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Abstract

The gastrointestinal system is now considered the largest endocrine organ, highlighting the 

importance of gut-derived peptides and metabolites in metabolic homeostasis. Gut peptides are 

secreted from intestinal enteroendocrine cells in response to nutrients, microbial metabolites, and 

neural and hormonal factors, and regulate systemic metabolism via multiple mechanisms. While 

extensive research is focused on the neuroendocrine effects of gut peptides, evidence suggests that 

several of these hormones act as endocrine signaling molecules with direct effects at the target 

organ, especially in a therapeutic setting. Additionally, the gut microbiota metabolizes ingested 

nutrients and fiber to produce compounds that impact host metabolism indirectly, through gut 

peptide secretion, and directly, acting as endocrine factors. This review will provide an overview 

of the role of endogenous gut peptides in metabolic homeostasis and disease, as well as the 

potential endocrine impact of microbial metabolites on host metabolic tissue function.

Introduction

Energy and glucose homeostasis are tightly controlled by coordinated neural and endocrine 

signals that facilitate tissue crosstalk and central nervous system (CNS) integration 

to regulate food intake, energy expenditure, and glycemia. The liver, pancreas, and 

adipose tissue are traditionally considered organs of the endocrine system involved in 

regulating metabolic homeostasis. The endocrine pancreas secretes insulin in response 

to the postprandial rise in blood glucose, repressing hepatic glucose production and 

facilitating glucose uptake in adipose tissue and skeletal muscle while glucagon secretion 

generally opposes these actions (Campbell and Newgard, 2021). Further, adipocytes secrete 

adipokines, including leptin and adiponectin, to regulate food intake and maintain fat stores 

(Scheja and Heeren, 2019). The textbook functions of the gastrointestinal (GI) system are 

digestion and nutrient absorption; however, the gut is now considered the largest endocrine 
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organ, maintaining energy and glucose homeostasis both directly and indirectly via gut 

peptides produced by enteroendocrine cells (EECs) and endocrine metabolites produced or 

altered by the gut microbiota (Ahlman and Nilsson, 2001).

EECs are dispersed throughout the GI tract, comprising only 1% of the total intestinal 

epithelial cell population (Worthington et al., 2018). Despite the low abundance of EECs, 

they have a major role in the maintenance of energy and glucose homeostasis, evidenced 

by glucose intolerance in mice lacking normal EEC development (Terry et al., 2014). 

Gut peptides are secreted in response to the sensing of luminal contents and function to 

coordinate digestion, nutrient absorption, appetite, energy expenditure, and insulin secretion 

(Table 1) (Gribble and Reimann, 2019). Recent advances have demonstrated the complexity 

and redundancy of these signaling molecules, as peptides impacting metabolic homeostasis 

are still being identified while the mechanisms of action and metabolic effects of previous 

peptides are continually redefined or discovered. While a large proportion of gut peptides 

act in a paracrine fashion on nearby intestinal epithelial cells or peripheral nerves, like 

vagal afferent neurons or spinal afferents that can signal to the brain (Wachsmuth et al., 

2022), studies suggest many intestinally-derived peptides can enter the bloodstream and act 

in an endocrine fashion. This review focuses on the endocrine signaling capabilities of gut 

peptides, as other recent reviews have highlighted the role of neural signaling in regulating 

the metabolic effects (see Wachsmuth et al. (2022), Duca et al. (2021) for more).

While the role of the intestine in regulating food intake and glucose homeostasis is well 

documented, the gut microbiota is also now considered a critical component of the intestinal 

endocrine system (Clarke et al., 2014). The gut microbiota, composed of all bacteria, 

archaea, and fungi residing in the GI tract, is both directly and indirectly implicated in host 

metabolic homeostasis (Howard et al., 2022). Many of the effects of the gut microbiota on 

energy and glucose homeostasis are linked to compounds produced or altered by gut bacteria 

that act directly on EECs, or alternatively enter circulation and target metabolic tissue 

function (Agus et al., 2021). For example, short chain fatty acids (SCFAs) produced by gut 

bacterial fermentation of ingested fiber induce secretion of glucagon-like peptide 1 (GLP-1) 

and peptide YY (PYY) from EECs, thereby indirectly impacting the gut endocrine system, 

but also enter circulation to impact hepatic glucose metabolism (Shimizu et al., 2019), lipid 

metabolism (Yu et al., 2019), and regulate brown adipose thermogenesis (Christiansen et 

al., 2018, Cani et al., 2006). In addition, molecular components of microbes, like LPS, 

can activate EECs via innate immune recognition (Nguyen et al., 2014, Anhê et al., 2021). 

As the gut microbiota-metabolome axis impacts host metabolism, this review will discuss 

several metabolites and bacterial components with endocrine action that participate in host 

maintenance of energy and glucose homeostasis. Given the complex interaction of diet, gut 

microbiota, and the GI tract, it is crucial to better understand how these pathways work in 

unison to impact host metabolic health.

Gut Peptides/Hormones

EECs are specialized secretory cells located throughout the GI tract. While EEC subtypes 

are classically characterized based on the gut peptide they produce (e.g. K-cells secrete 

glucose-dependent insulinotropic peptide (GIP), L-cells secrete PYY and GLP-1, and I-cells 
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secrete cholecystokinin (CCK); see Fig. 1), it is now accepted that EEC location may more 

accurately dictate peptide expression based on migration from crypt to villus (Beumer et al., 

2018) and anatomical location (e.g. small intestine vs. colon) (Habib et al., 2012). Here we 

review the endocrine effect of gut peptides, while there is substantial evidence that many 

gut peptides act in a paracrine fashion on vagal and spinal afferent neurons innervating the 

gut to regulate energy and glucose homeostasis (see (Wachsmuth et al., 2022, Duca et al., 

2021) for more). For example, CCK is a gut hormone secreted by I-cells of the upper small 

intestine in response to luminal fat and protein, and the CCK receptor is expressed in the 

GI tract and vagal afferent neurons (Fakhry et al., 2017, Wang et al., 2019). A gut-brain 

vagal signaling axis is implicated in the effects of CCK on gallbladder contraction (Sonobe 

et al., 1995), gastric emptying (Schwartz et al., 1993), pancreatic exocrine secretion (Li and 

Owyang, 1993), brown adipose tissue thermogenesis (Blouet and Schwartz, 2012), hepatic 

glucose production (Cheung et al., 2009) and control of feeding behavior (Lorenz and 

Goldman, 1982). However, non-neural signaling pathways for gut peptides are also critical 

for metabolic homeostasis, especially in the effect of incretin hormones.

Incretin hormones

There are over 20 known gut peptides secreted by EECs that have both independent 

and overlapping effects on metabolism. A subset of gut peptides, termed incretins, are 

released in response to ingested nutrients and perpetuate glucose-stimulated insulin secretion 

from pancreatic β-cells, accounting for 50–70% of total insulin secretion following meal 

consumption (Nauck et al., 1986). The incretin hormones, GIP and GLP-1 are secreted in 

response to meal consumption, with the magnitude of secretion proportional to both rate 

of nutrient appearance (or rate of gastric emptying) and energy content (Vilsbøll et al., 

2003, Ahrén, 2022). Traditionally, K-cells located in the duodenum and upper jejunum were 

thought to exclusively secrete GIP, and L-cells located in the ileum and colon were thought 

to exclusively secrete GLP-1. However, GIP and GLP-1 have been shown to colocalize 

in a subset of human, rat, and porcine small intestinal EECs, indicating simultaneous 

postprandial secretion of these peptides (Mortensen et al., 2003, Habib et al., 2012). GIP, the 

first identified incretin hormone, is secreted in response to luminal glucose and lipids (Wu 

et al., 2017, Wu et al., 2012). Interestingly, in humans, GIP secretion is greater in response 

to fat than carbohydrates, despite the glucose-dependent insulinotropic effect of this peptide 

(Wu et al., 2017). GLP-1 is secreted in response to ingested macronutrients and fiber, as well 

as neural and hormonal factors (Wang et al., 2015). Further, GLP-1 secretion in response to 

nutrients and other secretagogues appears to be specific to L-cell localization in the intestine. 

For example, L-cells of the small intestine are indispensable for the secretion of ingested 

nutrient-induced GLP-1 (Sun et al., 2017), whereas colonic L cells mediate GLP-1 secretion 

in response to activation of the G-protein coupled receptors, GPR119 and melanocortin 4 

receptor (MC4R), metformin, bile acids, as well as maximal LPS-induced GLP-1 secretion 

(Panaro et al., 2020, Christiansen et al., 2019). In addition, microbial metabolites, such as 

SCFAs, can induce incretin hormone secretion (see section below). Both GIP and GLP-1 

are degraded by dipeptidyl-peptidase 4 (DPP-4) within minutes of secretion (Kieffer et al., 

1995), such that only a small percentage of these hormones reach systemic circulation, 

calling into question the endocrine ability of these peptides.
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Despite the short half-life, GIP and GLP-1 function to amplify glucose-stimulated insulin 

secretion via direct activation of the GIP receptor (GIPR) and GLP-1 receptor (GLP-1R) 

expressed on pancreatic β-cells. Both are members of the B family of G-protein coupled 

receptors and have overlapping signaling mechanisms to potentiate glucose-stimulated 

insulin secretion (Mayo et al., 2003). Binding of GIP or GLP-1 to their associated 

receptors induces recruitment and activation of the Gas protein, adenylate cyclase activation 

and elevated intracellular cyclic AMP (cAMP), resulting in protein kinase A (PKA) and 

exchange protein directly activated by cAMP (EPAC)-mediated potentiation of insulin 

granular exocytosis (Kashima et al., 2001, Kaihara et al., 2013, Dyachok et al., 2006). 

Further, GLP-1 and GIP activate divergent, PKA-independent signaling mechanisms to 

promote β-cell survival and proliferation (Li et al., 2005, Kim et al., 2005). In addition to the 

insulin stimulating effects of incretins, GLP-1, but not GIP, inhibits glucagon secretion from 

α-cells, with equal contributions from glucagon inhibition and insulin secretion on glucose 

homeostasis (Hare et al., 2010). Although there is evidence for a neural GLP-1-mediated 

regulation of glucose homeostasis, potentially mediated by hepatic portal vein or gut-

innervating GLP-1R expressing neurons (Balkan and Li, 2000, Vahl et al., 2007, Burcelin 

et al., 2001, Borgmann et al., 2021), recent work involving transgenic mice highlights the 

importance of pancreatic GLP-1R in glucose homeostasis (Lamont et al., 2012). Indeed, 

knockdown of the GLP-1R in β-cells abolishes the effects of GLP-1 on insulin secretion 

(Smith et al., 2014). Further, whole-body GLP-1R-deficient mice have impaired glucose-

stimulated insulin secretion and glucose tolerance, whereas reintroduction of the GLP-1R 

only in pancreatic islets normalized glucose homeostasis and glucose-stimulated insulin 

secretion (Lamont et al., 2012) while deletion of GLP-1R in neurons does not impair oral 

glucose-stimulated insulin secretion (Varin et al., 2019, Sisley et al., 2014), all indicating 

that GLP-1 likely augments glucose-stimulated insulin secretion in an endocrine fashion via 

pancreatic rather than neural GLP-1Rs.

In addition to direct receptor binding on pancreatic islet cells, GLP-1 is proposed to act 

on the peripheral and CNS to induce satiation and decrease food intake postprandially. The 

GLP-1R is expressed on neurons in the hindbrain and hypothalamus (Turton et al., 1996, 

Adams et al., 2018), key regions regulating feeding behavior, as well as a subset of vagal 

afferent neurons in the nodose ganglion (Nakagawa et al., 2004). Both central and peripheral 

GLP-1 administration decreases food intake and GLP-1 secretion activates vagal afferent 

neurons (Davis et al., 1998, Turton et al., 1996, Nakabayashi et al., 1996, Buckley et al., 

2020), sparking debate regarding the neural circuit involved in the effect of GLP-1 on food 

intake. However, studies utilizing vagal lesioning and deafferentation prompted in part by 

the rate of GLP-1 degradation by DDP-4 suggest that endogenous GLP-1 acts as a paracrine 

peptide through a gut-brain vagal circuit to regulate feeding behavior (Diepenbroek et 

al., 2017, Abbott et al., 2005a, Plamboeck et al., 2013, Brierley and de Lartigue, 2022, 

Borgmann et al., 2021). Conversely, more recently, the impact of vagal GLP-1R on energy 

homeostasis has been debated, as viral and transgenic knockout studies have shown a limited 

role in vagal afferent GLP-1 signaling on energy homeostasis (Varin et al., 2019, Sisley 

et al., 2014, Brierley et al., 2021). Interestingly, in an elegant study, it was demonstrated 

that the effects of GLP-1 on food intake and gastric emptying are mediated by GLP-1R 

expressing ileal enteric neurons (Zhang et al., 2022). Thus, while the endocrine action of 
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GLP-1 is likely limited to the pancreas, the overall impact of neural endogenous GLP-1 

signaling is contentious (see McLean et al. (2021) for more detailed endocrine and paracrine 

signaling of GLP-1).

Oxyntomodulin, like GLP-1, is derived from posttranslational modifications of proglucagon, 

is secreted postprandially by colonic EECs, and binds both the GLP-1 and glucagon (GCG) 

receptor (Baggio et al., 2004, Baldissera et al., 1988). Similar to GLP-1, oxyntomodulin 

acutely decreases food intake in rodents when administered directly to the brain (Dakin 

et al., 2001) and peripherally (Dakin et al., 2004), likely dependent on hypothalamic 

GLP-1R activation (Baggio et al., 2004). Further, oxyntomodulin production is blunted 

individuals with type 2 diabetes (T2D) (Wewer Albrechtsen et al., 2016), and treatment with 

oxyntomodulin is beneficial for glucose homeostasis via amplification of glucose-stimulated 

insulin secretion and body weight in individuals with T2D and obesity (Shankar et al., 2018, 

Wynne et al., 2005, Maida et al., 2008). However, more research is needed into determining 

the mechanism of action of oxyntomodulin, given it has a longer half-life than GLP-1 (~12 

min) (Schjoldager et al., 1988).

GLP-2

Glucagon-like peptide 2 (GLP-2), co-secreted with GLP-1 from intestinal L cells in response 

to nutrients (Hartmann et al., 2000), has intestinotrophic as well as metabolic effects. At 

the intestine, GLP-2 plays a protective role in gut barrier function (Benjamin et al., 2000, 

Chen et al., 2012, Chang et al., 2021) and enhances nutrient absorption (Meier et al., 

2006). Additionally, GLP-2 induces glucagon secretion, but has no effect on glycemia, 

in healthy individuals, suggesting minimal contribution of this peptide in normal glucose 

homeostasis (Meier et al., 2006, Sørensen et al., 2003). On the contrary, GLP-2 signaling is 

an attractive target for obesity-associated hyperglycemia, given that, in rodents with obesity, 

blocking endogenous GLP-2 action worsens glucose tolerance (Baldassano et al., 2015), and 

peripheral GLP-2 analog treatment improves glucose tolerance independent of body weight 

(Ejarque et al., 2021). Further, GLP-2 signaling is necessary and sufficient for the metabolic 

improvements associated with prebiotic supplementation in high fat feeding (Cani et al., 

2009). The effect of GLP-2 on glucose regulation is hypothesized to occur due to decreased 

adipose tissue inflammation (Ejarque et al., 2021), improved gut barrier that attenuates 

metabolic endotoxemia (Cani et al., 2009), and/or neuroendocrine action via activation of 

Pro-opiomelanocortin (POMC)-expressing neurons of the hypothalamus (Shi et al., 2013); 

however, the exact mechanism remains to be fully elucidated.

PYY

PYY is a gut peptide expressed in L-cells of the distal intestine, where it is co-secreted 

with GLP-1 (Habib et al., 2013). PYY exists in two isoforms: PYY1–36 and PYY3–36, 

formed by DPP-4 mediated N-terminal cleavage following secretion (Mentlein et al., 1993). 

PYY3–36, the dominant form in circulation postprandially (Grandt et al., 1994), principally 

binds the Y2 receptor found in the CNS, including the hypothalamus and brain stem, as well 

as peripheral tissues, including the colon and kidney (Yi et al., 2018). PYY is secreted in 

response to luminal lipids and protein (Mangan et al., 2019, Batterham et al., 2006), as well 

as neural and gut microbial factors, including SCFAs (Zhang et al., 1993, Larraufie et al., 
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2018) (see below). PYY functions to inhibit gastric acid secretion, gastric emptying, and 

pancreatic exocrine secretion (Adrian et al., 1985, Grandt et al., 1995, Moran et al., 2005). 

Exogenous PYY administration also decreases food intake in rodents and humans (Challis et 

al., 2003, Degen et al., 2005), suggesting a role for this peptide in suppression of food intake 

following meal consumption. Indeed, mice lacking PYY develop obesity, and replacing 

PYY via once daily injection or continuous delivery via osmotic minipump induces weight 

loss these mice (Batterham et al., 2006), indicating that PYY is an endogenous regulator 

of food intake. Mechanistically, PYY is proposed to activate Y2 receptors in the nucleus 

tractus solitarius and/or the arcuate nucleus of the hypothalamus, activating anorexigenic 

neurons and inhibiting orexigenic neurons (Batterham et al., 2002, Blevins et al., 2008, 

Gustafson et al., 1997, Abbott et al., 2005b), indicating a clear endocrine action. However, 

the hypophagic effect of PYY is likely at least in part mediated by a gut-brain vagal circuit, 

as vagotomy and midbrain transection abolish the effect of PYY on food intake in rats (Koda 

et al., 2005).

In addition to energy homeostasis, PYY is also implicated in control of glucose homeostasis. 

In the pancreas, PYY is co-expressed with glucagon in α-cells and somatostatin in δ-cells 

(Böttcher et al., 1989, Khan et al., 2016), suggesting an endocrine effect of PYY on 

insulin secretion. In accordance with the inhibitory actions of this peptide, PYY inhibits 

glucose-stimulated insulin secretion in vivo (Böttcher et al., 1989). However, as PYY3–36 

has no effect on insulin secretion in isolated islets and the Y2 receptor is not expressed 

in pancreatic islets (Chandarana et al., 2013), locally secreted PYY1–36 can act directly at 

the islet, whereas gut-derived PYY3–36 has no direct effect on β-cell insulin secretion. In 

contrast, peripheral PYY3–36 administration improves glucose tolerance likely via EEC Y2 

receptor activation and increased GLP-1 secretion that subsequently increases insulin release 

(Chandarana et al., 2013). Thus, PYY1–36 secreted within pancreatic islets may represent a 

negative feedback mechanism for glucose-stimulated insulin secretion.

5-hydroxytryptamine (Serotonin)

While 5-hydroxytryptamine (5-HT, also known as serotonin) is canonically considered 

a neurotransmitter, serotonin is also synthesized by enterochromaffin (EC) cells of 

the intestine from tryptophan, a process critically regulated by tryptophan availability, 

tryptophan hydroxylase (the rate-limiting enzyme in serotonin synthesis), and gut microbial 

metabolism of tryptophan (Yano et al., 2015, Yabut et al., 2019). Serotonin is secreted 

from EC cells in response to changes in luminal nutrients, microbial metabolites, or stretch 

following meal consumption (Wang et al., 2017, Martin et al., 2017, Reigstad et al., 2015). 

Following secretion, the majority of serotonin is taken up and stored or degraded in platelets 

(Mercado and Kilic, 2010), with a small proportion remaining in plasma to act as a signaling 

factor in peripheral tissues. Because serotonin typically cannot cross the blood-brain barrier, 

the actions of peripheral serotonin are distinct from central serotonin; as such, gut-derived 

serotonin is an independent regulator of metabolic tissue function.

Serotonin primarily acts on peripheral tissues via activation of one of fourteen 5-HT 

receptors (HTRs), all except one of which are classified as G-protein coupled receptors 

(Sahu et al., 2018). Peripheral serotonin participates in intestinal homeostasis, including 
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regulation of gut motility via enteric neuron signaling and intestinal inflammation (Heredia 

et al., 2013, Margolis et al., 2014). In addition, serotonin is implicated in adipose tissue 

lipid metabolism, as it promotes adipocyte glucose uptake and decreases lipolysis via 

HTR2A receptor activation (Hansson et al., 2016), and may also play a role in inhibition 

of brown adipose tissue thermogenesis, especially during diet-induced obesity (Crane et 

al., 2015). However, adipocytes synthesize and reuptake serotonin directly, so many of the 

actions of serotonin on adipose tissue are attributed to local, adipocyte-derived serotonin 

(Kinoshita et al., 2010, Oh et al., 2015). Interestingly, serotonin is increased during fasting, 

and promotes hepatic gluconeogenesis and inhibits hepatic glucose uptake, and promotes 

adipose tissue lipolysis via HTR2B activation in the fasted state (Sumara et al., 2012). On 

the contrary, during states of nutrient availability, serotonin may increase hepatic triglyceride 

accumulation (Osawa et al., 2011), providing evidence for the potential of HTR3 antagonists 

for treatment of non-alcoholic fatty liver disease (Haub et al., 2011).

INSL5

As previously mentioned, there are over 20 identified gut peptides, and recent research 

has identified novel gut peptides as well as functions of known peptides in metabolism. 

Among these, insulin-like peptide 5 (INSL5), produced by colonic L-cells (Billing et 

al., 2018), is secreted during fasting and has orexigenic properties (Lewis et al., 2020, 

Grosse et al., 2014); however, this effect is inconsistent (Zaykov et al., 2019). Interestingly, 

INSL5 receptor (relaxin/insulin-like family peptide receptor 4) expressing neurons in the 

hypothalamus were recently found to play a role in the regulation of feeding behavior 

associated with INSL5 (Lewis et al., 2022). However, as evidence for INSL5 production or 

presence in the brain is lacking, the physiological role of these neurons in INSL5-mediated 

feeding behavior is unclear, and it is unknown if these neurons are targeted by gut-derived 

INSL5. While the biological role of INSL5 is not fully elucidated, INSL5 signaling may 

participate in islet development and insulin secretion, as mice lacking INSL5 have decreased 

basal and glucose-stimulated insulin secretion and smaller pancreatic islets compared to 

wild-type controls, likely due to decreased INSL5-mediated activation of the relaxin family 

peptide receptor 4 (Burnicka-Turek et al., 2012). Further, INSL5 expression is regulated by 

the gut microbiota and may act to increase hepatic glucose production, in accordance with 

its secretion profile during low nutrient availability (Lee et al., 2016).

Neurotensin

Neurotensin, secreted by enteroendocrine N-cells and hypothalamic neurons (Polak et 

al., 1977), has major implications in the physiology of the CNS, but also plays a role 

in intestinal and metabolic homeostasis. Neurotensin is secreted primarily in response 

to luminal lipids (Draviam et al., 1990), acting locally to increase lipid absorption via 

increasing bile acid reabsorption and gallbladder motility (Gui and Carraway, 2001, 

Yamasato and Nakayama, 1988, Li et al., 2021b). Further, neurotensin may regulate glucose 

homeostasis, as systemic neurotensin administration results in hepatic glucose production 

from glycogenolysis and hyperglycemia (Carraway et al., 1976); this effect is likely due to 

the regulatory effect of neurotensin on insulin, glucagon, and somatostatin secretion from 

pancreatic islets (Dolais-Kitabgi et al., 1979, Béraud-Dufour et al., 2010). While peripheral 

neurotensin certainly plays a role in metabolic homeostasis, much of the research is focused 

Meyer and Duca Page 7

J Endocrinol. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



on the effects of intracerebroventricular neurotensin on metabolic and energy homeostasis. 

Further, as the half-life of this peptide is ~30 seconds in rodents (Aronin et al., 1982), the 

endocrine effects of peripheral neurotensin have yet to be fully elucidated but are likely 

extremely limited.

Gut Microbiota

The complex gut microbiota-host relationship integrates intestinal and systemic metabolism, 

impacting gut peptide secretion and overall metabolic tissue function (Agus et al., 2021). 

As mentioned earlier, the gut microbiota encompasses all microbes residing in the GI tract. 

However, the majority of research thus far has focused on the impact of the gut bacteria, 

while only recently have other microbes, like fungi or bacteriophages, been implicated in 

regulating host metabolic health (Sun et al., 2021a, Heisel et al., 2017, de Jonge et al., 2022).

Interaction of the gut microbiota and gut peptide signaling

The gut microbiota is a key factor for coordinated gut peptide secretion, as germ-free and 

antibiotic-treated mice have alterations in nutrient-sensing and chemosensory machinery, 

EEC number, and gut peptide release (Table 2) (Duca et al., 2012, Lee et al., 2016, Modasia 

et al., 2020). For example, germ-free mice exhibit dysregulated diurnal GLP-1 secretion and 

consistently increased circulating basal and fed GLP-1 (Martchenko et al., 2020, Bäckhed 

et al., 2004, Heiss et al., 2021, Zarrinpar et al., 2018), despite discrepancies in intestinal 

expression in the literature (Duca et al., 2012, Wichmann et al., 2013). This increase in 

GLP-1 secretion likely mediates the increase in gut transit time observed in germ-free 

mice compared to conventional mice (Wichmann et al., 2013); however, this has also been 

attributed to modulation of bile acids by intestinal bacteria (Li et al., 2021c). Similarly, 

INSL5 expression is increased in antibiotic-treated and germ-free mice (Lee et al., 2016), 

whereas circulating PYY is decreased in germ-free mice during fasting and in response to 

ingested lipids (Samuel et al., 2008, Duca et al., 2012), suggesting that the gut microbiota 

regulate L-cell secretion profiles. Germ-free mice also have decreased colonic tryptophan 

hydroxylase expression and circulating serotonin (Sjögren et al., 2012, Wikoff et al., 2009, 

Yano et al., 2015), likely due to the key role of the gut microbiota in tryptophan metabolism 

and serotonin biosynthesis.

Further, germ-free mice have lower fasting insulin and body weight, and it is therefore 

proposed that the gut microbiota coordinates nutrient harvest and lipid metabolism and 

storage as a beneficial survival mechanism (Bäckhed et al., 2004). In addition, modulation, 

rather than ablation, of the gut microbiome with fermentable fiber supplementation induces 

GLP-1 secretion and glucose tolerance in healthy animals (Massimino et al., 1998a), 

providing a more physiologically relevant model implicating the importance of the gut 

microbiota in metabolic homeostasis. Thus, modifying the gut microbiota is a promising 

therapy for obesity and glucose intolerance. Indeed, fermentable fiber supplementation 

reduces body weight gain in models of diet-induced obesity (Meyer et al., 2022b) and 

improves glucose tolerance and insulin sensitivity in diabetic rodents dependent on GLP-1R 

signaling (Cani et al., 2005, Cani et al., 2006). However, this effect remains controversial 

in human studies, as fermentable fiber supplementation in individuals with T2D has shown 
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both no effect on postprandial GLP-1 secretion (Birkeland et al., 2021) and increased 

postprandial GLP-1 and improved glucose tolerance (Zhao et al., 2018). The impact of 

fiber on GLP-1 signaling could be due to increased number of L-cells or expression of 

the preproglucagon gene (Massimino et al., 1998b, Kaji et al., 2011, Everard et al., 2011), 

although alterations in the gut microbiota via fermentable fibers induce myriad of other 

effects that could impact host metabolism, such as production and alterations in gut-derived 

metabolites (Meyer et al., 2022a). For example, both SCFAs and bile acids have been 

linked with the effect of dietary fiber on gut peptide secretion and subsequent effects on 

host metabolic homeostasis (Makki et al., 2022, Cani et al., 2006). The specific signaling 

pathways for which SCFAs, bile acids, and other gut derived metabolites is discussed in 

detail in the following section. Altogether, the gut microbiota has a significant impact on 

secretion of gut peptides that can impact metabolic homeostasis.

Gut-derived Metabolites

Perhaps the most investigated mechanism by which the gut microbiota impacts the energy 

and glucose homeostasis is via the host metabolome, as gut microbes metabolize dietary 

components and endogenous substances to produce novel bioactive chemicals (Agus et al., 

2021). A notable class of compounds produced by intestinal bacteria is SCFAs generated 

by gut bacterial fiber fermentation. Specifically, fermentable soluble fibers, including 

resistant starch, β-glucan, inulin/inulin-type fructans, pectin, and soluble corn fiber, are 

well-established substrates for SCFA production by intestinal bacteria (Martinez et al., 

2021). SCFAs can induce gut peptide secretion locally or can enter systemic circulation 

to act on peripheral metabolic tissues like the liver and adipose tissue (Li et al., 2018b, 

den Besten et al., 2015). Further, amino acids from the diet are modified by gut microbial 

metabolism, resulting in altered circulating metabolites that act as endocrine factors to 

regulate energy and glucose homeostasis (Jo et al., 2021, Hubbard et al., 2015). For 

example, branched chain amino acids (BCAAs) are produced by bacterial metabolism 

of the amino acids, glycine, serine, or threonine (Amorim Franco and Blanchard, 2017, 

Gojda and Cahova, 2021). Similarly, bacterial metabolism of histidine produces imidazole 

propionate, which regulates hepatic metabolism (Koh et al., 2018), and bacterial metabolism 

of tryptophan produces tryptamine, indoleacetic acid, indole aldehyde, and others, that 

regulate inflammation and metabolism via cellular signaling mechanisms (Roager and Licht, 

2018). Endogenous compounds can also be modified by intestinal bacteria. Bile acids, 

produced in the liver, are modified by gut bacteria via deconjugation by bile salt hydrolase 

and production of exogenous bile acid species (termed secondary and tertiary bile acids) by 

coordinated bacterial dihydroxylation, oxidation, and epimerization enzymes and resulting 

in a diverse bile acid pool (Guzior and Quinn, 2021); these modifications impact host 

receptor signaling to alter gut peptide secretion and tissue metabolism (Ridlon et al., 2014). 

As these compounds both impact intestinal endocrine function and act as endocrine factors 

themselves, this review will discuss in detail the effects of metabolites produced or altered 

by the gut microbiota on host energy and glucose homeostasis.

Short chain fatty acids

As previously mentioned, fiber consumption induces gut peptide secretion at least in 

part by increasing SCFA production by gut bacteria. It is thought that SCFAs impact 
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gut peptide secretion via the G-protein coupled receptors GPR41 (FFAR3) and GPR43 

(FFAR2) expressed on EECs (Fig. 2, Table 3) (Brooks et al., 2017, Christiansen et al., 

2018). Knockout of either FFAR2 or FFAR3 reduces GLP-1 secretion in response to either 

propionate or acetate (Tolhurst et al., 2012), and activation of a mutant FFAR2-DREADD 

unresponsive to SCFAs induces GLP-1 secretion similar to propionate administration in 

wild-type mice (Bolognini et al., 2019). Because the concentration of certain SCFAs, like 

acetate, in the intestinal lumen is consistently maintained to achieve FFAR2 activation 

(Cummings et al., 1987), it is proposed that SCFAs may impact gut peptide secretion via 

basolateral receptor activation. In line with this, FFAR2 has been shown to be expressed on 

the basolateral EEC membrane, and dietary and vascular SCFAs have differential effects on 

GLP-1 and PYY secretion (Christiansen et al., 2018, Karaki et al., 2006), indicating that 

absorption may be necessary for SCFA sensing. However, FFAR3 has a higher affinity for 

butyrate than acetate and propionate (Brown et al., 2003, Le Poul et al., 2003); therefore, 

luminal butyrate may be sensed by FFAR3 to induce gut peptide secretion. Nonetheless, it is 

possible that despite the open-faced nature of EECs to the luminal environment, SCFAs may 

induce gut peptide secretion via an endocrine mechanism that targets the basolateral side 

of the EECs; the reasoning and exact pathway for this unique mechanism warrants further 

investigation.

In addition to their role in the stimulation of gut peptide secretion, SCFAs are also absorbed 

into general circulation and can act as endocrine factors in metabolically active tissues (Fig. 

3). The majority of SCFAs are removed via first pass by the liver, where they impact hepatic 

metabolism. For example, butyrate decreases lipogenesis and increases hepatic oxidative 

respiration and beta-oxidation via activation of AMP-activated protein kinase (AMPK) 

(Mollica et al., 2017), dependent on peroxisome proliferator- activated receptor gamma 

(PPAR-γ) (den Besten et al., 2015). Acetate and propionate can also be used by hepatocytes 

for ATP production and gluconeogenesis, respectively(Fujino et al., 2001, Anderson and 

Bridges, 1984). A small amount of SCFAs escape hepatocyte uptake and enter general 

circulation to regulate adipocyte thermogenesis and browning. Specifically, butyrate, and, to 

a lesser extent, acetate, are consistently shown to induce adipocyte browning and increase 

thermogenesis in mice (Gao et al., 2009, Wang et al., 2020, Li et al., 2019a, Sahuri-Arisoylu 

et al., 2016). However, there are differential effects of circulating acetate compared to 

acetate derived from adipocytes acting as a paracrine signal (Sun et al., 2021b), indicating 

the effect acetate on adipocyte browning may be dependent on source and concentration. 

Circulating SCFAs alter tissue metabolism via two primary mechanisms: activation of 

GPCR signaling and epigenetic regulation. As GPR41 and GPR43 are widely expressed 

(Brown et al., 2003), these receptors may mediate the endocrine actions of SCFAs in the 

liver (Aoki et al., 2021) and adipose tissue (Kimura et al., 2013). SCFAs also directly 

impact gene expression via epigenetic modulation to regulate metabolic function. Indeed, 

SCFA administration in diet-induced obese mice induces expression of adiponectin and 

resistin via decreasing CpG methylation at adiponectin and resistin promotor regions (Lu 

et al., 2018). In addition, butyrate acts as a histone deacetylase (HDAC) inhibitor to alter 

gene expression (Vidali et al., 1978), including hepatic fibroblast growth factor 21 (FGF21) 

through HDAC3 inhibition (Li et al., 2012) and skeletal muscle insulin receptor substrate 1 

(IRS1), peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC1a), and 
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sirtuins to regulate insulin receptor signaling (Chriett et al., 2019). The effects of butyrate 

on HDAC inhibition have also been extensively investigated in the context of inflammatory 

bowel disease (Li et al., 2021a) , gut immunity (Yang et al., 2020) and asthma (Islam et al., 

2022), implicating butyrate as a key epigenetic regulator of both metabolic and immune cell 

function. However, the impact of endogenous SCFA on host metabolism is less resolved, 

as a majority of the studies outlined above utilize orally or intraperitoneally administrated 

SCFAs, which is not physiologically relevant. Additionally, several studies suggest SCFAs 

act in a neural fashion to regulate host metabolism (Goswami et al., 2018, Muller et al., 

2020, Li et al., 2018a), and at least one study demonstrated that intravenous administration 

had no impact on improving energy homeostasis (Li et al., 2018a). Future studies examining 

the metabolic impact of SCFAs should aim to deliver SCFAs directly to the large intestine 

to more closely mimic endogenous production, or at the very least, should try to replicate 

post prandial levels in portal and general circulation (Meyer et al., 2022b). At least one 

study though has elegantly demonstrated that endogenous SCFAs derived from dietary fiber 

fermentation can enter circulation and reach the CNS to impact energy homeostasis (Frost et 

al., 2014), thus underscoring the need for further investigation.

Bile acids

Bile acid concentrations increase in the intestinal lumen postprandially, playing a critical 

role in lipid absorption in the proximal small intestine as emulsifying agents. However, 

it is now known that bile acid signaling is a critical regulator of metabolic homeostasis, 

via paracrine and endocrine actions that are mediated in part by interactions with the gut 

bacteria. For example, bile acids regulate food intake through distinct signaling pathways 

via induction of gut peptide secretion by acting as ligands for both the G-protein coupled 

bile acid receptor-1 (Gpbar1, also known as TGR5) and Farnesoid X Receptor (FXR) (Fig. 

2, Table 3) (Chiang, 2013). Indeed, the effects of intraluminal bile acids on gut peptide 

secretion is well-documented in rodents (Kuhre et al., 2018, Christiansen et al., 2019) as 

well as humans (Adrian et al., 1993, Adrian et al., 2012, Hansen et al., 2016), and is 

induced via TGR5 (Christiansen et al., 2019). TGR5 is highly expressed in the colon, 

where secondary bile acids are produced; as such, the endogenous ligands of TGR5 are 

conjugated secondary bile acids produced by gut bacteria from host-derived primary bile 

acids, with taurine-conjugated lithocholic acid being the most potent agonist (Duboc et 

al., 2014). While luminal bile acids were thought to induce GLP-1 and PYY secretion 

dependent on apical TGR5, more recent research suggests that bile acid absorption and 

basolateral TGR5 are required for the effect of bile acids on gut peptide secretion (Kuhre 

et al., 2018, Brighton et al., 2015), as intraluminal TGR5 agonism has no effect on gut 

peptide secretion, but intravascular administration of a TGR5 agonist induces robust GLP-1 

responses (Christiansen et al., 2019). Additionally, based on the gut peptide-stimulating 

effect of TGR5 agonism, this signaling pathway has recently been implicated in treatments 

for obesity and T2D (Zheng et al., 2021), including fiber supplementation and gastric bypass 

surgeries (Ding et al., 2016, McGavigan et al., 2017), both of which are associated with 

increased plasma GLP-1 and attenuated food intake.

FXR is expressed in the ileum where primary bile acid concentrations are the greatest, 

thus FXR activity is largely regulated by primary bile acid species, with chenodeoxycholic 
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acid (CDCA) being the most potent agonist, and rodent taurine-conjugated beta-muricholic 

acid a potent FXR antagonist (Sayin et al., 2013, Makishima et al., 1999). Whereas TGR5 

induces gut peptide secretion, FXR inhibits proglucagon expression and GLP-1 secretion 

via interaction with cAMP response element binding protein (CREB) in EECs (Li et 

al., 2019b, Li et al., 2019c, Trabelsi et al., 2015). Further, FXR activation impairs SCFA-

induced gut peptide secretion via inhibition of FFAR2 signaling (Ducastel et al., 2020), 

demonstrating complex interactions and converging signaling pathways between different 

classes of microbial metabolites. Interestingly, despite the antagonistic role of FXR signaling 

in bile acid- and SCFA-mediated GLP-1 secretion in metabolically healthy individuals, FXR 

activation promotes weight loss and improvements in glucose regulation following gastric 

bypass surgery (Ryan et al., 2014) and increases intestinal EEC number ex vivo (Kim et al., 

2022), suggesting dynamic FXR signaling dependent on physiological state. Additionally, 

FXR is localized in peripheral metabolic tissues (Zhang et al., 2014, Cariou et al., 2006), and 

it is plausible that the differing metabolic outcomes observed during studies involving FXR 

are due to action in the intestine versus other tissues like the liver.

Aside from their role in the induction of gut peptides, bile acids can also impact host 

metabolism in peripheral tissues and within the CNS (Fig. 3). As bile acids undergo 

enterohepatic circulation, they can both directly and indirectly alter systemic physiology 

through hepatic and intestinal FXR, respectively; however, the role of FXR remains 

contentious in individuals with normal metabolic function and metabolic syndrome. For 

example, while global FXR deficient mice on a normal chow diet display peripheral 

insulin resistance and elevated serum free fatty acids (Cariou et al., 2006), mice with 

global, but not liver-specific, FXR deficiency are protected from diet-induced obesity and 

insulin resistance (Prawitt et al., 2011). On the contrary, intestinal FXR agonism prevents 

diet-induced obesity and insulin resistance (Fang et al., 2015), further complicating the 

role of FXR in obesity and metabolic disease. Intestinal FXR may exert beneficial effects 

via secretion of FGF19 (rodent FGF15) that acts on the fibroblast growth factor receptor 

4 (FGFR4) to control bile acid, glucose, and lipid metabolism (Stroeve et al., 2010), as 

FGF15/19 represses gluconeogenic enzyme expression and postprandial lipogenesis and 

induces glycogen synthesis (Kim et al., 2020, Potthoff et al., 2011, Kir et al., 2011). 

However, bile acids also exert an FGF19-independent effect on hepatic lipid metabolism 

through FXR, as hepatic FXR-deficiency induces hepatic triglyceride accumulation and 

elevated serum cholesterol, whereas intestinal FXR-deficiency has no effect on hepatic or 

circulating lipids (Schmitt et al., 2015). FGF15/19 is also involved in the adipose tissue 

thermogenic response to cold (Fang et al., 2015, Morón-Ros et al., 2021). Finally, levels of 

the FXR agonist taurochenodeoxycholic acid (TCDCA) increase with high fat-feeding due 

to small intestinal gut microbiota modulation and impair insulin action in the dorsal vagal 

cortex dependent on FXR (Zhang et al., 2021, Meyer et al., 2022a), implicating central FXR 

in control of glucose homeostasis.

TGR5, on the other hand, is consistently reported to be metabolically beneficial. Following 

a meal, bile acids increase temporally in the hypothalamus, where TGR5 activation 

participates in satiety and decreases food intake (Perino et al., 2021). Therefore, TGR5 

is a prime target for obesity, as central TGR5 agonism in obesity reduces body weight 

and food intake and increases energy expenditure via the sympathetic nervous system 
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(Castellanos-Jankiewicz et al., 2021). Peripheral TGR5 also increases energy expenditure in 

humans (Broeders et al., 2015) and mice via TGR5-mediated intracellular thyroid hormone 

activation and adipose tissue beiging (Velazquez-Villegas et al., 2018, Watanabe et al., 

2006).

Amino acids and derivatives

Large scale metabolomic studies have identified gut microbiota-related amino acid 

metabolites that regulate metabolic homeostasis via endocrine action. Among these, BCAAs 

are essential amino acids derived from the diet or gut bacterial biosynthesis. Following 

absorption, BCAA catabolism occurs primarily in skeletal muscle, where activity of the 

first enzyme in the BCAA catabolic pathway, branched-chain-amino-acid aminotransferase, 

is high. In healthy individuals, BCAAs, especially leucine, promote protein synthesis and 

inhibit proteolysis through mammalian target of rapamycin (mTOR) signaling (Suryawan 

et al., 2008). In the brain, BCAAs compete for transport with other aromatic amino 

acids (tryptophan, tyrosine, and phenylalanine) and can thus decrease production of certain 

neurotransmitters, including serotonin (Gijsman et al., 2002, Choi et al., 2013). In addition, 

BCAA catabolism results in production of alanine, a key gluconeogenic amino acid, and 

can therefore promote hepatic glucose production during starvation when BCAA levels 

increase (Fig. 3) (Holecek et al., 2016). These metabolic effects provide the basis for BCAA 

supplementation for athletes; however, human studies suggest that the benefits of BCAAs 

are limited (Plotkin et al., 2021).

Interestingly, plasma BCAAs are elevated in obesity and correlate with insulin resistance 

and are a predictor of T2D (Newgard et al., 2009, Vanweert et al., 2021, Felig et al., 

1969, Wang et al., 2011b). Evidence suggests that both peripheral and hepatic insulin 

resistance occurs with elevated BCAAS in obesity and T2D, independent of body weight. 

BCAA supplementation in diet-induced obesity induces skeletal muscle insulin resistance 

via phosphorylation of mTOR and IRS1, in accordance with the known functions of BCAAs 

in skeletal muscle (Newgard et al., 2009). Mechanistically, elevated BCAAs in T2D occurs 

at least in part due to altered expression of enzymes involved in BCAA metabolism in liver, 

skeletal muscle, and adipose tissue (She et al., 2007, Lian et al., 2015), as well as due 

to increased abundance of BCAA-producing bacteria and decreased abundance of bacteria 

that uptake BCAAs in the gut (Pedersen et al., 2016). In the liver, enzymes that regulate 

BCAA catabolism also control hepatic lipogenesis; therefore, dysregulated expression of 

these enzymes could contribute to hepatic insulin resistance (White et al., 2018). On the 

other hand, strategies that reduce circulating BCAAs, like gastric bypass surgery, improve 

peripheral insulin sensitivity independent of body weight (Lips et al., 2014, Magkos et al., 

2013) at least in part by decreasing muscle fatty acyl CoA and glycine accumulation (White 

et al., 2016).

In addition to BCAAs, imidazole propionate (IMP), a metabolite produced by gut bacterial 

histidine metabolism, has recently gained attention in the context of T2D. Individuals 

with T2D have increased portal vein and circulating IMP levels (Koh et al., 2018), 

increased pro-inflammatory gut bacteria (Molinaro et al., 2020), and low gut microbial 

diversity (Menni et al., 2020). Despite no differences in dietary histidine intake, IMP is 
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positively correlated with saturated fat and negatively correlated with fiber and unsaturated 

fat consumption in individuals with T2D, indicating that diet-mediated gut microbiota 

modulation is critical for IMP production (Molinaro et al., 2020). Following absorption, IMP 

impairs glucose tolerance and insulin signaling in mice through a p38γ mitogen activated 

protein kinase (MAPK)-p62-mTOR complex 1 (mTORC1) signaling axis (Fig. 3) (Koh et 

al., 2018). Interestingly, individuals with T2D and high blood glucose taking metformin 

have increased IMP levels, and the blood glucose lowering effect of metformin is blunted 

with IMP pretreatment in mice, dependent on p38γ MAPK-Akt mediated inhibitory AMPK 

phosphorylation (Koh et al., 2020). Taken together, these data provide promising framework 

for therapeutics targeting IMP-producing bacteria for treatment of T2D.

The amino acid tryptophan is also metabolized by gut bacteria, producing metabolites 

that impact host receptor activity. While over 95% of dietary tryptophan is metabolized 

directly by the host via indoleamine 2,3-dioxygenase 1 (IDO1), gut bacteria can metabolize 

tryptophan into tryptamine and indole metabolites. Production of the metabolite tryptamine 

in the gut is impacted by bacterial metabolism of tryptophan, as germ-free mice have 

lower fecal tryptamine than humanized mice (Marcobal et al., 2013), and it is estimated 

that >10% of individuals harbor gut microbes that express at least one of the enzymes 

for decarboxylation of tryptophan to produce tryptamine (Williams et al., 2014). Further, 

metabolic syndrome is associated with blunted production of tryptamine and indole 

metabolites from dietary tryptophan due to gut microbiome dysbiosis (Natividad et al., 

2018). Although a relatively low-abundance metabolite, tryptamine induces serotonin 

secretion from gut EC cells (Takaki et al., 1985), potentially indirectly impacting peripheral 

tissue metabolism. Tryptamine is also a proposed therapeutic for gut inflammatory 

disorders, as it induces mucus secretion from goblet cells via the G-protein coupled 

serotonin receptor 5-HTR4 (Bhattarai et al., 2020). The effects of tryptophan metabolites 

on metabolic homeostasis are at least partially dependent on the aryl hydrocarbon receptor 

(AHR). Indeed, high fat-fed mice treated with either an AHR agonist or Lactobacillus 
reuteri, a bacteria with high AHR ligand production, have improved gut barrier function 

and metabolic homeostasis possibly mediated by AHR-induced GLP-1 secretion from EECs 

(Natividad et al., 2018). However, a previous study found that indole induces acute GLP-1 

secretion from EECs via voltage-gated K+ channel inhibition (Chimerel et al., 2014); 

therefore, multiple potential intersecting pathways may be responsible for indole-mediated 

GLP-1 secretion (Fig. 2, Table 3). On the other hand, exposure to the AHR agonist 2,3,7,8-

tetrachlorodibenzo-p-dioxin (TCDD, also known as dioxin) is correlated with hyperglycemia 

and insulin resistance in humans (Henriksen et al., 1997, Cranmer et al., 2000), and 

mice expressing a low-binding affinity AHR variant and global AHR deficient mice are 

resistant to diet induced obesity and associated metabolic perturbances (Xu et al., 2015, 

Kerley-Hamilton et al., 2012, Wang et al., 2011a). Taken together, while these data indicate 

a potential impact of indole metabolites impacting metabolic homeostasis via AHR, there 

is much to be determined in regards to the site of action and mechanism. Indeed, AHR 

is expressed in a variety of cell types, and is a critical regulator of NF-KB inflammatory 

signaling (Ishihara et al., 2021). Thus, it is possible that there exists a balance of pro- 

and anti-inflammatory signaling required to maintain homeostasis, that is further dependent 

on the specific tissue affected. For example, intestinal AHR activation improves intestinal 
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inflammation associated with obesity (Postal et al., 2020), and promotes secretion of anti-

inflammatory cytokines in the intestine to improve gut barrier and metabolic homeostasis 

in mice challenged with high fat feeding (Lin et al., 2019). Nonetheless, bacterially-derived 

tryptophan metabolites represent an exciting new area of research in metabolic disease, and 

warrant further research.

Bacterial Components

Chronic low-grade inflammation often occurs in obesity and obesity-associated metabolic 

disorders, at least in part due to LPS exposure. Western-style high fat diet-feeding and loss 

of gut barrier integrity in obesity promote LPS absorption, resulting in host low-grade 

inflammation and impaired glucose homeostasis, termed metabolic endotoxemia (Fig. 

3) (Pendyala et al., 2012, Cani et al., 2007a). High fat diet-fed mice have increased 

circulating LPS, and chronic LPS exposure increases body weight, worsens glucose 

tolerance and insulin sensitivity, and increases inflammatory cytokine expression dependent 

on the cell surface receptor cluster of differentiation 14 (CD14) (Cani et al., 2007a). 

Both rodent and human obesity is associated with increased adipose tissue expression 

of proinflammatory cytokines, including tumor necrosis factor (TNF)-α that is correlated 

with hyperinsulinemia and inhibits insulin receptor tyrosine kinase activity through IRS-1 

(Hotamisligil et al., 1993, Hotamisligil et al., 1995, Hotamisligil et al., 1996). Further, 

OFS supplementation in high fat-feeding improves glucose homeostasis, reduces adipose 

and circulating inflammatory cytokines, and increases gut Bifidobacterium sp. that are 

negatively associated with endotoxemia, further implicating the gut microbiota composition 

and in the detrimental inflammatory and metabolic effects of high fat-feeding (Cani et al., 

2007b). Circulating LPS forms a complex with LPS-binding protein, which can interact with 

cell surface receptors CD14, toll-like receptor 4 (TLR4), and toll-like receptor 2 (TLR2), 

inducing proinflammatory cytokine release (Mohammad and Thiemermann, 2020). As such, 

some reports suggest that CD14 and TLR4 deficient mice are protected from diet-induced 

obesity and insulin resistance (Kim et al., 2007, Poggi et al., 2007, Jia et al., 2014, Roncon-

Albuquerque et al., 2008), whereas others suggest that neither TLR4 or CD14 mediate diet-

induced obesity (Dalby et al., 2018, Young et al., 2012). These discrepancies in the literature 

may be due to differences in knockout tissue specificity, genetic background, or diet, and 

indicate a need to further elucidate the significance of TLR4 in the pathophysiology of 

metabolic disorders. Interestingly, hexa-acylated LPS derived from Escherichia coli induces 

GLP-1 secretion from enteroendocrine L-cells in response to intestinal injury to reduce 

inflammation via TLR4 activation (Fig. 2, Table 3) (Lebrun et al., 2017), whereas penta-

acylated LPS from R. sphaeroides has no effect on GLP-1 secretion (Table 3) (Anhê 

et al., 2021), indicating that the effects of LPS on metabolism are dependent on diet, 

physiological state, and species-specific LPS type. In addition to TLR4, bacterial LPS 

agonizes TLR2, altering cellular metabolism and immune cell activation (Kirschning et 

al., 1998). Further, mice lacking TLR2 are resistant to diet-induced obesity and glucose 

intolerance (Guo et al., 2021, Ehses et al., 2010), and inhibition of TLR2 signaling improves 

insulin sensitivity (Caricilli et al., 2008). On the contrary, flaggelin, the primarily protein 

found in bacterial flagella, may reduce metabolic endotoxemia via TLR5-mediated gut 

microbiota remodeling. Upon activation by flaggelin, TLR5, expressed in the intestinal 

epithelium, modulates the presence of pathogenic gut bacteria (Carvalho et al., 2012). 

Meyer and Duca Page 15

J Endocrinol. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Interestingly, mice lacking whole body and intestinal TLR5 develop metabolic endotoxemia, 

with increased body weight and adiposity and abnormal glucose regulation, as well as 

susceptibility to colonization with pathogenic bacteria (Chassaing et al., 2014, Vijay-Kumar 

et al., 2010), implicating an intestinal feedback loop in which pathogenic bacteria stimulate 

TLR5 that, in turn, impairs pathogenic bacterial growth to regulate intestinal inflammation 

and prevent metabolic endotoxemia. Together, these studies suggest a role for multiple TLRs 

in inflammation-associated metabolic perturbances.

The nucleotide-binding oligomerization domain-containing proteins, NOD1 and NOD2, 

are ubiquitously expressed pattern recognition receptors that recognize bacterial cell wall 

components, including peptidoglycans from gram-negative and some gram-positive bacteria 

(Rivers et al., 2019). In particular, NOD1 and NOD2 have been studied in bacterial 

induction of inflammatory signaling that results in insulin resistance. Expression of NOD1 

and NOD2 is elevated in individuals with metabolic syndrome (Lappas, 2014, Zhou et 

al., 2015, Shiny et al., 2013) and diet-induced obese rodents (Sharma et al., 2022), and 

mice lacking NOD1, but not NOD2, are resistant to diet-induced body weight gain and 

glucose intolerance (Amar et al., 2011). Further, activation of NOD1 is consistently linked 

to adipose tissue inflammation and peripheral insulin resistance (Zhao et al., 2011, Schertzer 

et al., 2011, Zhou et al., 2012). Taken together, inflammatory signaling induced by bacterial 

activation of TLRs and/or NOD-like receptors may be a promising target for treatment of 

metabolic disease.

The bacterial protein, caseinolytic peptidase B protein homolog (ClpB), expressed by 

E. coli has been identified as an antigen mimetic protein of α-melanocyte stimulating 

hormone (α-MSH) (Tennoune et al., 2014), a key neuropeptide involved in regulation of 

food intake. While little is known about the physiological effects of ClpB, this protein 

has been implicated in the development of eating disorders, and, more recently, obesity, 

as gut bacterial ClpB-like gene function is negatively correlated with obesity in humans 

(Arnoriaga-Rodríguez et al., 2020). Further, chronic intragastric E. coli treatment decreases 

food intake, while treatment with Clpb-deficient E. coli has no effect on food intake 

(Tennoune et al., 2014); this effect is proposed to be mediated by increased PYY secretion 

with ClpB exposure (Dominique et al., 2019). Additionally, treatment with a strain Hafnia 
alvei expressing ClpB with an α-MSH-like motif reduces food intake and body weight in 

diet-induced obese mice, reduces food intake in genetically obese ob/ob mice (Legrand et 

al., 2020) and improves body weight loss in humans (Déchelotte et al., 2021), providing the 

foundation for research into novel probiotic ClpB-expressing bacterial strains for obesity.

Conclusions and Future perspectives

Given the expanding viewpoint for the GI tract as an important endocrine organ in the 

regulation of metabolic homeostasis, it is no surprise that several of the most successful 

treatment options for obesity and diabetes are gut-derived in nature. For example, two 

classes of drugs, GLP-1R agonists (GLP-1RA), like liraglutide, and DPP-4 inhibitors, 

like sitagliptin, improve T2D via activating GLP-1R signaling mechanisms. Interestingly, 

GLP-1RAs possess a long half-life, while DPP-4 inhibitors increase the half-life of 

endogenous GLP-1 (Nauck et al., 2021, Omar and Ahrén, 2014); therefore, these drugs 
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can target endocrine actions of GLP-1R signaling. For example, it is likely that GLP-1RAs 

improve glucose homeostasis via amplification of glucose-stimulated insulin secretion at 

the β-cell and induce significant weight loss via CNS action (Varin et al., 2019, Lamont 

et al., 2012). More recently, clinical trials investigating both dual GLP-1R/GIPR agonists 

and GLP-1/glucagon receptor (GCGR) agonists as well as GLP-1R/GIPR/GCGR triagonists 

indicate positive effects on weight loss and glycemia, with GCGR and GLP-1R agonism 

promoting weight loss and GIPR agonism negating the effects of glucagon signaling on 

hepatic glucose production (Capozzi et al., 2018, Frias et al., 2018, Coskun et al., 2018, 

Ji et al., 2021). For example, the “twincretin” tirzepatide is generally more effective at 

reducing glycemia and body weight compared to the GLP-1 analog semaglutide with the 

same safety profile (Vadher et al., 2022), whereas GLP-1R/GIPR/GCGR triagonists show 

early synergistic effects on metabolism, improving glycemic control and body weight to a 

greater extent than dual incretin receptor agonists in rodents (Finan et al., 2015). However, 

with all these current treatments, there are moderate side effects, including nausea, diarrhea, 

and, to a lesser extent, vomiting, constipation, abdominal pain, and dyspepsia (Filippatos 

et al., 2014). Therefore, future studies must continue to understand the endocrine action of 

gut peptide signals, as a better understanding of potential sites of action could lead to more 

personalized and targeted therapies that limit side effects.

In contrast to the establishment and success of GLP-1-mediated therapies, therapies 

targeting the vast potential of the gut microbiota are still in infancy. As such, while many 

studies have highlighted the potential of various probiotics in metabolic homeostasis (Bauer 

et al., 2018, Stenman et al., 2014), only a few have been successful in clinical trials (Bernini 

et al., 2016, Minami et al., 2015, Kadooka et al., 2010, Depommier et al., 2019). However, 

as sequencing efforts become more advanced, there is a greater likelihood that gut bacteria 

will be discovered that have novel roles in mediating energy and glucose homeostasis. For 

example, one group has discovered a gut bacteria that is capable of producing ClpB, which 

could have major implications in metabolism (Tennoune et al., 2014). Additionally, there is 

the emerging field of bioengineered bacteria, with several groups generating bacteria capable 

of producing specific metabolites, like leptin and GLP-1, that target metabolic organs to 

prevent or treat metabolic disease (Bermúdez-Humarán et al., 2007, Arora et al., 2016). 

Nonetheless, despite these efforts, it is possible that probiotic treatment may be highly 

personalized, as some individuals are permissive to colonization of probiotics while others 

are resistant, depending on their pre-existing gut microbiota (Zmora et al., 2018). Indeed, 

the gut microbiome is highly complex and individualized, thus baseline gut microbiome and 

metabolome conditions could influence whether treatments targeting the gut microbiome 

are successful. For example, an individual’s baseline gut microbiome and metabolome can 

dictate the successful glucoregulatory effect of exercise, while machine-learning algorithm 

can this information to predict if an individual will “respond” to exercise based on microbial 

characteristics (Liu et al., 2020). A similar program uses a machine learning algorithm 

to personalize dietary interventions for glucose tolerance using baseline gut microbial 

signatures in combination with diet and health information (Berry et al., 2020). Altogether, 

this highlights the importance of comprehensive clinical studies that incorporate not only 

phenotypic characteristics, but also baseline gut metagenomic and metabolomic analyses 

to determine if drug-gut interactions dictate the successful or failure of treatments toward 
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obesity and diabetes. While the exact mechanisms are not completely elucidated, it is 

evident that both gut peptides and gut microbiota-derived compounds act as endocrine 

factors to impact host signaling and metabolic homeostasis, representing a relatively novel 

and exciting collection of compounds and receptors that can be targeted for treatment of 

metabolic disease.
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Figure 1. Gut peptide secretion and endocrine effects.
Enteroendocrine cells (EECs), dispersed throughout the intestine, sense luminal nutrients 

and microbial metabolites and secrete gut peptides that impact metabolism. K-cells 

secrete glucose-dependent insulinotropic peptide (GIP); L-cells secrete glucagon-like 

peptide 1 (GLP-1) and peptide YY (PYY); enterochromaffin cells (EC cells) secrete 5-

hydroxytryptamine (5-HT, also known as serotonin); and N-cells secrete neurotensin (NT). 

Some of these gut peptides, especially GLP-1, PYY, and CCK, impact metabolism via 

paracrine neuronal signaling. Further, gut peptides enter circulation and act as endocrine 

factors at the intestine, pancreas, liver, gallbladder, central nervous system, and brown and 

white adipose tissue. Figure created with BioRender.com.
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Figure 2. Signaling mechanisms of gut peptide secretion by microbially produced metabolites.
Metabolites produced or altered by the gut microbiota that impact gut peptide secretion 

include short chain fatty acids (SCFAs), indole metabolites produced from bacterial 

metabolism of tryptophan, primary bile acids (BAs) that can be deconjugated by bacterial 

bile salt hydrolase, and secondary BAs produced by bacterial metabolism of primary 

Bas, among others. SCFAs are proposed to induce secretion of glucagon-like peptide 

1 (GLP-1) and peptide YY (PYY) via FFAR2 and/or FFAR3; however, some studies 

suggest that SCFA absorption and basolateral FFAR2 is responsible for SCFA-induced gut 

peptide secretion. Indole metabolites inhibit voltage-gated K+ channels to increase EEC 

action potential and intracellular Ca2+, and induce GLP-1 secretion; alternatively, indole 

metabolites may activate the aryl hydrocarbon receptor (AHR) to induce GLP-1 secretion. 

Bacterial lipopolysaccharide (LPS) induces GLP-1 secretion via toll-like receptor 4 (TLR4). 

Primary BAs primarily activate the Farnesoid X receptor (FXR) to inhibit GLP-1 secretion, 

whereas secondary BAs primarily activate the basolateral G-protein bile acid receptor 1 
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(Gpbar1, also known as TGR5) to induce gut peptide secretion. Black arrows indicate 

signaling pathways resulting in induction of gut peptide secretion; red arrow indicates 

signaling pathways resulting in inhibition of gut peptide secretion. Figure created with 

BioRender.com.
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Figure 3. Microbial metabolites enter circulation and impact metabolic organ function.
Microbial metabolites discussed in the text are listed with their metabolic organ targets. 

Short chain fatty acids (SCFAs); branched chain amino acids (BCAAs), imidazole 

propionate (IMP), lipopolysaccharide (LPS); caseinolytic peptidase B protein homolog 

(ClpB). Figure created with BioRender.com.
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Table 1.

Summary of intestinal gut peptides.

Peptide EEC Type Tissue 
Location of 
Secretion

Function References

Serotonin Enterochromaffin 
Cell

Throughout the 
GI tract

Regulation of intestinal motility 
and inflammation, gluconeogenesis 
and glucose uptake, adipose tissue 
lipolysis, brown adipose tissue 
thermogenesis

(Sumara et al., 2012, Heredia et al., 
2013, Margolis et al., 2014, Crane et 
al., 2015)

CCK I cell Small intestine Regulation of gallbladder 
contraction, gastric emptying, 
pancreatic exocrine secretion, brown 
adipose tissue thermogenesis and 
hepatic glucose production, decreases 
food intake

(Blouet and Schwartz, 2012, Cheung 
et al., 2009, Li and Owyang, 
1993, Lorenz and Goldman, 1982, 
Schwartz et al., 1993, Sonobe et al., 
1995)

GIP K cell (also found 
in some GLP-1 
secreting cells)

Small intestine Amplifies glucose-stimulated insulin 
secretion, promotes β-cell survival 
and proliferation

(Gasbjerg et al., 2019, Kim et al., 
2005)

Neurotensin N cell Small intestine Increases bile acid reabsorption 
and gallbladder motility, regulates 
insulin, somatostatin and glucagon 
secretion

(Dolais-Kitabgi et al., 1979, 
Yamasato and Nakayama, 1988, 
Béraud-Dufour et al., 2010, Li et al., 
2021b)

GLP-1 L cell Small intestine 
through rectum

Amplifies glucose-stimulated insulin 
secretion, promotes β-cell survival 
and proliferation, decreases food 
intake, delays gastric emptying

(Li et al., 2005, Hare et al., 2010, 
Lamont et al., 2012, Turton et al., 
1996, Davis et al., 1998, Zhang et 
al., 2022)

GLP-2 L cell Small intestine 
through rectum

Increases epithelial cell proliferation, 
intestinal barrier function and 
intestinal hexose transport, inhibits 
gastric acid secretion

(Drucker et al., 1996, Benjamin et 
al., 2000, Wøjdemann et al., 1999, 
Cheeseman and Tsang, 1996)

PYY L cell Small intestine 
through rectum

Inhibits gastric acid secretion, gastric 
emptying and pancreatic exocrine 
secretion, decreases food intake

(Adrian et al., 1985, Grandt et al., 
1995, Moran et al., 2005, Challis et 
al., 2003, Degen et al., 2005)

Oxyntomodulin L cell Colon Decreases food intake, amplifies 
glucose-stimulated insulin secretion

(Dakin et al., 2004, Maida et al., 
2008)

INSL5* L cell Colon Increases food intake and hepatic 
glucose production, regulates islet 
development and insulin secretion

(Grosse et al., 2014, Lee et al., 2016, 
Zaykov et al., 2019, Burnicka-Turek 
et al., 2012)

(GI, gastrointestinal; CCK, cholecystokinin; GIP, glucose-dependent insulinotropic peptide; GLP-1, glucagon-like peptide 1; GLP-2, glucagon-like 
peptide 2; PYY, peptide YY; INSL5, insulin-like peptide 5).

*
Several actions of INSL5 are debated; see text for more details.
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Table 2.

Summary of gut peptide and expression in germ-free mice compared to conventional mice.

Peptide GF vs. conventional mice References

Serotonin Decreased in circulation (Sjögren et al., 2012, Yano et al., 2015, Wikoff et al., 
2009)

CCK Increased in circulation (Martinez-Guryn et al., 2018)

Decreased expression in the proximal intestine (Duca et al., 2012)

GIP Increased GIP+ cells in jejunum and colon (Modasia et al., 2020)

Neurotensin No data

GLP-1 Increased in circulation (Heiss et al., 2021, Wichmann et al., 2013, Zarrinpar 
et al., 2018)

Increased cecal and colon Gcg expression (Wichmann et al., 2013)

Decreased expression in the proximal intestine (Duca et al., 2012)

GLP-2 No data

PYY Decreased in circulation and decreased expression in the proximal 
intestine

(Duca et al., 2012)

Decreased in circulation compared to mice colonized with B. 
thetaiotaomicron and M. smithii

(Samuel et al., 2008)

Oxyntomodulin No data

INSL5 Increased expression in colon (Lee et al., 2016)

(GF, germ-free; GI, gastrointestinal; CCK, cholecystokinin; GIP, glucose-dependent insulinotropic peptide; GLP-1, glucagon-like peptide 1; 
GLP-2, glucagon-like peptide 2; PYY, peptide YY; INSL5, insulin-like peptide 5).

J Endocrinol. Author manuscript; available in PMC 2023 September 27.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meyer and Duca Page 46

Table 3.

Effects of microbial metabolites or components on gut peptide secretion.

Compound Effect on gut peptide 
secretion

Proposed Mechanism References

SCFA Increased GLP-1 and PYY Activation of FFAR2/FFAR3 (Brooks et al., 2017, Christiansen et al., 
2018, Tolhurst et al., 2012)

Primary and some 
secondary bile acids

Decreased GLP-1 Activation of FXR (Li et al., 2019b, Li et al., 2019c, Trabelsi 
et al., 2015)

Secondary bile acids Increased GLP-1 and PYY Activation of TGR5 (Gpbar1) (Brighton et al., 2015, Christiansen et al., 
2019, Kuhre et al., 2018)

Tryptophan metabolites Increased GLP-1 Activation of AHR (Natividad et al., 2018)

Increased GLP-1 (acute) Inhibition of voltage-gated K+ 

channels (acute)
(Chimerel et al., 2014)

Decreased GLP-1 
(prolonged)

Decreased ATP production via 
inhibition of NADH dehydrogenase

LPS (E. coli) Increased GLP-1 Activation of TLR4 (Lebrun et al., 2017, Anhê et al., 2021)

LPS (R. sphaeroides) No effect on GLP-1 
secretion

No (or possibly antagonistic) effect 
on TLR4 activation

(Anhê et al., 2021)

(SCFA, short chain fatty acids; FFAR2, free fatty acid receptor 2; FFAR3, free fatty acid receptor 3; GLP-1, glucagon-like peptide 1; PYY, peptide 
YY; FXR, Farnesoid X Receptor; TGR5, G-protein-coupled bile acid receptor (Gpbar1); AHR, arylhydrocarbon receptor; LPS, lipopolysaccharide; 
TLR4, toll-like receptor 4).
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