antigen 

exposure has been shown to lead to exhaustion in both chronic infection and cancer123. 

If HIV control leads to more “normal” antigen exposure in vivo, CD8+ T cells from non-

progressors may be more inclined to take on functional memory, non-exhausted phenotypes 

that bear a greater potential to continue to control the virus. This phenomenon has been 

demonstrated to some degree in a small, high-risk cohort, the magnitude of the CD8+ T cell 

response was shown to correlate inversely with viremia in the early, hyperacute phase of 

HIV infection124. It is also possible that mutations on T cell targets may alter the quality of 

the TCR:pMHC contact, further leading to dysfunctional TCR signaling as has been seen in 

cancer models125.
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Pathogenic-derived antigens in neurodegeneration

Recent studies have demonstrated that T cell infiltration and clonal expansion is enhanced 

in neurodegenerative disorders such as AD126–130, PD131–135, ALS136,137, and MS138–141. 

Although some of these disorders have T cell antigens that are more clearly defined such 

as in MS and PD, there is still a significant need for further investigating the antigenic 

source/breadth and the mechanisms in which they induce T cell activation.

While screening for T cell epitopes in pathogens is a well-defined task, screening for 

pathogen derived epitopes that mimic self-antigens is very challenging. Large scale 

epidemiological studies can often provide some clues. There is a growing body of 

evidence supporting the correlation between viral infections and cognitive disorders142,143. 

For example, AD pathogenesis has been associated with various viruses including 

herpes viruses, cytomegalovirus, HIV, Varicella zoster virus, EBV, and Hepatitis C143,144. 

Additionally, EBV infection is causally linked with MS as evidenced by an extensive 

longitudinal analysis of millions of US military personnel that were monitored for 20 

years80. This study demonstrated that the risk of MS increased 32-fold after infection with 

EBV but was not increased after infection with other viruses such as CMV. Out of the 

801 MS cases, only one individual was EBV-negative in the last collected sample. Another 

study analyzed 148 BCR sequences which were found in the CSF of MS patients and 

demonstrated molecular mimicry between the EBV transcription factor EBV nuclear antigen 

1, EBNA1, and the CNS glial cell adhesion protein, GlialCAM81,145. Specifically, this 

group identified a monoclonal antibody clone that binds the MS-associated EBNA1 region, 

EBNA1AA386–405, which was then discovered to bind GlialCAM protein and phosphorylated 

peptide (pSer376 & pSer377) GlialCAMAA370–389 with high-affinity. The presence of EBV-

infected memory B cells has various implications on the pathophysiology of MS and 

may impact how aberrantly activated disease-relevant or bystander T cells contribute the 

initiation or relapsing of disease146.

Using various T cell profiling strategies, Gate et al identified clonally expanded TEMRA 

(CD3+CD8+CD45RA+CD27−CD28−) cells enriched in the peripheral blood and CSF of 

patients with Alzheimer’s disease and mild cognitive impairment126. The group identified 

a TCRαβ clone within the CSF of a patient with MCI and AD with previously identified 

specificity to the Herpesviridae Epstein–Barr nuclear antigen 3 (EBNA3A, FLRGRAYGL). 

They further identified a TCR clone that had shared beta chain homology found between 

three AD patients (2 patients: CASSLAGGYNEQFF, 1 patient: CASSLGTGNNEQFF). 

They validated that the TCR found in the single patient (TCRα: CAASEGGFKTIF; TCRβ: 

CASSLGTGNNEQFF) was able to recognize the EBV trans-activator protein BZLF1 

(RAKFKQLL) presented on HLA-B*08:01, while the specificity of the other TCR clone 

was undetermined due to the limited screen of 80 candidate peptides that was performed. 

As the authors note, this finding does not provide evidence of a causal link between EBV 

and AD but does suggest that T cells recognizing both self and non-self-antigens should be 

evaluated when investigating the contribution of T cells in neurodegeneration.

The Arlehamn and Sette groups evaluated T cell responses to common pathogenic antigens 

in both PD and AD compared to healthy controls but did not find significant differences 
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using activation induced marker and peptide stimulation assays127,147. In their PD cohort, 

they evaluated T cells response to over 3000 viral and bacterial antigens across coronavirus, 

rhinovirus, respiratory syncytial virus, influenza, cytomegalovirus, pertussis, and tetanus 

across 19 patient and 20 healthy control PBMC samples.

Self-derived antigens in neurodegeneration

Some self-antigen screens have been performed on individuals who have MS, PD, AD, 

and other neurodegenerative disorders, but many of those screens have relied on functional 

stimulation assays which prevent detection of unmanipulated antigen-specific populations. 

For example, Arlehamn et al explored how tau pathology could influence the T cell 

landscape in PD, especially since aggregates of α-synuclein/tau oligomers are present in 

some patients148. They screened epitopes derived from tau and phosphorylated tau against 

T cells from control and PD patients using peptide stimulation of PBMC and measured 

cytokine production via ELISPOT. They identified that autoreactive T cell responses to tau 

were present at similar levels between PD patients and healthy controls. Interestingly, they 

also found that T cells responded more vigorously to tau than the PD-specific α-synuclein 

peptide. In a subsequent study, this group evaluated the frequency of T cells specific to 

amyloid precursor protein, amyloid beta, tau, α-synuclein, and TDP-43 in patients with 

AD and age-matched healthy controls using a similar peptide pool stimulation approach127. 

Similarly, no significant differences of cytokine response were found between AD and 

control.

Therefore, in evaluating T cell responses to self-antigens in neurodegeneration, one cannot 

assume that central tolerance is complete. Likewise, another study by Sabatino Jr et al 

demonstrated that there are similar frequencies of myelin-specific T cells in MS and healthy 

control, but the myelin-specific T cells in MS exhibit a non-naïve, antigen-experienced 

phenotype139. The group surveyed the landscape of myelin-reactive T cells in the PBMC of 

MS patients across five validated epitopes and found similar frequencies of myelin-specific 

T cells in MS and healthy control. However, the antigen-specific T cells found in MS 

were non-naïve, expressed CD20, and were significantly reduced in patients treated with 

anti-CD20 mAb therapy, suggesting prior antigen experience. These studies suggest that it is 

not always sufficient to only identify the presence or frequency of autoreactive T cells, but to 

fully characterize their specificity, phenotype, and functional capacity thoroughly to be able 

to understand which features are most implicated in disease.

In PD, the presence of self-reactive T cells toward epitopes derived from 

the pathological protein α-synuclein has a much stronger implication. A series 

of studies conducted by Arlehamn and Sette identified that more pronounced 

cytokine production was evident in PD compared to healthy controls in response 

to stimulation with several antigenic regions of α-synuclein (Y39: α-syn31–45 

GKTKEGVLYVGSKTK, α-syn32–46 KTKEGVLYVGSKTKE and phosphorylated S129: α-

syn116–130 MPVDPDNEAYEMPSE, α-syn121–135 DNEAYEMPSEEGYQD, α-syn126–140 

EMPSEEGYQDYEPEA)131. A longitudinal case study identified α-synuclein specific (α-

syn61–75 EQVTNVGGAVVTGVT) T cells in the peripheral blood of a motor PD patient 

years prior to their diagnosis, with the magnitude of the response waning after diagnosis132. 
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Recently, these groups evaluated the TCR repertoire of α-synuclein-specific T cells in six 

PD patients and found that the repertoire was as diverse as the repertoire to antigens derived 

from Pertussis149. No public α-synuclein TCR was identified across the patients, though the 

patients were not HLA matched.

Campisi et al discovered highly expanded and activated CD8+ TEMRA cells in the PBMC 

of patients with ALS-4 and in the spinal cord, brain, and PBMC of mice with the ALS4-

causative Senataxin L389S mutation136. Interestingly, these mice were able to control an 

induced high-grade glioma with high levels of activated CD8+ T cell infiltration, but not 

melanoma, suggesting an immune response directed against self-antigens of CNS origin. 

The clonal T cell sequences were also cross-referenced to known pathogenic antigens, and 

no overlapping sequences were identified. Additionally, control and ALS-4 PBMCs were 

stimulated with pools of self-peptide (TDP-43, Senataxin) or pathogen-derived peptides 

and IFNγ concentration was measured, but no difference between control and ALS-4 was 

identified. This result highlights the challenge of identifying and screening T cell antigens, 

even those which are strongly implicated in disease.

TCR cross-reactivities in neurodegeneration

Krishnamoorthy et al observed a paradoxical result in which spontaneous optic neuritis 

developed in TCR 2D2 MOG-deficient (MOG−/−) transgenic mice which harbored TCRs 

specific to MOG35–55 while IgHMOG × MOG−/− mice with B cells specific for MOG 

remained healthy91. They identified that the 2D2 transgenic T cells were cross-reactive 

to a neuronal cytoskeletal self-antigen, NF-M18–30 which contained homology to the core 

residues of the MOG35–55, but not to NF-M225–237 (Table 1). Additionally, they determined 

that NF-M18–30 can be targeted by polyclonal T cells isolated from MOG35–55-specific T 

cells from C57BL/6 mice, indicating that this cross-reactive pair is not limited to a response 

by a single T cell clone.

In 1991, Brian Evavold and Paul Allen introduced altered peptide ligands (APLs) by 

demonstrating that the TCR can have differential signaling if its cognate epitope is 

conservatively altered with a single amino acid mutation150. A subsequent study by Dresseln 

et al aimed to evaluate the functional role of APLs in the context of peptides relevant in 

multiple sclerosis151. They screened ten variations of the peptide PLP80–88 (FLYGALLLA), 

derived from myelin proteolipid protein for HLA-A2 binding along with cytotoxicity, 

cytokine secretion, and proliferative capacity against several T cell clones. Most of the 

ALPs had an HLA-A2 binding capacity (IC50) close to the wildtype (2.6 nM) with the 

exception of FLAGALLLA (599 nM) and FLYAALLLA (17,177 nM). All altered peptides 

except FLAGALLLA were able to induce cytotoxicity by at least one of the PLP80–88-

specific T cell clones that were evaluated. Additionally, the L ➔ A mutation in position 

87, FLYGALLAA, was able to act as a superagonist capable of inducing half-maximal 

cytotoxic, cytokine, and proliferative response with 100-fold less concentration compared to 

the wildtype.

APLs which compete for TCR binding but do not lead to full cellular activation 

have demonstrated efficacy in treating and reversing EAE through their capacity to 
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induce a TH1 to TH2 phenotype switch in myelin-specific T cells152. However, in 

clinical trials, this approach has faced significant challenges and has highlighted the 

complexity of the T cell response. A large double-blind phase II trial led by Neurocrine 

Biosciences evaluated an APL designed from the immunodominant myelin basic protein 

epitope, MBP83−99 (NBI-5788), consisting of the following substitutions: D-Ala83-Lys84-

Leu89-Ala91 (ENPVVHFFKNIVTPRTP ➔ AKPVVHLFANIVTPRTP). The APL was 

administered at various doses, and although there was no difference of the relapse rate 

between the APL and placebo group, there were smaller and fewer lesions in patients 

which received the lowest dose. However, the trial was suspended due to 13/142 patients 

developing immediate-type hypersensitivity and generating anti-NBI-5788 antibodies which 

could cross-react with the native peptide152–154. A smaller trial which included only eight 

patients evaluated the same APL at the higher dose level reported a strongly immunogenic 

response that led to the expansion of cross-reactive T cells for the APL and native protein. 

These trials suggest that although an APL may be capable of inducing anergy or an anti-

inflammatory phenotype switch in some T cell clones, it could lead to activation of other 

clonotypes152,153,155.

Cancer antigens

Leveraging the T cell ability to specifically recognize and destroy cancer is fundamental 

to the study of cancer immunology and the future progress of cancer immunotherapy. 

Cancer antigens can be categorized into two groups, tumor associated antigens (TAAs) 

and tumor specific antigens. Tumor associated antigens are not specific to tumors. They 

are expressed in healthy tissue but with an elevated expression in the tumor. For example, 

the first human tumor antigen identified to be recognized by T cells, mucin156, is widely 

expressed on many types of cancers. Due to a lack of expression in healthy cells, tumor 

specific antigens provide great on-target specificity with minimum side effects. Tumor 

specific antigens can be categorized into four subclasses. Cancer testis antigens (CTA), 

also known as cancer germline antigens, are expressed in the embryonic stage and testis 

tissue but are epigenetically silenced in adult peripheral tissues. Because their expression 

at both RNA and protein levels have been detected in many types of cancers157,158, these 

antigens are valuable candidate for cancer immunotherapy. However, not all CTAs are 

the same. In a recent clinical trial, autologous TCRs recognizing a shared epitope by 

several CTAs, MAGE-A3/A9/A12, caused severe neurological toxicity because unexpected 

expression of MAGE-A12 in human brains159, highlighting the importance of selecting 

CTAs and understanding their individual tissue expression level for immunotherapy. The 

second class of tumor specific antigens is neo-antigens. Neo-antigens are mutated variants 

of self-proteins that are exclusively expressed by tumor cells (extensively reviewed in 

refs160–164). Depending on the self-proteins, neo-antigens can also be categorized as driver 

mutation-derived neo-antigens that are shared among different types of cancers or patient 

private mutations derived neo-antigens that are personalized to each patient. The third 

class of tumor specific antigens are antigens generated from non-protein-coding regions 

of DNA that are often called cryptic antigens. One example are peptides derived from 

alternative splicing or intronic retention or other post-transcriptional events165. The fourth 

class of tumor specific antigens are viral antigens expressed by cancers resulted from 
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viral infections, such as hepatitis B and C viral antigens in hepatitis B- and C-related 

hepatocellular carcinomas and human papillomavirus in cervical cancer. In addition to their 

unique tumor expression profile, neo-antigens and viral antigens are truly foreign that should 

retain high affinity TCRs from the thymic selection process166.

Cancer antigen specific T cells

Initial cancer antigen specific T cell identification efforts primarily used limiting dilution 

analysis167. Using in vitro culture and cytotoxicity assays on autologous tumor cells, it has 

been shown that tumor reactive T cells can be identified168. Using TCR V region antibodies, 

it was possible to track antigen specific T cell repertoire169 and measure their clonal size 

dynamics170 and phenotypes171 through vaccination. By combining flow cytometry sorting 

and PCR, analyzing TCR gene usage172 was made possible for a polyclonal population 

of T cells responding to mouse syngeneic tumor cells transfected with a model peptide. 

A breakthrough came when John Alterman, Mark Davis, and colleagues developed pMHC 

tetramers173 which can overcome the fast off-rate of low-affinity TCR-pMHC interactions. 

Using pMHC tetramers made with the TAAs MART-1, gp100, and tyrosinase peptides for 

melanoma174 and PR1 for myeloid leukemia175, they showed that functional tumor specific 

T cells can be isolated from CD8 T cell lines generated from healthy donors’ PBMCs 

which could be exempt from the exhaustion program in the tumor microenvironment. 

Around the same time, using TAAs in melanoma, Labarriere et al176, and Romero et 

al177, independently identified tumor antigen specific T cells in metastatic lymph nodes 

of melanoma patients. Lee et al even analyzed the cytotoxicity of the T cells isolated 

from melanoma patients’ PBMCs178 and showed that they were functionally unresponsive 

compared with EBV or CMV specific T cells analyzed ex vivo. This is the first time that 

tumor antigen-specific T cell phenotype and function could be analyzed in their “native” 

state without prior stimulation.

Many studies have focused on neo-antigens because they are uniquely expressed in cancer 

tissue. This property enhances the on-target specificity of neo-antigen specific T cells while 

reducing the off-target toxicity. Since the discovery of the first T cell cognate neo-antigens 

in mice179 and humans180, large scale neo-antigen discovery have been aided by the 

development of next-generation sequencing (NGS) technologies and their applications in 

analyzing cancer genomes181–183. However, the discovery of neo-antigen specific T cells 

in those early days was only attainable for a few patients and was largely dependent on 

the ability to successfully generate in vitro T cell clones161. Robbins et al demonstrated 

for the first time that a patient autologous tumor infiltrating lymphocyte (TIL) derived T 

cell clone was able to recognize a neo-antigen184. The first attempt to exhaustively look 

for neo-antigens and autologous cognate T cells was done by Lennerz et al185 prior to 

the development of NGS. Using a cDNA expression screen method, they discovered five 

neo-antigens and cognate T cell clones from the patient’s peripheral blood in addition to 

three cancer associated antigens. This study demonstrated that the immune system has the 

capacity to target multiple cancer antigens, including multiple neo-antigens.

Aided by a peptide exchange method to quickly generate new pMHC species186,187, Newell 

et al188 and Hadrup et al189 independently developed a combinatorial method to increase 
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the number of pMHCs that can be paralleled in the analysis. Using this method, Hadrup 

et al performed a screen of 22 pMHCs, derived from four melanoma associated antigens, 

in PMBCs from 28 HLA matched melanoma patients. A total of 24 T cell responses 

targeting eight epitopes were detected, five of which are previously unknown T cell epitopes. 

Further increases of the number of pMHC tetramer species that can be multiplexed arrived 

when the mass cytometry technology190 became available. Subsequently, Newell et al 

combined mass cytometry with combinatorial tetramer stain and significantly expanded 

the number of multiplexed pMHC tetramers to over a hundred191. This technology opened 

the possibility of predicting and screening a large number of new T cell epitopes. Using 

mass cytometry, Simoni et al192 screened 1091 putative neoantigens, 123 TAAs, and 46 

cancer-unrelated epitopes in TILs derived from 24 patients with various types of cancers. 

Cognate TILs were detected for neoantigen epitopes but not any of the TAAs screened. 

Unexpectedly, they discovered a large population of common viral epitope specific TILs. 

These bystander CD8+ TILs lack CD39 expression compared to tumor antigen specific 

TILs, suggesting that tumor antigen specific TILs may have a distinct phenotype that could 

be further leveraged for their identification. Independently, Duhen et al193 showed that 

co-expression of CD39+ and CD103+ identifies tumor-reactive CD8+ TILs in six different 

types of cancers, suggesting the value of focusing on a subset of TILs for prognosis during 

immunotherapy and identifying tumor antigen-specific T cells. Similar to Simoni et al192, 

Scheper et al194 also found that only about 10% of CD8+ TILs recognize autologous tumor. 

Therefore, the antigen landscape of TILs must be much more complex. Understanding 

the complexity of antigen specific T cells in tumor microenvironment could motivate new 

therapeutic development.

In addition to identifying bystander viral specific T cells in the TILs, Rosato et al195 

showed that injecting viral peptides into mouse tumors triggered antigen presentation 

and cytotoxicity in the tumor and, most strikingly, rendered PD-L1 blockade resistant 

mouse tumors susceptible to the treatment. Viral peptide-treated ex vivo human tumors 

recapitulated immune activation gene profiles observed in mice. Similarly, virus specific 

CD8+ T cells also populate mouse and human glioblastomas, which are one of the most 

aggressive and treatment-resistant cancers196. Thus, these studies suggest that intratumoral 

delivery of viral peptide triggers local immune activation and activating viral bystander cells 

in TILs represents an alternative or complementary approach to tumor antigen specific TIL 

activation in cancer immunotherapy.

With single cell RNA sequencing (scRNA-seq) becoming more accessible, it is possible 

to use TCR sequences as T cell IDs to link transcriptome data acquired directly from 

TILs to antigen specificity acquired from ex vivo expanded TILs. Oliveira et al197 applied 

this strategy on a cohort of melanoma patients that received either neo-antigen vaccine 

or immune checkpoint blockade therapies. In addition to neo-antigen and common viral 

antigen specific TILs, they discovered TAA specific TILs. Non-tumor-reactive T cells 

exhibited a non-exhausted memory phenotype, whereas both TAA and neo-antigen reactive 

TILs displayed an exhausted state. Using a similar approach, Caushi et al198 examined 

the clonality and activation status of neo-antigen and viral-antigen specific TILs and in a 

cohort of non-small cell lung cancer patients that received anti-PD-1 treatment before tumor 

resection surgery. Similar to the other two studies192,197, neo-antigen specific TILs exhibited 
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an incompletely activated cytolytic program. Although neo-antigen specific T cells were 

found in both anti-PD-1 responders and non-responders, the ones found in non-responders 

showed lower ligand-dependent signaling, coordinately upregulated checkpoints, and other 

features that inhibit T cell activation. In a separate study, Lowery et al199 used 55 TCR 

sequences from previously generated neo-antigen reactive T cell clones to track T cells 

in scRNA-seq data generated using archives of metastatic tumor samples. Using these 

signature TCRs, they were able to identify a subset of T cells that enriched with neo-antigen 

specific TCR. This allowed them to focus on a much smaller set of candidate TCRs and 

validate the neo-antigen targets in half of the predicted TCRs. These two studies opened 

the possibility of using neo-antigen specific T cell associated transcriptional program to 

track responses and predict new neo-antigen targeting TCRs. While this approach has been 

pursued mainly in cancer, possibly because of the unique transcriptional program of the 

tumor infiltrating T cells, it may be valuable to apply it to infection and neurodegenerative 

diseases. Recently, Puig-Saus et al200 performed the largest neo-antigen specific T cell 

screen ever conducted for seven anti-PD-1 responders and four non-responders using DNA-

barcoded pMHC multimers201–203 on PBMCs and TIL cultures. Although neo-antigen 

cognate T cells were detected from both responders and non-responders, the ones from 

responders have more clonal expansion and showed up in multiple samples collected at 

different timepoints compared to the ones from non-responders.

Most of these attempts to identify T cell cognate neo-antigens focused on tumor mutational 

burden high (TMB-H) cancers204,205 with a hypothesis that TMB-H cancers will induce 

more neo-antigen recognition by T cells163. However, various attempts in different types 

of cancers, including the ones discussed above, showed that the T cell cognate neo-antigen 

discover rate remains low, about 0–4%. The healthy status of the TILs, bias introduced 

by in vitro expansion, and various cancer immune evasion mechanisms, including HLA 

loss-of-heterozygosity, disruption to antigen presentation, and repression of neoantigen 

expression206, all contribute to this low discovery rate. Zamora et al207 took a different 

approach and found that 86% of the neo-antigens and 68% of the neo-peptides (multiple 

peptides containing the same mutation) are recognized by patients’ autologous CD8+ T 

cells in pediatric acute lymphoblastic leukemia (ALL) that is on the extremely low end of 

the TMB spectrum163,205. This study suggested that having a few mutations may allow the 

immune system to focus on its repertoire and other recourse to mount a better immune 

response. Different tumor types could give rise to this difference. In addition, this study 

suggested that there might be fundamental differences between how pediatric immune 

systems recognize antigens compared to that of adults, which should be interesting to test in 

adult ALL patients.

McGranahan et al208 showed that in both non–small cell lung cancer and melanoma, 

sensitivity to PD-1 and CTLA-4 blockade treatment was enhanced in patients who had 

more neo-antigens present in all tumor cells compared to patients who had neo-antigens 

in only a fraction of tumor cells. Steven Rosenberg’s group showed in a series of papers 

that hotspot driver mutation can be targeted in adoptive cell transfer (ACT) therapy209. 

However, targeting a single neo-antigen only induced short-term clinical benefits and the 

cancer eventually evaded the immune system by downregulating the neo-antigen presenting 

HLA allele210. In a later study, they showed that targeting multiple neo-antigens could 
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result in complete durable regression in metastatic breast cancer. These studies highlight the 

importance of understanding the neo-antigen expression heterogeneity in selecting treatment 

targets to overcome immune evasion.

In addition to their abundance in spontaneous cancers, viral peptide specific T cells are 

a major therapeutic target in virus-induced cancers. Combining mass scRNA-seq with 

the use of a large panel of viral antigens, TAAs, bystander epitopes, and neo-antigens, 

Cheng et al211 examined the antigen specificities of hepatocellular carcinoma (HCC) TILs, 

revealing that hepatitis B virus specific T cells exhibited a resident memory phenotype 

and transcriptional program. These cells were clonally expanded but were PD-1loTOXlo 

and not terminally exhausted. Patients with these cells infiltrating to tumor had a longer-

term relapse-free survival. Similarly, Eberhardt et al212 screened and tracked human 

papillomavirus specific T cells in head and neck squamous cell carcinoma (HNSCC). 

TCR tracking and scRNA-seq analyses suggested hypothetical differentiation trajectory 

from TCF-1+PD-1+ stem-like subset to transitory to terminally differentiated cells. In 
vitro peptide stimulation also confirmed their proliferation and differentiation capacity. 

Although both studies focused on virus-induced cancers, different viral infections, tumor 

microenvironments, or both could give rise to different TIL subsets that inform different 

treatment options. While immune checkpoint blockade therapies had poor responses in 

HCC213, they have gained FDA approval for recurrent/metastatic HNSCC214,215. Both 

studies identified additional viral peptides that could be leveraged in the design of preventive 

and therapeutic vaccines that could be used in conjunction with other therapies.

TCR cross-reactivities in cancer

Although TCRs can specifically recognize tumor antigens, their cross-reactivity to other 

antigens have caused severe problems. One such example is an affinity enhanced TCR to 

its original antigen, CTA MAGE-A3, that caused death of two patients in a clinical trial. 

The fatalities were later linked to MAGE-A3’s cross-reactivity to a peptide derived from the 

muscle protein Titin216,217. This has motivated alternative ways to fine tune TCR affinity 

and validate them in pre-clinical models218. Recent biophysical studies showed that “catch 

bonds”, initially discovered in selectins50 and integrins51 and thought unique to adhesion 

molecules219, existed in TCRs52. Chao et al. showed that high-affinity TCRs, measured by 

the traditional surface plasmon resonance, are often cross-reactive to self-antigens, however, 

low-affinity TCRs often lack functional efficacy. They demonstrated that it is possible to 

engineer TCRs with a low affinity to cancer antigen but have a strong cytotoxicity if the 

TCRs have a catch bond property. These TCRs are enhanced with on-target cancer antigen 

recognition but without cross-reactivity to off-target self-antigens53. This study provides a 

new avenue for engineering antigen specific TCRs for therapeutic development that can be 

applied to many other fields, such as infections and neurodegenerative diseases.

Other studies have explored possibilities of neo-antigen cognate T cells cross-reacting 

with wildtype proteins. Zhang et al showed that this type of T cell is readily detected in 

healthy individuals by using a large number of DNA-barcoded pMHC tetramer202. They 

also showed that these cells can be functionally validated through in vitro stimulation. By 

combining comprehensive peptide single position permutation experiments with informatics 

Jiang et al. Page 16

Immunol Rev. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



approach on a NY-ESO-1 peptide, Karapetyan et al220 validated 7 out of 12 highly scored 

cross-reactive peptide predicted from human proteome, including one that was 7 amino acid 

changes from the original nonomer peptide. These studies highlighted the complexity that 

TCR-antigen interaction spaces are and the importance of understanding the fundamental 

rule about TCR-antigen recognition has on cancer immunotherapy.

Informatic T cell epitope prediction

Computational prediction of TCR specificity can have immense utility in furthering our 

understanding of systems immunology and would lead to breakthroughs in translational 

immunotherapies. Recent reviews thoroughly highlight the various in silico modeling 

approaches aimed at predicting peptide-MHC binding, cross-reactivity, immunogenicity, 

and TCR-pMHC interaction221–226. Despite recent advances in both high-throughput TCR-

antigen discovery and machine learning approaches, there exist significant challenges that 

need to be addressed. The fundamental limitation in most of these computational approaches 

can be attributed to the lack of experimentally validated, publicly available TCR-antigen 

pairs221,224. In fact, 97% of TCR-antigen pairs are those which are of viral origin and 

TCRs specific to a set of 100 antigens make up about 70% of the currently existing data221. 

Additional limitations include the lack of paired alpha-beta chains, HLA bias, lack of true 

negative datasets, and binary representation of the data (binder vs. non-binder)221,223,224.

Many groups are actively developing novel strategies to overcome these limitations. Gao 

et al. developed Pan-Peptide Meta Learning (PanPep)227,228, a framework which combines 

concepts of meta-learning and the neural Turing machine to address the challenge of the 

long-tail distribution that is characteristic in TCR-epitope data. Their model is constructed 

for three levels of predictions based on the amount of known TCRs for a given peptide: 

none (zero-shot), few (few-shot), and majority. PanPep significantly outperformed existing 

tools in the zero-shot and few-shot predictions. However, PanPep only considers the CDR3b 

chain and does not consider other relevant information such as alpha chain, HLA type, or 

3D structure. Bradley229 aimed to predict TCR-epitope interaction through structure-based 

analysis of the TCR:peptide-MHC complex by utilizing a custom version of the neural 

network predictor AlphaFold. Their pipeline, AlphaFold TCR, aims to select the correct 

target peptide from a small set of candidate peptides. This work provides a good proof-

of-concept and highlights the utility in incorporating structure-based information in TCR-

epitope predictions. Other groups are evaluating novel ways of the initial embedding of the 

TCR sequence to numeric representations. Zhang et al. propose catELMo230, a bi-directional 

context-aware amino acid embedding model that treats amino acids as words and sequences 

as sentences. They demonstrate that their embedding approach can outperform other widely 

used approaches such as BLOSUM62 and BERT-based embedding models. Other groups 

are focused on gathering large datasets or generating databases to have more robust and 

easy-to-access training sets. Zhou et al. constructed NeoTCR231, an immunoinformatic 

database consisting of publicly available neoantigen-specific TCR sequences across 18 

cancer subtypes. This further highlights the need for a unified, well-annotated, and reliable 

TCR-epitope database.
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Concluding remarks

The complex landscape of T cell and antigen interactions are critical to disease initiation and 

pathogenesis as well as diagnosis and therapeutic development. Because of the enormous 

impact both scientifically and therapeutically, waves of technological developments have 

advanced the field significantly in the last 30 years. Recent innovations make the exploration 

of the intricate interactions in the mesh network of TCR and antigen repertoires possible. 

Accompanying this is the exponential increase of high-dimensional data that link TCR-

antigen interactions with T cell states. With groundbreaking computational tools that 

could enable the prediction of TCR antigen specificity and novel approaches for TCR 

engineering, the future of antigen-specific TCR-based disease diagnosis and therapeutics 

is incredibly bright. A deep understanding of the antigen specific immune response could 

unlock paradigm-shifting therapeutic potential, allowing us to harness its vast power for both 

protection from, and treatments against an immense array of diseases, from infections to 

neurodegenerative diseases to cancer.
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Table 1:

Select cross-reactivity examples. Epitopes derived from various antigens and their alignments are 

represented58,61,86,89–91.

Epitope Source Sequences

B7/NP105

SARS-CoV-2

HKU1, 0C43 (hCOVs)

SPRWYFYYL
I I I I I I I I

LPRWYFYYL

A24/S448

WT (SARS-CoV-2)

DELTA, BA.4/5

NYNYLYRLF
I I I I I I I I

NYNYRYRLF

B37/NP338

H3N2

H1N1

pH1N1, H5N2. H7N9

FEDLELLSF
I I I I I I I I
FEDLRVLSF
I I I I I I I I
FEDLRVSSF

B35/pp65123

B35/S1095

CMV

SARS-CoV-2

IPSINVHHY
I  I

FVSNGTHWF

NF-M18–30

MOG35–55

NF-M225–237

Mouse (self)

    TETRSSFSRVSGS
     I I I I I I
 MEVGWYRSPFSRVVHLYRNG
  I I  I I 
LQDEVAFLRSNHE
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