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Abstract

Prostate cancer treatment decisions are heavily reliant upon subjective visual interpretation 

(assigning Gleason patterns, or International Society of Urological Pathology (ISUP) grade 

groups) of limited numbers of 2D histology sections. Under this paradigm, inter-observer variance 

is high, with ISUP grades not correlating well with outcome for individual patients, and which 

contributes to the over- and under-treatment of patients. Recent studies have demonstrated 

improved prognostication of prostate cancer outcomes based on computational analyses of glands 

and nuclei within 2D whole slide images. Our group has also shown that the computational 

analysis of 3D glandular features, extracted from 3D pathology datasets of whole intact biopsies, 
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can allow for improved recurrence prediction compared to corresponding 2D features. Here we 

seek to expand on these prior studies by exploring the prognostic value of 3D shape-based nuclear 

features in prostate cancer (e.g., nuclear size, sphericity). 3D pathology datasets were generated 

using open-top light-sheet (OTLS) microscopy of 102 cancer-containing biopsies extracted ex 
vivo from the prostatectomy specimens of 46 patients. A deep learning-based workflow was 

developed for 3D nuclear segmentation within the glandular epithelium versus stromal regions 

of the biopsies. 3D shape-based nuclear features were extracted, and a nested cross-validation 

scheme was used to train a supervised machine classifier based on 5-year biochemical recurrence 

(BCR) outcomes. Nuclear features of the glandular epithelium were found to be more prognostic 

than stromal cell nuclear features (AUC = 0.72 versus 0.63). 3D shape-based nuclear features of 

the glandular epithelium were also more strongly associated with risk of BCR than analogous 2D 

features (AUC = 0.72 versus 0.62). The results of this preliminary investigation suggest that 3D 

shape-based nuclear features are associated with prostate cancer aggressiveness and could be of 

value for the development of decision-support tools.
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Introduction

Prostate cancer (PCa) accounts for 1 in 8 of the newly detected cancer cases in the 

United States, affecting nearly 250,000 patients annually [1]. Currently, grading of PCa for 

prognosis and treatment planning relies on 2D histology, where a set of core-needle biopsies 

is formalin-fixed and paraffin-embedded (FFPE), sectioned, and mounted on glass slides and 

stained for microscopic analysis. To assess the aggressiveness of the cancer, pathologists 

use the International Society of Urological Pathology (ISUP) grade group system [2–4] 

which involves visual examination and interpretation of complex glandular morphologies in 

a limited number of 2D histological tissue sections (4-μm thick) cut from each biopsy. In 

this workflow, typically ~1% of the volumetric extent of each biopsy is analyzed. In part 

due to this limited “sampling” of the biopsies in 2D, grading of prostate cancer suffers 

from high levels of inter- and intra-observer variability [5–8]. A related issue is that ISUP 

grade groups do not precisely correlate with individual patient outcomes, especially for 

moderate-risk cases (ISUP Grade Group 2) that account for approximately 50% of the newly 

detected PCa cases in the USA. These problems contribute to the overtreatment of indolent 

cases (with surgery or radiation), which are often accompanied by life-changing side effects 

(incontinence or impotence) and potentially avoidable healthcare costs. Conversely, they 

also contribute to the undertreatment of aggressive cases, which can lead to potentially 

avoidable metastasis and death [9].

By combining recent advances in tissue-clearing techniques [10–12] and high-throughput 

three-dimensional microscopy [13–19], there is now the ability to generate non-destructive 

3D pathology datasets of large clinical specimens (surgical excisions or whole biopsies). 

In particular, it is possible to rapidly label thick tissues with a small-molecule fluorescent 
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analog of H&E, and to false color the datasets so that they closely mimic the appearance 

of standard slide-based H&E histology (e.g. supplementary material, Figure S1) [14,18,20]. 

Unlike conventional histology, non-destructive 3D pathology achieves orders-of-magnitude 

greater microscopic sampling of tissues than conventional slide-based histology and 

enables volumetric quantification of diagnostically significant microarchitectures. The non-

destructive imaging process also preserves tissue specimens for downstream molecular 

assays [21]. However, since a single 3D pathology dataset of a biopsy can be tens to 

hundreds of gigabytes in size, there are significant challenges for the human interpretation 

of such datasets. Manual examination of these datasets can be tedious, which motivates the 

development of computational methods for analysis. Here, we employ interpretable “hand-

crafted” features, computationally derived from segmentation masks of tissue structures 

(e.g., glands and nuclei), to facilitate the clinical acceptance of 3D pathology as a new 

diagnostic approach.

A recent study by our group demonstrated the benefits of the computational analysis of 

3D glandular features for PCa risk stratification [19]. In that study, ex vivo biopsies were 

extracted from archived radical prostatectomy specimens obtained from patients with known 

5-year biochemical recurrence (BCR) outcomes. These patients were originally diagnosed 

with low- to moderate-risk PCa (Grade Groups 1 – 3), with 50% of cases exhibiting 

BCR within 5 years of prostatectomy [22]. Biopsies were stained with small-molecule 

fluorescent analogs of hematoxylin and eosin (H&E), optically cleared with a dehydration 

and solvent-immersion protocol, and then non-destructively imaged with open-top light-

sheet microscopy (OTLS) to generate whole-biopsy 3D pathology datasets (Figure 1A). For 

3D segmentation of prostate glands (lumen, epithelium, and stromal compartments), our 

group developed a computational pipeline called “image-translation-assisted segmentation 

in 3D” (ITAS3D). 3D glandular features (e.g., gland curvature, eccentricity, volume ratios) 

were quantified from the cancer-containing regions of the biopsies. We showed that these 

quantitative features are more strongly associated with BCR outcomes than analogous 2D 

glandular features.

In addition to glandular morphologies, which are currently the sole basis for Gleason 

grading (nuclear morphologies are not looked at for standard-of-care Gleason grading), 

studies using 2D whole-slide images (conventional 2D pathology) have shown that there 

is prognostic value in computationally extracted nuclear features within PCa [22–33]. Note 

that prior to Gleason grading becoming the widely accepted standard for grading PCa, 2D 

cytology, including nuclear morphologies, were also used by pathologists in various grading 

schemes [30–35]. However, the prognostic value of 3D (volumetric) nuclear features has 

not been previously investigated. Therefore, we sought to quantify a preliminary set of 3D 

shape-based nuclear features and their 2D counterparts to directly compare their ability to 

predict BCR outcomes. Our underlying hypothesis is that 2D cross sections of a nucleus 

(as seen with conventional histology) cannot fully elucidate certain complex changes in 3D 

nuclear morphology and therefore may be limited for patient risk stratification. For example, 

supplementary material, Figure S2 provides a simple illustration of how an irregularly 

shaped 3D nucleus may appear quite regular and circular when viewed as 2D cross sections.
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For 3D nuclear and glandular segmentation, we used cellpose [36] and our previously 

reported ITAS3D pipeline [19], respectively, which allowed us to distinguish between nuclei 

within the gland epithelium versus surrounding stromal compartments (Figure 1B). 3D 

shape-based nuclear features and 2D analogs were extracted from each biopsy, such that the 

prognostic value of 3D versus 2D nuclear features could be compared. These 3D and 2D 

features were used to train a multi-parameter machine classifier to stratify patients based on 

their BCR outcomes, which serves as a proxy for aggressive versus indolent PCa (Figure 

1C).

Materials and methods

Tissue preparation

This study was approved by the institutional review board (IRB) of the University 

of Washington (Seattle, WA, USA; Study 00004980), where research specimens were 

previously obtained from patients with informed consent. Archived FFPE prostatectomy 

specimens from a prior case-cohort research study (Canary TMA) [22] were collected from 

46 patients with PCa, all of which were identified as ISUP Grade Group 1–3 (Gleason 

Grade 3+3, 3+4, or 4+3). These patients were followed for at least 5 years after radical 

prostatectomy as part of the prior study [22], in which the primary study endpoints were 

5-year BCR outcomes and time to BCR, which were also used as endpoints for this study. 

FFPE specimens were identified for each case corresponding to the six regions of the 

prostate targeted in standard biopsy procedures (Figure 1A). Specimens were deparaffinized 

by heating them at 75 °C for 1 h until the paraffin wax melted. The specimens were then 

placed in 65 °C xylene for 48 h. Next, a simulated core-needle biopsy (~ 1 mm in width) 

was taken from each of the six deparaffinized blocks per case, resulting in 300 total biopsy 

cores (Figure 1A).

We used a previously developed “T&E” staining protocol (nuclear dye TO-PRO3 and 

Eosin) and imaged each biopsy core using OTLS microscopy [15,19]. Simulated biopsies 

underwent two 1-h washes in 100% ethanol to remove excess xylene and were partially 

rehydrated in 70% ethanol for 1 h. Individual biopsies were stained for 48 h in 70% 

ethanol at pH 4 with a 1:200 dilution of Eosin-Y (catalog no. 3801615, Leica Biosystems) 

and a 1:500 dilution of TO-PRO3 (catalog no. T3605, Thermo Fisher Scientific) at room 

temperature with gentle agitation. After staining was complete, the biopsies were dehydrated 

in 100% ethanol for 2 hours. Samples were optically cleared by individually placing them in 

ethyl cinnamate (catalog no. 112372, Sigma-Aldrich) (refractive index of n = 1.56) for 8 h 

before imaging using OTLS microscopy.

For imaging, ethyl cinnamate was used as the immersion medium and samples were 

mounted within a custom HIVEX (n = 1.55) biopsy holder, as described previously [15]. 

A four-channel digitally controlled laser module (Skyra, Cobolt Lasers, Hübner Photonics, 

Kassel, Germany) was used for illumination. TO-PRO3 fluorescence was excited at 638 nm 

and Eosin fluorescence was excited at 561 nm. Fluorescence bandpass filters at 721 nm ± 

65 nm and 618 nm ± 50 nm were used for collection of TO-PRO3 fluorescence and Eosin 

fluorescence, respectively. The lateral and axial resolution of the OTLS microscope used for 

this study was ~0.95 μm and ~3.5 μm, respectively (full width at half maximum of the point 
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spread function). Tissues were imaged at an isotropic sampling pitch of ~0.44 μm/pixel. The 

volumetric imaging time was approximately 0.5 minute per cubic mm of tissue for each 

illumination wavelength.

Data preparation

Two-channel OTLS microscopy datasets were stored on disk in the HDF5 format with 

microscopy metadata in an XML file. A custom compression filter (B3D) was used to 

provide 10x lossless compression. Raw OTLS images were reviewed in BigDataViewer 

[37] by board-certified pathologists to identify cancer-containing biopsies (Figure 1A). Of 

the initial 276 biopsy cores extracted, 102 contained cancer. Visual examination of the 3D 

datasets enabled us to identify regions of the biopsies in which most of the glands were 

cancer. Continuous (stitched and fused) 3D volumes were created of these cancer regions 

using the BigStitcher plugin for ImageJ [38]. H&E-like false coloring was performed on 

our OTLS datasets using FalseColor-python, a previously published method that mimics 

Beer–Lambert absorption of light as a function of staining concentration [20].

Nuclear segmentation and feature extraction

Given the memory requirements necessary for 3D segmentation, fused 3D images were 

broken into discrete blocks for processing. Each block was 2048 × 1432 × 500 voxels in 

size, or approximately 1024 by 716 by 200 μm in the axial direction (along the length 

of the needle core) (Figure 2A,B). Prior to segmentation, data blocks underwent median 

filtering with a circular structuring element (r = 2 voxels) from scikit-image [39] followed 

by contrast-limited adaptive histogram equalization (CLAHE) (Figure 2C, supplementary 

material, Figures S3,S4). After preprocessing, data blocks were passed into the cellpose 

[36] 3D nuclear segmentation model using the following parameters: an average diameter 

of 17 voxels, net averaging, and a batch size of 6 (Figure 2D, Supplementary materials and 

methods). All processing was done on a desktop computer equipped with 512 GB of RAM 

and a Nvidia Quadro 5000 RTX GPU.

To avoid quantifying the properties of nuclei that were artificially fragmented/cropped at 

the edges of each data block, segmented nuclei touching the boundaries of each data block 

were removed using the clear_border method from the skimage.segmentation python library 

[39]. Before feature extraction, small objects within each segmentation mask measuring 

less than the 1st volume percentile were removed as noise (Supplementary materials and 

methods, supplementary material, Figure S5). Quantitative features (e.g. volume, sphericity, 

major/minor axis length) were extracted from the segmentations using the regionprops 
method from the skimage.measure python library. A full set of 3D nuclear features (and 2D 

counterparts) used is listed in supplementary material, Figure S6. Glandular masks of each 

cancerous region, generated via our ITAS3D pipeline [19], were used to classify segmented 

nuclei as belonging to epithelial or stromal compartments based on the centroid location of 

each segmented nucleus within the glandular mask (Supplementary materials and methods). 

Biopsy-level feature sets were collected by averaging the extracted features from all data 

blocks within a biopsy.
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To compare the prognostic value of 2D and 3D nuclear features, 2D nuclear features 

were extracted from the 3D dataset at three cross-sectional levels separated by 20 μm, 

and then averaged (supplementary material, Figure S7). This replicates the standard-of-care 

pathology practice at many institutions in which histology sections are cut (and viewed) at 

three such levels [40].

Statistical analysis

Patients who experienced BCR within 5 years after radical prostatectomy were labeled as 

belonging to the ‘BCR’ group, and all other patients as ‘non-BCR.’ Biochemical recurrence 

(BCR) is defined as a rise in prostate-specific antigen (PSA) levels of >0.2 ng/ml after 

treatment (>8 weeks after radical prostatectomy). To assess the ability of different nuclear 

features to distinguish between BCR and non-BCR groups, we applied ROC analysis from 

which the area-under-the-curve (AUC) could be extracted.

Using the binary 5-year BCR category as the endpoint, a multiparameter classifier was 

developed to stratify patient risk. The least absolute shrinkage and selection operator 

(LASSO) linear regression model was used [41]. LASSO minimizes overfitting by making 

use of an L1 regularization term and identifies a subset of the most predictive input 

features. The LASSO tuning parameter λ was optimized using an internal 4-fold cross 

validation (CV) scheme, where the dataset was randomly separated into four equally 

sized groups: three training datasets, and one to validate the model’s performance. Due 

to the lack of an external validation cohort, a nested CV scheme was used to develop 

multiparameter classifiers based on 3D and 2D features, and to determine the performance 

of the multiparameter models without bias or data leakage between parameter estimation 

and validation. Hyperparameter tuning was performed during each iteration of the outer CV, 

and LASSO regression was applied on the training set of the outer CV once an optimal λ
was identified in the inner CV. AUC values were calculated from the validation dataset of 

the outer CV. This nested CV was performed 200 times to determine an AUC (average and 

SD) [42].

Kaplan–Meier (KM) analysis was carried out to compare BCR-free survival rates for high- 

versus low-risk groups of patients. This analysis used a subset of 45 cases for which time-to-

recurrence data was available. The performance of the models based on 2D or 3D features 

for epithelial nuclei was quantified with p-values (via log-rank test), hazard ratios (HR), and 

concordance index (C-index) metrics. For the multiparameter classification model used for 

KM analysis, the outer 4-fold CV in our nested CV schema was replaced by a leave-one-out 

approach, where one case was left out each iteration (45 total iterations, i.e. one iteration 

for each of the cases) to calculate the probability of 5-year BCR for that patient [43]. The 

samples were labeled as low- or high-risk via a posterior class probability threshold of 0.5. 

MATLAB was used for KM analysis and all other statistical analyses was performed in 

Python using the scipy and scikit-learn libraries [44].
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Results

3D nuclear segmentation

Generating ground-truth annotations to train a 3D nuclear-segmentation algorithm can be 

tedious. Therefore, we chose cellpose as our segmentation framework for two reasons: 

first, as a “generalist” segmentation algorithm, cellpose requires minimal retraining or 

annotations to operate on unseen data, and secondly, cellpose is compatible with 3D 

datasets and can efficiently segment densely packed nuclei within large tissue volumes. 

To assess segmentation quality, we generated 3D ground truth annotations of nuclei within 

small sub-volumes (n = 6) of PCa biopsies imaged with OTLS microscopy and found that 

cellpose successfully generated 3D nuclear segmentations with an average dice coefficient of 

0.81 (supplementary material, Figure S8). When evaluating cellpose segmentation quality 

with our moderate-resolution OTLS datasets (~0.9-micron lateral resolution), the best 

segmentation results were achieved with the native-resolution datasets without any down 

sampling (supplementary material, Video S1).

At full resolution, each individual (single biopsy) 3D pathology dataset was too large to 

segment at once. Thus, cancerous biopsy regions were divided into smaller blocks for 3D 

segmentation (Figure 2A,B). Each data block underwent a two-step preprocessing routine 

(Figure 2C) (Supplementary materials and methods, supplementary material, Figures S3,S4) 

that improved segmentation quality. This process decreased the rate of over-segmentation 

and improved the detection of nuclei in low-signal regions of the tissue. Images were then 

passed into the cellpose nuclear-segmentation model to generate a final 3D segmentation 

mask (Figure 2D, supplementary material, Videos S2 and S3). An image atlas of example 

3D nuclear-segmentation results is shown in Figure 3, including the stratification of nuclei 

into epithelial and stromal compartments by using ITAS3D-generated gland-segmentation 

masks.

Preliminary clinical study

To evaluate the prognostic value of 3D versus 2D nuclear features (see materials and 

methods), our study consisted of 46 PCa cases in which the patients were followed for a 

minimum of 5 years after radical prostatectomy as part of the Canary TMA case-cohort 

study, which recruited primarily low- to intermediate-risk patients [22]. The primary 

endpoints of the Canary TMA study were 5-year biochemical recurrence (BCR) outcomes 

and time to BCR, which were also used as endpoints in our study. Roughly half of the cases 

in the Canary TMA study had BCR within 5 years.

Six simulated core needle biopsies were extracted from the 46 cases and imaged with 

OTLS (see materials and methods). Review of the 3D pathology datasets by genitourinary 

pathologists (L.D. True and N.P. Reder) identified the cancer-enriched regions within each 

of the 276 biopsies (i.e. regions in which most glands were cancerous), in which only 

102 of the biopsies contained appreciable amounts of cancer. The nuclear-segmentation 

and ITAS3D (gland-segmentation) pipelines were applied to the cancer-enriched regions of 

these 102 biopsies. By combining the 3D nuclear segmentations (instance segmentations) 

with the glandular segmentation masks (semantic segmentation), nuclei were identified as 
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contained in either the glandular epithelium or stromal tissue compartments (see Materials 

and Methods).

2D and 3D shape-based nuclear features were quantified and analyzed in terms of their 

association with BCR outcomes (supplementary material, Figure S6). For 2D analysis, 

average values from a total of 3 cross-sectional levels were calculated, in which the 

three levels were separated by 20 μm (mimicking clinical practice at many institutions, 

supplementary material, Figure S7). A total of 18 shape-based nuclear features were 

used as the inputs into a multiparameter risk classifier based on 5-year BCR outcomes. 

Separate risk-classification models were trained for the nuclei in the glandular epithelium 

versus stromal compartments. The average area-under-the-ROC-curve (AUC) was used as a 

measure of the ability of the combined nuclear features to predict 5-year BCR outcomes as a 

proxy for indolent versus aggressive disease.

3D shape-based nuclear features consistently outperformed their analogous 2D features, 

both for epithelial nuclei and stromal nuclei (Figure 4A,B). From comparison of Figure 4A 

and Figure 4B, it was apparent that there was better performance with models trained on 

shape-based nuclear features from the glandular epithelium than models trained with nuclei 

from the stromal regions. 3D shape-based nuclear features in the stroma were found to 

be weakly prognostic with an average AUC = 0.63 ± 0.06, while 2D shape-based nuclear 

features in the stroma were not prognostic with an average AUC = 0.50 ± 0.05.

Kaplan–Meier (KM) curves of BCR-free survival were constructed for a subset of cases in 

which time-to-recurrence (BCR) data was available (Figure 4C,D). Compared with models 

based on 2D shape-based nuclear features, models based on 3D shape-based nuclear features 

are associated with a higher HR and C-index, along with a significant P value (P < 0.05). 

This suggests a stronger association with outcome for 3D shape-based nuclear features 

compared to corresponding 2D features.

For this early-stage study, 14 out of 18 of the shape-based nuclear features were 

independently associated with BCR outcomes (p < 0.05). Of these 14 features, 5 were 

prognostically significant in 3D but not in 2D. As one example, Figure 4E,F shows the 

mean and variance of the nucleus-to-convex hull ratio of epithelial nuclei (3D versus 2D). 

The convex hull is the minimum polyhedron (or polygon in 2D) that encloses a nucleus. 

Figure 4E shows that the nuclei in BCR cases (i.e., aggressive PCa) typically had a higher 

mean nucleus-to-convex-hull ratio (P = 1.1 × 10−4). Physically, this means that the nuclei 

were more spherical or ovaloid rather than irregular and/or curved in shape. However, this 

relationship is not apparent in the 2D case (P = 0.24). Similarly, Figure 4F demonstrates 

that the variance of the nucleus-to-convex-hull ratio was greater for recurrent versus non-

recurrent cases when examined in 3D with P = 8.6 × 10−6, while this difference was less in 

2D (P = 0.47).

Overall, our analysis of a variety of nuclear shape features consistently reveals less 

heterogeneity (variance) in aggressive (BCR) cancers compared to non-aggressive cases 

(supplementary material, Figure S9). This parallels the results of a previous study in which 
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higher-grade PCa cases had smaller and more homogeneous glandular structures (less spatial 

variance) [19].

Discussion

Improvements in resolution, scale, and multiplexing capacity for non-destructive 3D 

imaging technologies are leading to disease insights that can inform treatment decisions 

[21]. However, given the growing size of datasets generated by modern “spatial biology” 

techniques, computational tools must also be developed to enable pathologists and 

oncologists to efficiently comprehend such large datasets. An attractive initial approach 

is to rely on intuitive features familiar to pathologists (e.g., glandular and cytologic 

features), which will improve interpretability and facilitate clinical acceptance. As in 

our previous study examining 3D glandular features [19], our goal in this study has 

been to demonstrate the value of 3D pathology by providing a direct comparison of 

intuitive 3D versus 2D nuclear features analyzed computationally. Our work leverages 

the fact that computational 2D pathology has already been demonstrated to improve 

disease prognostication [29,45,46], and explores the additional value that computational 

3D pathology can offer for certain applications such as risk stratification of PCa. We have 

avoided comparing our computational results with risk classifiers or nomograms that rely 

on human interpretation of histology images [43,47,48]. Our motivation for this is that 

by directly comparing 3D versus 2D computational pathology, we remove the subjectivity 

introduced by human interpretation. Such human-observer studies, to be performed in the 

future, will require a significantly larger cohort of patients and a large panel of pathologists 

to mitigate interobserver discordance.

Previous studies have used 3D imaging of in vitro cancer models to examine tumorigenesis, 

drug response, and cancer-associated alterations in cellular development [49–51]. However, 

to our knowledge, this is the first report to analyze the prognostic significance of nuclei 

within their native 3D context in human cancer specimens. Given the relatively small 

number of cases in this preliminary analysis, we limited the number of 3D nuclear features 

to those that we deemed would most likely have prognostic significance based on previous 

studies [23–29,52–58]. Shape-based nuclear features are an attractive choice for several 

reasons: they are the most frequently used features for prognostication based on 2D whole 

slide images [18–23, 42, 43], they are intuitive for clinical and biological interpretation 

[59], they have been considered in the past for PCa grading [30–35], and there are 

relatively straightforward analogs between 2D and 3D shape-based features. Rather than 

exhaustively mining all possible nuclear features to maximize classifier performance, we 

have deliberately based our classifiers on a limited set of intuitive features to show that 3D 

nuclear features have obvious prognostic value. In other words, with some effort, we believe 

that better 3D features and models can be developed in the future.

Our analysis shows that for PCa, epithelial nuclei hold the most prognostic significance 

(versus stromal nuclei) for stratifying patients based on known clinical outcomes (Figure 

4A). Given that PCa is typically a disease of epithelial cells that form glands, this result 

is not surprising. However, we find that 3D shape-based features of stromal nuclei are 

also somewhat prognostic (Figure 4B), which is supported by previous studies using 2D 
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histology [4,28,29,60–62]. Since these stromal nuclei are from a mixture of cell types, it is 

not surprising that they are less prognostic than the epithelial nuclei in the cancer glands. 

Most importantly, for both epithelial and stromal models, our results demonstrated that 

3D shape-based nuclear features were more strongly associated with BCR compared to 

their 2D counterparts for risk stratification (Figure 4A–D). Even with the limited number 

of samples and extracted features in this preliminary analysis, certain differences between 

nuclei in indolent and aggressive cases were only statistically significant when examined 

in 3D (Figure 4E,F). These findings support the value of 3D digital pathology methods 

for clinical management of PCa. Overall, the prognostic value of the 3D nuclear features 

analyzed in this study is less than the prognostic value of the 3D glandular features we 

previously explored19. This is expected and consistent with the fact that PCa glandular 

structures are the current basis for clinical Gleason grading. Therefore, the ideal clinical 

classifier should holistically combine both glandular and cytologic/nuclear features in the 

future.

In addition to combining cytologic and architectural features (e.g., nuclei and glands), there 

are clear opportunities to extend our work. For example, adding 3D features from additional 

tissue structures, such as vasculature, could reveal novel signatures of aggressiveness. 

Having a comprehensive spatial and molecular view of tumors in 3D would also be 

of obvious clinical value63,64. Finally, obtaining higher-resolution datasets with the latest 

generations of OTLS microscopy systems16,17 should allow for more accurate quantification 

of 3D nuclear features as well as the extraction of sub-nuclear features (e.g. chromatin 

texture, nucleoli). This preliminary study motivates future exploratory directions using 

computational 3D pathology, as well as larger-scale clinical studies to guide treatment 

decisions, such as deciding which PCa patients should be placed on active surveillance 

versus treated with surgery/radiation, or which patients should receive adjuvant therapies 

after surgery/radiation. Ultimately, we aim to demonstrate that computational 3D pathology 

can improve the long-term outcomes and quality of life for patients with PCa and many 

other diseases.
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Figure 1. Workflow to evaluate the prognostic value of 3D nuclear features for prostate cancer 
risk assessment.
(A) Archived (FFPE) radical prostatectomy specimens were obtained from a 46-patient 

cohort with known 5-year biochemical recurrence (BCR) outcomes, from which simulated 

(ex vivo) biopsies were extracted (6 biopsies per case, per sextant biopsy protocol). The 

biopsies were labeled with a fluorescent analog of H&E, optically cleared to render them 

transparent to light, and comprehensively imaged in 3D via OTLS microscopy. (B) 3D 

nuclear segmentation masks of cancer-containing regions were generated using the deep-

learning based cellpose model and 3D glandular segmentations were generated by the 

previously published ITAS3D pipeline. This enabled us to distinguish between nuclei in 

the glandular epithelium (blue) versus the surrounding stroma (yellow). (C) 3D shape-based 

features of epithelial and stromal nuclei were extracted and passed into a multiparameter 

classifier (LASSO) to stratify patients based on 5-year BCR outcomes.
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Figure 2. 3D nuclear segmentation pipeline for biopsies imaged with OTLS microscopy.
(A) Nuclear channel (To-Pro-3) of a PCa biopsy imaged by OTLS microscopy with the 

cancerous region outlined with a dashed red box. (B) The cancerous region is broken up 

into discrete data blocks before processing. (C) Each data block is passed into a two-step 

preprocessing procedure before segmentation (see text for details). (D) Preprocessed data 

blocks are passed into cellpose to generate 3D nuclear segmentation masks, where each 

segmented nucleus is assigned a unique label.
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Figure 3. Image atlas of 3D nuclear segmentation results.
(A) Non-destructive 3D pathology dataset of a PCa biopsy and segmented sub-volume. 

Sagittal (B), coronal (C), and axial (D) views of 3D nuclear segmentations of the segmented 

sub-volume. During segmentation, each identified nucleus is given a unique integer label, 

which is represented by a color for visualization purposes (scale bar, 100 μm). (E) 

Larger field of view showing cancerous glands and surrounding stroma (left). colorized 

segmentation masks overlaid onto H&E false-colored OTLS images (middle). Segmented 

nuclei colored by their location within the prostate microarchitecture (right) (scale bar, 50 

μm).
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Figure 4. Clinical analysis comparing the prognostic value of 3D & 2D nuclear features.
(A) ROC curves are shown for multiparameter models trained on 3D (red) and 2D (blue) 

nuclear features in epithelial regions. (B) ROC curves of multiparameter models trained on 

3D (red) and 2D (blue) nuclear features in stromal regions. (C,D) Kaplan–Meier curves 

are shown for BCR-free survival, showing that the model trained on epithelial 3D nuclear 

features (C) can better stratify patients into low- and high-risk categories than the model 

trained on epithelial 2D nuclear features (D). (E,F) Violin and box plots are shown for 

two examples of epithelial 3D nuclear features, along with their analogous 2D features, 

for cases in which BCR occurred within 5 years of radical prostatectomy (“BCR”) and for 

cases in which there was no BCR within 5 years of radical prostatectomy (“non-BCR”). 

For both example features, “Mean epithelial nucleus-to-convex-hull ratio” in (E), and 

“epithelial nucleus-to-convex-hull variance” in (F), the 3D feature shows improved patient 

risk stratification compared to its 2D counterpart.
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