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Abstract

Background: People using electricity-dependent durable medical equipment (DME) may be 

vulnerable to health effects from wildfire smoke, residence near wildfires, or residence in 

evacuation zones. To our knowledge, no studies have examined their healthcare utilization during 

wildfires.

Methods: We obtained 2016–2020 counts of residential Zip Code Tabulation Area (ZCTA) 

level outpatient, emergency department (ED), and inpatient visits made by DME-using Kaiser 

Permanente Southern California members 45+. We linked counts to daily ZCTA-level wildfire 

PM2.5 and wildfire boundary and evacuation data from the 2018 Woolsey and 2019 Getty 

wildfires. We estimated the association of lagged (up to 7 days) wildfire PM2.5 and residence 

near a fire or in an evacuation zone and healthcare visit frequency with negative binomial and 

difference-in-differences models.

Results: Among 236,732 DME users, 10 μg/m3 increases in wildfire PM2.5 concentration were 

associated with reduced rate (RR = 0.96, 95% CI: 0.94, 0.99) of all-cause outpatient visits one day 

after exposure and increased rate on 4 of 5 subsequent days (RR range 1.03–1.12). Woolsey Fire 

proximity (<20km) was associated with reduced all-cause outpatient visits, while evacuation and 

proximity were associated with increased inpatient cardiorespiratory visits (proximity RR = 1.45, 

95% CI: 0.99, 2.12, evacuation RR = 1.72, 95% CI: 1.00, 2.96). Neither Getty Fire proximity nor 

evacuation was associated with healthcare visit frequency.

Conclusions: Our results support the hypothesis that wildfire smoke or proximity interrupts 

DME users’ routine outpatient care, via sheltering in place. However, wildfire exposures were also 

associated with increased urgent healthcare utilization in this vulnerable group.
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Introduction

Wildfires are widespread, have increased in severity because of climate change, and will 

worsen in coming decades1–5. Development in the wildland-urban interface has placed more 

communities in the path of these increasingly frequent disasters6. Immediate impacts of 

wildfire, such as evacuations, power outages, and destruction of infrastructure cause trauma, 

stress, financial strain, and physical injury in affected communities7,8. Simultaneously, 70% 

of the US population is exposed to wildfire smoke annually9–11

Among other hazardous components, wildfire smoke contains fine particulate matter 

(PM2.5). Of PM2.5 sources, wildfire PM2.5 may be particularly harmful because it consists 

of more organic and elemental carbon12–14. It also constitutes most extreme PM2.5 exposure 

in California, accounting for 71% of total PM2.5 on days that exceed US Environmental 

Protection Agency (USEPA) annual standard of 12 μg/m3 9.

Most studies examining wildfire PM2.5 exposure have focused on respiratory and 

cardiovascular disease outcomes. Exposure has been associated with asthma and chronic 

obstructive pulmonary disease symptom exacerbation15–17, increases in emergency 

department (ED) and inpatient visits related to cardiorespiratory disease18–21, and increased 

mortality risk22–24.

Proximity to wildfire or residence in an evacuation zone may not only cause visible smoke 

exposure or extreme wildfire-related air pollution, it may also involve possible evacuation, 

community disruption, loss of access to community services and housing, power outages, 

and stress co-occurring with and resulting from these events.

People who use durable medical equipment (DME) may be particularly vulnerable to 

both wildfire PM2.5 exposure and stress from wildfire proximity or evacuation. DME 

use is common among older adults and is associated with respiratory illness and other 

disabilities29. Prevalence of DME rentals at Kaiser Permanente Southern California (KPSC) 

increased from 2008–2018, with the highest prevalence among older adults30. DME types 

included bilevel positive airway pressure (BiPAP) machines, enteral feeding machines, 

infusion pumps, oxygen equipment, suction pumps, ventilators, and wheelchairs30.

This group may face unique challenges during wildfire events. The association between 

wildfire smoke exposure and respiratory and cardiovascular disease outcomes has may be 

stronger among older adults compared to younger populations16,31. Further, people using 

DME may have co-occurring medical conditions such as cardiovascular disease that make 

them more vulnerable to wildfire PM2.5 and wildfire-related stressors like threatened or 

actual evacuation. Limited mobility or need for electricity access may result in increased 

difficulty evacuating disaster zones30,35.
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Our study has two unique components. First, we focus on a potentially vulnerable 

population by using 2016–2020 KPSC electronic health records from seven Southern 

California counties to examine the relationship between wildfire exposure and healthcare 

utilization in people who use DME. Second, we evaluate exposure to wildfire via (1) 

wildfire PM2.5 concentrations, and (2a) residential proximity to major active fires, and 

(2b) residence in an evacuated area. These proximity-based residential exposure estimates 

attempt to holistically assess the impact of wildfire exposure, including stress, rather than 

focusing only on air pollution. Our study period includes two major wildfire events in 

populated areas: the 400km2 Woolsey Fire, which burned from November 8–21 2018 in 

Los Angeles and Ventura counties, displacing 295,000 people and killing three36,37, and 

the 3km2 Getty Fire, which necessitated evacuations in densely populated Los Angeles, and 

burned from October 28-November 5, 201937,38.

Methods

Study population

We used electronic health record data from KPSC to identify all individuals who were 45 

or older as of October 28 2019 and had rented DME in the year prior. KPSC patients 

represent the underlying population in the region, except for slight under-representation of 

individuals living in the highest and lowest socioeconomic status (SES) communities39. We 

excluded younger DME renters in order to focus on socially and medically vulnerable older 

adults, but also to exclude breast pump users, a healthy subgroup of the otherwise vulnerable 

DME using population, whom we did not hypothesize to be disproportionately vulnerable to 

wildfire exposure. Electronic health record data included each patient’s Zip Code Tabulation 

Area (ZCTA) of residence. We obtained daily counts of healthcare visits–not necessarily 

related to DME use–by this population by residential ZCTA in seven counties in Southern 

California from January 1 2016 to March 15 2020. 236,732 DME patients lived in the study 

area, which covered most of San Bernardino, Orange, Los Angeles, Riverside, San Diego, 

Ventura, and Kern counties (Figure 1). The area consisted of 582 ZCTAs, each containing 

1–1773 patients. During 2018 and 2019, these seven counties experienced 23 wildfires that 

each burned over 3 km2 in California37,40, contributing to wildfire smoke in the area.

The KPSC Institutional Review Board (IRB) approved this study, and the Columbia IRB 

did not consider it human subjects research, since the data were fully de-identified before 

researchers at Columbia received them.

Exposure Definition

Wildfire PM2.5—We measured wildfire smoke exposure by estimating daily wildfire and 

non-wildfire PM2.5 concentrations at the ZCTA level using a multistage approach described 

elsewhere and in the supplemental digital content, in eMethods 140.

We calculated daily wildfire and non-wildfire PM2.5 by averaging concentrations across 

the higher-level spatial groupings of several ZCTAs based on spatial proximity (hereafter 

‘ZCTA groupings’; grouping method described in eMethods 2, in the eAppendix).
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Proximity to wildfire—To measure direct exposure to wildfire, we obtained data on the 

fire boundaries and evacuation zones of two disastrous Southern California wildfires – the 

Woolsey Fire and the Getty Fire. We chose these fires because they affected a substantial 

number of people in our study area, during the study period. The Woolsey Fire, which 

burned from November 8 2018 until November 21 2018, required the evacuation of 295,000 

people from Los Angeles and Ventura counties. It burned 1643 structures and almost 400 

km2 of land, making it particularly destructive36,37. The Getty Fire, which ignited on 

October 28 2019 and burned until November 5th, 2019, was notable because it necessitated 

evacuations during its 9-day duration in densely populated Los Angeles37,38.

Notably, The Thomas Fire also burned over 1100 km2 during our study period42. However, 

most of the fire burned in the rural northern corner of Ventura County and outside the 

study area. Therefore, we did not include the Thomas Fire in the proximity analyses, since 

very few participants would have been exposed to it. Still, smoke from this fire contributed 

substantially to wildfire PM2.5 in Ventura County in December 2017, and therefore was 

included in our PM2.5 analyses (Figure 2).

We obtained shapefiles of the total areas burned during the Getty and Woolsey fires from 

the CALFIRE Fire and Resource Assessment Program43. These perimeters represented 

the approximately the maximum burned areas of each fire42 and we used them to define 

exposure. We considered ZCTAs exposed if their boundary was within 20km of a final 

fire perimeter on days that a fire was active. US-based studies have evaluated exposure to 

wildfire disasters in different ways, including self-reported impact44, wildfire damage to 

own home45, evacuation from own home46,47, residence in a community where structures 

burned48, residence in a county where a wildfire burned49, and residential proximity to a 

wildfire50. We selected the Getty and Woolsey wildfires a priori, then linked exposure via 

proximity to the wildfire boundaries, selecting a distance of 20km as one that could elicit a 

stress response; prior studies have found impacts on wellbeing and mental health at similar 

distances51.

Next, we created an evacuation exposure metric. GIS data on evacuation zones were not 

available for either fire. Therefore, we reviewed webpages (described in eMethods 3, in 

the eAppendix) containing maps of the evacuation zones and digitized boundaries around 

all areas ever evacuated during either fire in QGIS52 (Figure 1). Using these data, we 

considered ZCTAs exposed to evacuation stress if they were within 10 km of any evacuation 

zone boundary (Figure 1) on days where a fire was active. Like close residence to a wildfire 

burn area, evacuation and anticipating potential fire or evacuation can cause stress, which we 

aimed to capture with this exposure definition7,8,53. We chose a 10km buffer rather than the 

previous 20km buffer because evacuation zones themselves can be large.

By measuring proximity to wildfire or residence in an evacuation zone, we aimed to 

capture a mixture of exposures, including possible visible smoke exposure or extreme 

wildfire-related air pollution, possible evacuation, community disruption, loss of access to 

community services and housing, power outages, and stress co-occurring with and resulting 

from these events. Though not all people living near a wildfire experience every component 
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of this mixture, we think the most important component is stress from the disaster. We have 

created a DAG (eFigure 1) describing this mixture.

Outcome Definition

We obtained daily counts of all-cause outpatient visits, all-cause emergency department 

(ED) visits, and all-cause inpatient admissions, as well as ED visits and inpatient admissions 

specifically for circulatory or respiratory disease outcomes made by KPSC members 45 and 

older who rented DME. Outpatient visits included both in-person and virtual synchronous 

visits (i.e., video or telephone visit with a provider), ED visits were those that terminated 

in the ED, and inpatient admissions consisted of all inpatient admissions (scheduled and 

unscheduled) as well as ED visits ending in an admission. Generally, outpatient visits are 

considered the lowest acuity, followed by ED visits, and inpatient visits are highest acuity. 

Recorded visits represent the universe of visits and were not necessarily related to DME 

use. We identified cause-specific visit counts using International Classification of Diseases 
10 codes I00-I99 (circulatory) and J00-J99 (respiratory). We included visits from January 1 

2016 to March 15 2020.

Daily visit counts by ZCTA were low and often zero [median outpatient visits = 1, 

interquartile range width (IQRw) = 3, median ED and inpatient visits = 0, IQRw = 0). For 

the wildfire PM2.5 analyses, to avoid zero-inflation in our models, and to increase statistical 

power, we could have aggregated ZCTA counts to the weekly level. However, prior studies 

of wildfire smoke exposure have found associations between same-day air pollution and 

healthcare visits over the course of the following week18–21. To evaluate a lagged temporal 

effect in our data, we required daily healthcare visit counts, therefore, we opted to aggregate 

our data into higher-level spatial groupings of several ZCTAs based on spatial proximity 

(hereafter ‘ZCTA groupings’; grouping method described in eMethods 2, the eAppendix).

For analyses measuring residence near a fire on in an evacuation zone, we used ZCTA level 

daily visit counts aggregated to the weekly level. We aggregated to the weekly level because 

we used last recorded fire boundaries and last recorded evacuation zones rather than daily 

PM2.5 concentrations as we had available for our air pollution. By aggregating, we also 

removed weekend–weekday patterns in outpatient visits, increased power, and reduced zero 

inflation. We considered a week exposed if the Woolsey or Getty fire burned any day that 

week.

Analysis

Wildfire PM2.5—To evaluate the relationship between daily wildfire PM2.5 and daily ZCTA 

grouping-level healthcare visit counts, we used negative binomial regression. Many studies 

on lagged effects of air pollution use constrained distributed lag models to estimate stable 

coefficients in the presence of highly autocorrelated (and therefore highly co-linear) lagged 

exposures54. We examined the autocorrelation of wildfire PM2.5 concentrations and found 

only weak autocorrelation (lags 1–7 days each had <0.25 correlation with lag 0). Unlike 

other sources of air pollution, wildfire PM2.5 concentrations increased dramatically on 

certain days, then decreased just as quickly (Figure 3). We therefore created unconstrained 

models, including separate terms for wildfire PM2.5 lags 0–7 days. We also performed 
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an additional analysis examining weekly wildfire PM2.5 levels lagged up to two weeks. 

We created separate models for each healthcare visit type: all-cause outpatient, ED, and 

inpatient visits, and ED and inpatient visits for circulatory or respiratory disease endpoints.

We included offsets accounting for the number of KPSC members over 45 using DME 

in each ZCTA grouping. We controlled for temperature using a penalized spline term, 

as temperature can predict respiratory and cardiovascular healthcare utilization55 and 

wildfire56, using daily mean temperature data from the PRISM Climate Group57. We did not 

include any lags on temperature. We also controlled for long-term seasonal trends not caused 

by exposure with a natural spline term, and used the number of years in the study period 

(four) to determine the natural spline flexibility (12 degrees of freedom). We controlled 

for non-wildfire PM2.5, since non-wildfire PM2.5 concentrations were high during the study 

period: mean daily non-wildfire PM2.5 by grouping was 11.0 μg/m3 (SD = 6.69), just under 

the annual USEPA National Ambient Air Quality Standard of 12 μ g/m3 (Figure 2). We also 

added a fixed effect for weekends to the outpatient visits model, accounting for fewer visits 

on weekend days.

We controlled for a comprehensive set of socioeconomic variables to account for correlation 

between ZCTA groupings. We obtained values by ZCTA from the 5-year 2015–2019 ACS58 

including median household income, home ownership (% homes occupied by owner), 

poverty (percent households below threshold income), age structure (percent of population 

20–64, and 65+ years), and racial and ethnic composition (percent Hispanic, percent 

non-Hispanic white, percent non-Hispanic Black). We took a simple mean within ZCTA 

groupings to obtain average covariate values by ZCTA grouping or summed within ZCTA 

groupings when appropriate (for example, we summed total population across groupings).

Proximity to wildfire and evacuation—To evaluate the association between proximity 

to and evacuation exposure related to wildfire and weekly ZCTA-level healthcare 

visit counts, we used a difference-in-differences (DID) analysis with negative binomial 

regression. We evaluated relationships separately for each fire, for evacuation and proximity, 

and for each type of healthcare visit. The DID estimators subtracted the change in weekly 

visit frequency when the Getty or Woolsey Fire was burning versus not burning among 

control ZCTAs (difference 1) from the change in visit frequency when the Getty or Woolsey 

Fire was burning versus not burning among ZCTAs exposed to the fire or evacuation zone 

(difference 2). If all models were specified correctly and parallel trends conditions were met, 

the DID estimator corresponded to the difference in visit frequency attributable to direct 

wildfire exposure. We assessed the parallel trends assumption visually in eFigure 2 in the 

supplemental digital content.

To avoid bias in our analyses due to exposure to fires, we excluded certain observations from 

specific ZCTAs from the control pool. If a ZCTA was exposed (i.e., boundary within 20km) 

to the Getty and Woolsey Fires or exposed to any other large fire that was declared a disaster 

by FEMA, burned a structure, or killed someone during the study period, we excluded 

observations from that ZCTA after the date the Getty, Woolsey, or other fire ignited. We used 

a CALFIRE fire perimeter data40 to identify all fires that met these criteria.
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As in the wildfire PM2.5 models, we included offsets accounting for the population exposed 

and controlled for temperature with a penalized spline and non-wildfire PM2.5 with a linear 

term. We controlled for long-term seasonal trends not caused by exposure with a penalized 

spline term, as our data in these analyses were at the weekly level. We did not control for 

wildfire PM2.5 in a model describing residence proximate to a fire or in an evacuation zone, 

as we considered this part of our multifaceted exposure rather than a confounder.

We tested all models for sensitivity to parameterization of splines, by re-running all analyses 

with natural splines in place of penalized splines. We also tested all models for sensitivity 

to the size of the buffer around the wildfire perimeters and evacuation zones, by re-running 

analyses with a 30km buffer instead of a 20km buffer, expanding the exposed zone to 

include people further away from the fire or evacuation boundary. We conducted all analyses 

in R59, using the mgcv package60. All analysis code and model equations are available on 

GitHub at https://github.com/heathermcb/wildfires_DME.

Results

Health data description

The study population consisted of 236,732 KPSC DME users who between January 1, 2016 

to March 15th, 2020 had a daily average of 2.5 (SD = 4.7) outpatient visits, 0.1 (SD = 0.5) 

ED visits, and 0.1 (SD = 0.4) inpatient visits per ZCTA grouping. There were on average 8 

(SD = 8.9) outpatient visits per week per ZCTA, 0.5 (SD = 1.5) ED visits, and 0.2 (SD = 

0.8) inpatient visits. The most common diagnoses were for circulatory or respiratory disease: 

of the 62,892 ED visits made over the study period, 49,364 (78%) were for circulatory or 

respiratory disease concerns, as were 30,325 (90%) of inpatient visits.

PM2.5 exposure

Mean daily wildfire PM2.5 concentration by ZCTA grouping throughout the study period 

was 0.22 μg/m3 (SD = 2.67) (Figure 2), since most groupings on most days (85% of 

days) had 0 wildfire PM2.5, while the maximum wildfire PM2.5 concentration was 551.53 

μg/m3 . On the 366 days (23%) when study area wildfire PM2.5 was non-zero, the mean 

concentration in groupings with non-zero measurements was 5.6 μg/m3 (SD = 12.1). On 

days where wildfire PM2.5 exceeded USEPA air quality standards, in ZCTA groupings over 

the standard, wildfire PM2.5 made up 91% of total PM2.5.

In adjusted negative binomial models, a daily 10 μg/m3 increase in wildfire PM2.5 was 

associated with a decrease in rate of outpatient visits 1 day later (RR = 0.96, 95% CI: 0.94, 

0.99), but increases on four of the five subsequent days (RR range 1.03–1.12, Table 1). 

Wildfire PM2.5 levels were not associated with the count of all-cause ED or inpatient visits 

or ED or inpatient visits for cardiorespiratory concerns.

In our additional analysis examining weekly wildfire PM2.5 levels lagged up to 2 weeks, a 

10 μg/m3 increase in weekly wildfire PM2.5 concentration was associated with a next-week 

increase in outpatient visits (RR = 1.04, 95% CI: 1.00, 1.09), consistent with the daily 

outpatient visit model. Additionally, there were increases in weekly outpatient visits two 
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weeks later (Table 2). We did not interpret the same-week coefficient due to issues with 

temporality – our outcome may have preceded the exposure. Weekly wildfire PM2.5 was not 

associated with the frequency of any other visits.

In additional analyses examining ED and inpatient visits, we also observed an 8% increase 

in rate of inpatient visits and a 10% increase in rate of cardiorespiratory inpatient visits 

1 week following a 10 μg/m3 increase in weekly wildfire PM2.5 concentration (Table 2). 

Daily lag estimates were unstable, possibly owing to smaller sample sizes for inpatient and 

cardiorespiratory inpatient visits (Table 1).

Proximity to wildfire

There were 54 ZCTAs (9%) within 20 km of the Woolsey Fire boundary. We considered 

residents of these ZCTAs exposed to the fire. Despite the comparatively small size of the 

Getty Fire ( 3 km2 vs 400 km2), 98 ZCTAs (17%) met our exposure definition, as the 

Getty Fire was closer to population centers. We estimated that 20 and 21 ZCTAs overlapped 

with evacuation zones during the Woolsey and Getty fires, respectively. However, all ZCTAs 

overlapping with evacuation zones were also within 20km of the fire boundaries, meaning 

that the exposed ZCTAs were a subset of the wildfire proximate ZCTAs in both cases.

Woolsey Fire proximity and evacuation exposure

Residence in a ZCTA located within 20km of the Woolsey Fire boundary during the fire 

was associated with increased inpatient admissions for cardiorespiratory disease compared 

residence outside of it (RR = 1.45, 95% CI: 0.99, 2.12), and associated with decreased all-

cause outpatient visits compared to residence outside of it (RR = 0.89, 95% CI: 0.79, 1.00), 

though the confidence intervals were wide (Figure 4). We observed similar associations, 

with wider confidence intervals, between Woolsey Fire evacuation exposure and healthcare 

visits. Residence in a ZCTA located in an evacuation zone of the Woolsey Fire during 

the fire was also associated with decreased all-cause outpatient and increased inpatient 

admissions for cardiorespiratory disease visits compared to residence outside of it (RR 

= 0.86, 95% CI: 0.72, 1.03, RR = 1.72, 95% CI: 1.00, 2.96, respectively), and was not 

associated with ED visit frequency (Figure 4). Detailed RRs for all visit types are outlined in 

eTable 1a and 1c.

Getty Fire proximity and evacuation exposure

We observed no difference in frequency for any visit type during the Getty Fire for those 

living within 20 km of the fire compared to those living further away (Figure 4). Residence 

within an evacuation zone plus 10km was associated with reduced rate of all types of visits, 

though confidence intervals were very wide (Figure 4). Detailed RRs for all visit types are 

outlined in eTable 1b and 1d.

None of our results were sensitive to spline flexibility or the size of the buffer around 

exposures. Visual inspection of model residuals and Moran’s I results indicated that our 

model residuals were not exhibit spatial autocorrelation (plots included in eFigure 3, in the 

eAppendix).
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Discussion

In this paper, we aimed to evaluate the relationship between daily wildfire PM2.5 exposure, 

residence near a wildfire, and residence in an evacuation zone, and daily ZCTA grouping-

level healthcare visit counts. Using electronic health data describing 236,732 Kaiser 

Permanente DME-using patients from 2016–2020, we found that an increase in wildfire 

PM2.5 concentration was associated with brief (next-day) decreases in all-cause outpatient 

visits but increases in all-cause outpatient visits up to 2 weeks later in this population. 

Increases in wildfire PM2.5 were not associated with the frequency of daily ED or inpatient 

visits among DME users. However, in sensitivity analyses of 1-week lags, we did find 

elevated 1-week lag RRs for inpatient visits (RR=1.08) and cardiorespiratory inpatient 

visits (RR=1.10). Residential proximity of DME users to the large Woolsey Fire was 

also associated with fewer all-cause outpatient visits, as well as more cardiorespiratory 

inpatient visits, but not with other visit types. Results for Woolsey Fire evacuation exposure 

were similar. Getty Fire evacuation or proximity was not associated with frequency of any 

kind of healthcare visit. Our study was unique in that we evaluated healthcare utilization 

among DME users, a group hypothesized to be susceptible to disaster and wildfire smoke 

exposures, included inpatient, ED, and outpatient visits, and examined residence near a 

wildfire or an evacuation zone in addition to wildfire PM2.5 exposure.

The literature describes a strong relationship between wildfire smoke exposure and 

respiratory health20, and a strong relationship between PM2.5 exposure and cardiovascular 

health61, though the relationship between wildfire PM2.5 and cardiovascular health is still 

being characterized. Large studies measure this association through healthcare utilization 

and have found increased risk of hospital admissions and ED visits for cardiorespiratory 

outcomes following wildfire PM2.5, PM10, or general smoke exposure in the U.S., 

Canada, Australia, and Brazil62–67. Fewer studies have examined wildfire PM2.5 exposure 

in vulnerable populations15,68. Of studies examining older adults, all have reported 

associations between smoke exposure and same or next-day increased inpatient and ED 

visit frequency62,66,69,70 and while some studies find older adults at elevated risk compared 

to younger adults16,64,69 others found no difference26,62. Surprisingly, we observed no 

association between wildfire PM2.5 and ED or inpatient visits among DME users. We 

hypothesized that older adult DME users would be particularly susceptible to wildfire PM2.5 

due to probable high prevalence of underlying cardiorespiratory disease30. The observed 

null association between wildfire PM2.5 and ED or inpatient visits may indicate that DME 

users, especially those vulnerable to smoke, may take precautions to protect themselves from 

effects described in other studies or study limitations may obscure associations between 

smoke and more urgent healthcare use.

Limited studies have assessed outpatient care utilization during wildfire smoke exposure 

and most have focused on outpatient visits for respiratory concerns, reporting increases 

during smoke exposure62,71–74. None of those studies examined all-cause outpatient care 

use. Hutchinson et al. 201819 simultaneously reported decreases in all-cause outpatient 

visits during smoke exposure and increases in visits for respiratory concerns only, during 

a 5-day period following smoke exposure, suggesting that all or routine outpatient care 

may be disrupted, but respiratory care may be more needed and accessed during these 
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exposures. Similarly, Henderson et al. 201161 found increased physician visits for asthma 

and all-respiratory outcomes related to same-day wildfire smoke exposure but no increase 

in physician visits for cardiovascular disease. In models with daily lags, we observed an 

initial same-day and next-day decrease in all-cause outpatient visits, and then a positive 

association between wildfire PM2.5 and all-cause outpatient visits among DME users for 

the week following exposure. In models with weekly lags, we observed increased outpatient 

visits in the 2 weeks following exposure, suggesting that there is overall an increase in 

all-cause outpatient visits among DME users following wildfire PM2.5 exposure. Very few 

prior studies have evaluated lags of short-term exposure to wildfire PM2.5 beyond 7 days,34 

but our results indicate that outpatient visits among DME users remained elevated for up 

to 2 weeks. A decrease in healthcare utilization has been observed in previous studies of 

disaster-related exposures, including wildfires75 and extreme storms76. Our findings are 

consistent with theories that wildfire smoke may disrupt care immediately18,61, but at the 

same time exacerbate respiratory conditions leading to increased care use following smoke 

exposure among people (such as DME users) who have respiratory conditions.

Few studies have evaluated proximity to wildfire boundaries or wildfire evacuation as risk 

factors for healthcare utilization or adverse health outcomes74,77,78. Proximity to wildfires 

can affect health through a stress pathway, on top of risks related to smoke exposure. 

Qualitative studies emphasize this point, and several have documented the immense stress 

experienced by those displaced by wildfire7,8,53. After the 2014 Canadian Northwest 

Territory wildfires, one interviewee said: “Well, it took a toll on me because being stressed 

out from the fires and never knowing when we had to leave to be evacuated we didn’t 

know if we were going to come home to a community or to our houses.”28 Agyapong et 

al. 2021 estimated the likely prevalence of post-traumatic stress disorder among Canadian 

Fort McMurray wildfire survivors at 12.8%, twice the baseline population prevalence79. We 

attempted to assess this proximity/evacuation pathway for two major fires in our study area 

using a difference-in-differences analysis.

We found no association between exposure and healthcare visits during the Getty Fire. 

However, during the Woolsey Fire, we observed an increase in cardiorespiratory inpatient 

visits and a decrease in all-cause outpatient visits with both residential proximity to fire and 

residence in an evacuation among DME users. The 400 km2 Woolsey Fire, which caused 

$3 billion in damages,80 was much larger than the 3 km2 Getty Fire, which destroyed 10 

homes39, that null associations between Getty proximity exposure and all visit types could 

be due to its smaller size; it may have not been large enough to produce a detectable effect 

in visit changes. A larger analysis examining several wildfires, rather than two, could be 

informative. As in our discussion of wildfire PM2.5 exposure, the Woolsey Fire may have 

decreased outpatient care as has been documented during other disaster scenarios,75, 76 

while inpatient visits may have increased because of respiratory disease worsening with 

exposure.

However, study limitations could have influenced our results. First, we identified KPSC 

members who rented DME in the year prior to October 29, 2019. This meant that 

some study participants may not have been using DME at the time of wildfire exposure 

or healthcare visit but were nonetheless likely socially or medically vulnerable. KPSC 
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patients would be highly motivated to seek care at Kaiser, given their membership status; 

however, they may have sought urgent care at other clinics or hospitals. Such alternate 

utilization would have produced artificially reduced visit counts, especially for inpatient 

and emergency visits. If patients sought care at other clinics only during wildfires (whether 

during evacuations or while a fire was burning nearby) this could have biased association 

estimates towards the null.

Second, we lacked individual-level information on participants. Therefore, we did not 

know if patients sought care for DME-related issues and only used prior DME use as a 

vulnerability metric. We also were not able to assess differences in healthcare use by type 

of DME or stratify by age group or sex beyond limiting our study population to those age 

45 or older. Excluding younger people excluded most breast pump users, a generally healthy 

subpopulation who constitute 30% of DME users of all ages at KPSC30. Subgroups such 

as those using ventilators or those using breast pumps likely have vastly different health 

needs and outcomes. We chose to focus on DME users overall aged 45 and older who were 

likely the most susceptible to wildfire. However, users of specific types of DME, such as 

oxygen concentrators, or DME users of different ages, such as those over 75 years, may have 

unique needs and differing outcomes; future research may wish to examine these sub-groups 

in detail.

Third, days with 0 visits made by patients living in a spatial grouping were common. 

Inpatient and ED visits were much less frequent over the study period (both mean = 0.1 

daily visits) than outpatient visits (mean = 2.5 daily visits). All models may have been 

underpowered to detect visit changes. For example, during the Woolsey Fire, we observed 

decreased outpatient visits in ZCTAs proximate to the fire and among evacuation exposed 

ZCTAs but, for both, confidence intervals were wide, likely due to sample size.

Last, as in any observational study, residual confounding could affect our results. We 

attempted to account for residual spatial confounding by including a set of ZCTA-level 

covariates that measured different facets of socioeconomic status.

Conclusion

This study evaluated the relationship between short-term exposure to wildfire PM2.5 and 

residential proximity and residence in a disaster zone, as a proxy for a mixture of 

health-harming exposures such as community disruption, smoke exposure, and stress and 

outpatient, ED, and inpatient visits among DME users in Southern California. Observed 

associations pointed to disruption of daily lives among those more exposed to wildfire, 

with missed outpatient care visits. We observed an association between elevated wildfire 

PM2.5 concentrations and decreased next-day rate followed by increased rate of all-cause 

outpatient visits over 4/5 subsequent days as well as reduced all-cause outpatient visits 

among those living in proximity to the Woolsey Fire. Wildfire PM2.5 was not associated 

with ED or inpatient visits, but Woolsey Fire proximity was associated with increased 

inpatient cardiorespiratory visits. This study adds to a literature on the health of vulnerable 

populations exposed to wildfires, which becomes more critical as wildfires frequency and 

severity increases with climate change. Protecting vulnerable populations that may be 
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harmed by exposures which others can avoid or endure is essential. More work is needed to 

understand the timing of health risks for vulnerable populations affected by smoke, fire, and 

evacuation.
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Figure 1: 
Map of Southern California study area, shaded in grey, with counties labelled in black. 

Woolsey and Getty fire burn areas are shaded in black.
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Figure 2: 
Daily mean non-wildfire PM2.5 concentrations by study area county from January 2016 

– March 2020. Measurements are inμg/m3. Dotted lines represent the US Environmental 

Protection Agency 35 μg/m3 standard. Colored time periods represent measurements made 

while a wildfire was burning.
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Figure 3: 
Daily mean wildfire PM2.5 concentrations by study area county from January 2016 – March 

2020. Measurements are in μg/m3. Dotted lines represent the US Environmental Protection 

Agency 35 μg/m3 standard. Colored time periods represent measurements made while a 

wildfire was burning.
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Figure 4: 
Plots of rate ratios and 95% confidence intervals from a negative binomial model assessing 

the association between residential proximity to wildfires and evacuation zones PM and 

healthcare utilization among KPSC DME users.

We used negative binomial regression to evaluate the effect of wildfire evacuation or 

proximity during an active fire. The difference-in-differences estimators subtracted the 

change in visit frequency when the Woolsey or Getty Fire was burning versus not 

burning among control ZCTAs (difference 1) from the change in visit frequency when 

the Woolsey or Getty Fire was burning versus not burning among ZCTAs exposed to the 

fire or evacuation zone (difference 2).We controlled for time effects, temperature, and non-

wildfire PM2.5, and added an offset for the size of the exposed population. DME, electricity-

dependent durable medical equipment; KPSC, Kaiser Permanente Southern California; RR, 

rate ratio; ZCTA, Zip Code Tabulation Area.
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Table 1:

Rate ratio and 95% confidence intervals from a negative binomial modela assessing the association between 

daily wildfire PM2.5 and healthcare utilization among KPSC DME users, daily lags.

Rate ratios and [95% CI] for 10μg/m3 increase in wildfire PM2.5

Outcome lag 0 days lag 1 day lag 2 days lag 3 days lag 4 days lag 5 days lag 6 days

All-cause outpatient 0.98 [0.96, 
1.01]

0.96 [0.94, 
0.99] 1.03 [1, 1.06] 1.08 [1.05, 

1.11]
0.98 [0.95, 
1.02]

1.07 [1.04, 
1.1]

1.12 [1.09, 
1.16]

All-cause ED 0.97 [0.91, 
1.04]

1.02 [0.96, 
1.08]

0.98 [0.89, 
1.07]

0.96 [0.88, 
1.06]

0.95 [0.86, 
1.04]

1.03 [0.93, 
1.13]

0.92 [0.82, 
1.02]

All-cause inpatient 0.94 [0.84, 
1.04]

1.01 [0.93, 
1.1]

0.95 [0.84, 
1.08] 0.87 [0.76, 1] 0.98 [0.87, 

1.12]
0.93 [0.81, 
1.06]

1.02 [0.89, 
1.16]

ED: 
cardiorespiratory 
concerns

0.99 [0.92, 
1.07]

0.99 [0.91, 
1.08]

0.96 [0.87, 
1.07]

0.99 [0.89, 
1.1]

0.92 [0.83, 
1.03]

1.01 [0.91, 
1.13]

0.89 [0.79, 
1.01]

Inpatient: 
cardiorespiratory 
concerns

0.91 [0.81, 
1.02]

1.03 [0.95, 
1.12]

0.93 [0.82, 
1.07]

0.91 [0.79, 
1.05]

0.97 [0.85, 
1.1]

0.91 [0.79, 
1.05]

0.99 [0.86, 
1.14]

a
Negative binomial models included fixed effects for wildfire PM2.5 lags 0–7 days, controlled for temperature, non-wildfire PM2.5, and time 

effects. We added a fixed effect to account for fewer visits on weekend days, and an offset to account for exposed population. We also included 
fixed effects for a set of ZCTA-level socioeconomic variables: median household income, home ownership (% homes occupied by owner), 
poverty (percent households below threshold income), age structure (percent of population under 5, 5–19, 20–64, and 65+ years), and racial/ethnic 
composition (percent Hispanic, percent non-Hispanic white, percent non-Hispanic Black). DME, electricity-dependent durable medical equipment; 
KPSC, Kaiser Permanente Southern California; ZCTA, Zip Code Tabulation Area.
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Table 2:

Rate ratio and 95% confidence intervals from a negative binomial modela assessing the association between 

weekly wildfire PM2.5 and healthcare utilization among KPSC DME users, weekly lags.

Rate ratios and [95% CI] for 10μg/m3 increase in wildfire PM2.5

Outcome lag 1 week lag 2 weeks

All-cause outpatient 1.04 [1.00, 1.09] 1.05 [1.02, 1.09]

All-cause ED 0.99 [0.88, 1.11] 1.02 [0.92, 1.14]

All-cause inpatient 1.08 [0.94, 1.23] 0.99 [0.85, 1.15]

ED: cardiorespiratory concerns 0.96 [0.84, 1.10] 1.02 [0.91, 1.15]

Inpatient: cardiorespiratory concerns 1.10 [0.96, 1.27] 0.98 [0.85, 1.15]

a
Negative binomial models included fixed effects for weekly mean wildfire PM2.5 lags 0–2 weeks, controlled for temperature, non-wildfire 

PM2.5, and time effects, and added an offset to account for exposed population. We also included fixed effects for a set of ZCTA-level 

socioeconomic variables: median household income, home ownership (% homes occupied by owner), poverty (percent households below threshold 
income), age structure (percent of population under 5, 5–19, 20–64, and 65+ years), and racial/ethnic composition (percent Hispanic, percent 
non-Hispanic white, percent non-Hispanic Black). CI, confidence interval; ED, emergency department; ZCTA, Zip Code Tabulation Area.
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