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Abstract

Purpose—A subset of common variable immunodeficiency (CVID) patients either presents 

with or develops autoimmune and lymphoproliferative complications, such as granulomatous 

lymphocytic interstitial lung disease (GLILD), a major cause of morbidity and mortality in CVID. 

While a myriad of phenotypic lymphocyte derangements has been associated with and described 
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in GLILD, defects in T and B cell antigen receptor (TCR/BCR) signaling in CVID and CVID 

with GLILD (CVID/GLILD) remain undefined, hindering discovery of biomarkers for disease 

monitoring, prognostic prediction, and personalized medicine approaches.

Methods—To identify perturbations of immune cell subsets and TCR/BCR signal transduction, 

we applied mass cytometry analysis to peripheral blood mononuclear cells (PBMCs) from healthy 

control participants (HC), CVID, and CVID/GLILD patients.

Results—Patients with CVID, regardless of GLILD status, had increased frequency of 

HLADR+CD4+ T cells, CD57+CD8+ T cells, and CD21lo B cells when compared to healthy 

controls. Within these cellular populations in CVID/GLILD patients only, engagement of T or B 

cell antigen receptors resulted in discordant downstream signaling responses compared to CVID. 

In CVID/GLILD patients, CD21lo B cells showed perturbed BCR-mediated phospholipase C 

gamma and extracellular signal-regulated kinase activation, while HLADR+CD4+ T cells and 

CD57+CD8+ T cells displayed disrupted TCR-mediated activation of kinases most proximal to the 

receptor.

Conclusion—Both CVID and CVID/GLILD patients demonstrate an activated T and B cell 

phenotype compared to HC. However, only CVID/GLILD patients exhibit altered TCR/BCR 

signaling in the activated lymphocyte subsets. These findings contribute to our understanding of 

the mechanisms of immune dysregulation in CVID with GLILD.
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Introduction

Common variable immunodeficiency (CVID) comprises a clinically and immunologically 

heterogenous group of inborn errors of immunity (IEI) characterized by 

hypogammaglobulinemia, failure to mount specific antibody responses to vaccination, and 

susceptibility to recurrent infections [1]. Patients have a profound reduction in serum IgG, 

with decreased serum IgM and/or IgA, that is at least two standard deviations below 

the age-corrected mean values [2]. Estimated to affect 1:25,000 to 1:100,000 individuals 

of European descent, CVID is the most prevalent group of symptomatic IEI in older 

children and adults [3–5]. Remarkably, up to 60–70% of CVID patients display one or 

more non-infectious complications (simultaneously or sequentially over their disease course) 

that significantly increase their morbidity and mortality. These complications include (i) 

autoimmunity (cytopenias, thyroiditis, rheumatoid arthritis, etc.); (ii) lymphoma (majority 

non-Hodgkin’s) and other malignancy; (iii) enteropathy; (iv) chronic liver disease due 

to granulomas, nodular hyperplasia, primary sclerosing/biliary cholangitis; (v) chronic 

pulmonary disease such as lymphoid interstitial pneumonia (LIP), granulomatous and 

lymphocytic interstitial lung disease (GLILD); and (vi) other nonmalignant lymphoid 

hyperplasia [6–11].

The risk of death is estimated at 11 times higher in CVID patients with noninfectious 

complications compared to those without [12, 13]. Increased mortality risk is closely 
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associated with several organ-specific pathologies, such as lung impairment (hazard 

ratio, HR = 2.06), liver disease (HR = 2.48), gastrointestinal disease (HR = 2.78), 

and lymphoma (HR = 2.44) [12]. Importantly, while the use of immunoglobulin 

replacement and prophylactic antimicrobials has greatly reduced infectious complications, 

it has not prevented or ameliorated the noninfectious complications. These noninfectious 

complications are thought to derive from dysregulated innate and adaptive cellular activation 

responses due to underlying defects that affect maintenance of tolerance [14, 15], which are 

not addressed by normalization of immunoglobulin levels.

Less than 30% of CVID patients have an identifiable underlying monogenic defect, with 

each of the monogenic subtypes being very rare [16–20]. Monogenic defects in CVID 

fall broadly into two categories—those that affect almost exclusively B cell development, 

differentiation, activation, and/or survival, such as cluster of differentiation 19, 20, 21, 

or 27, and those that control/affect crosstalk between B and T cells, affecting immune 

tolerance and antimicrobial defense, hence resulting in immune dysregulation, such as 

nuclear factor kappa-B, subunit 1 (NFKB1) [21] or phosphatidylinositol-4,5-bisphosphate 3-

kinase catalytic subunit delta (PIK3CD). In the latter, autoimmune/inflammatory/neoplastic 

complications commonly co-exist (or dominate) with infectious susceptibility [10].

Certain immune phenotypic abnormalities have been associated with specific autoimmune/

lymphoproliferative complications in CVID patients, such as the expansion of CD21lo 

B cells (> 10%) with splenomegaly [8] and autoimmune cytopenias [22], expansion of 

transitional B cells (> 9%) with lymphadenopathy [16], significant decrease of isotype 

switched B cells as an independent risk factor for granulomas, autoimmunity, and 

splenomegaly [23], and decreased interferon (IFN)γ mRNA expression with intestinal 

disease [24]. These associations, however, are not absolute, cannot be generalized, and have 

not been shown to predict either the development of specific noninfectious complications 

over the disease course, or treatment response to pathway-specific immunomodulation.

While a myriad of immunological derangements has been associated with and described 

in GLILD, the immunopathogenesis of GLILD in CVID patients remains elusive. GLILD 

occurs in approximately 25% of CVID patients [25–27]. Untreated, GLILD leads to 

progressive pulmonary fibrosis and is associated with increased mortality [26, 28]. Small 

case studies of GLILD involving immunohistochemical analysis performed on lung biopsies 

have shown lymphocytic infiltrates with the presence of T cells and variable findings of 

B cell follicles within the infiltrates [26, 29, 30]. Maglione et al. found increased serum 

levels of B cell activating factor (BAFF) in CVID patients with a progressive course of 

ILD compared to stable GLILD, suggesting that a BAFF-induced resistance to apoptosis 

drives pulmonary B cell hyperplasia [30, 31]. In a study by Fraz et al., GLILD patients’ 

sera, compared to CVID patients’ with other noninfectious complications, were found 

to have higher levels of soluble CD25 and T cell immunoglobulin and mucin domain-3 

(TIM-3). Combined with the Th1 response signature cytokines TNF and IFN-γ, these 

findings suggest that activated T cells play an important role in GLILD pathogenesis [32]. 

A combination of rituximab and azathioprine improved radiographic abnormalities and 

pulmonary functional tests (PFTs) in patients with CVID and GLILD [28, 33]. Additionally, 
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induction therapy with high-dose corticosteroids has also been shown to improve high 

resolution CT scans and PFT with long-term remission in 42% of patients [34].

Numerous antigen receptor signaling defects have been identified in CVID patients, 

including defective zeta-chain-associated protein kinase 70 (ZAP70) recruitment [35], 

impaired extracellular signal-regulated kinase (ERK) signaling in CD21lo B cells [36], 

reduced calcium mobilization [37–40], lower phosphorylation of protein kinase B (AKT) 

and ribosomal protein S6 (S6) [41], and reduced canonical NFκB activation [21]. The 

consequences of these signaling defects may include the disruption of central and peripheral 

tolerance, potentially culminating in autoimmunity. To elucidate disease-associated defects 

in CVID and CVID with GLILD specifically, we applied mass cytometry analysis to 

peripheral blood mononuclear cells (PBMCs) from CVID patients with (CVID/GLILD) and 

without GLILD (CVID) to identify perturbations of immune cell subsets and T and B cell 

antigen receptor (TCR/BCR) signaling.

Methods

Study Approval

All human donors were consented under human subjects’ research protocol, approved by 

the Institutional Review Board of the Research Compliance Office at Medical College of 

Wisconsin. Under these practices, the study was in line with the ethical principles outlined in 

the Declaration of Helsinki.

Blood Processing and Stimulation

Whole blood was collected in heparinized vacutainers for isolation of PBMCs using Ficoll-

Paque Plus™. PBMCs were stimulated via the addition of biotinylated anti-CD3 (BioLegend 

300,404, clone UCHT1, final [10 μg/mL]), biotinylated anti-CD28 (BioLegend 302,904, 

clone CD29.2, final [10 μg/mL]), F(ab’)2 anti-IgM (Southern Biotech 2022–01, final [20 

μg/mL]), F(ab’)2 anti-IgG (Southern Biotech 6000–01, final [20 μg/mL]), and streptavidin 

(Invitrogen 21,125, final [35 ng/mL]). Following 2- and 20-min stimulation, cells were fixed 

with paraformaldehyde and stored at −80C for mass cytometry analyses.

Mass-Tag Barcoding and Antibody Staining

Mass-tag cell barcoding of stimulated and fixed samples, followed by antibody staining and 

permeabilization was performed as previously described [42]. Antibody panels can be found 

in Sup Table 1.

PhenoGraph Analyses

R studio version 1.1.383 was downloaded from R website (http://www.r-project.org/). 

Cytofkit version 3.4 was downloaded from Bioconductor. Manually gated single cells 

(191Ir+ 193Ir+), CD19+, CD4+, or CD8+ events were processed using PhenoGraph. Clusters 

were based on expression of the 26 surface markers in the antibody panel (Sup Table 1). 

Additional settings include (1) merge method: ceil (5000 max events), (2) transformation: 

cytofAsinh, (3) cluster method: RphenoGraph, (4) visualization method: tSNE, and (5) 

cellular progression: NULL. Cellular cluster maps were displayed within the “Shiny” 
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feature of the R package. Output.csv files, such as “cluster median data” and “cluster 

cell percentage”, produced by the PhenoGraph analysis were used to determine cluster 

phenotype, relative abundance, and statistical significance between groups.

Statistical Analyses of Cellular Phenotyping

We compared cellular frequencies and median protein expression of manually gated cell 

populations and PhenoGraph output.csv files to determine significant difference between the 

3 patient groups. We used the nonparametric Kruskal–Wallis followed by post hoc pair-wise 

comparisons using Dunn’s multiple comparison test on GraphPad Prism (version 8). A p < 

0.05 was regarded as significant.

Results

We applied mass cytometry analysis to PBMCs from age-matched healthy individuals (HC, 

n = 24), patients with CVID (n = 12), and patients with both CVID and GLILD (n = 23) 

(Table 1). GLILD was diagnosed based on lung biopsy. Both CVID and CVID/GLILD 

had significantly lower IgG levels compared to HC, but the mean IgG levels were not 

significantly different between CVID and CVID/GLILD. Neither patient population had 

lymphopenia nor decreased CD4+, CD8+, and CD56+ cells compared to HC at the time of 

study. Compared to CVID patients, CVID/GLILD patients demonstrated decreased CD19+ 

B cells but similar CD4+ and CD8+ T cell counts (Table 1). None of the patients were 

being treated with systemic corticosteroids, azathioprine, or rituximab at the time they were 

studied. Whole exome sequencing of CVID/GLILD patients identified previously published 

pathogenic variants in XIAP, NFKB2, KMT2D, and IKZF1 (Sup Table 2). To determine 

immune cell subset and TCR/BCR signaling differences, we designed a mass cytometry 

antibody panel for evaluation of 26 phenotypic cell surface and 13 functional phospho-

epitope markers that evaluate proximal (close to cellular membrane, TCR/BCR-specific) 

and distal (pathways common to TCR/BCR and signaling by other receptors) signaling 

events (Sup Fig. 1, Sup Table 1). PBMCs were stimulated and data were analyzed using 

both supervised manual gating (Sup Fig. 2) and PhenoGraph, an unsupervised clustering 

algorithm [43, 44]. Compared to CVID and HC, CVID/GLILD patients’ CD19+ B cells, 

isotype switched, and mature naïve B cells were significantly decreased while CD4+ and 

CD8+ T cells were not (absolute counts Sup Fig. 3).

CVID and CVID/GLILD Patients Demonstrate Increased Frequency of CD21lo B Cells

We used the PhenoGraph algorithm [43, 44] to visualize cellular populations from 

each individual in our study. PhenoGraph relies on networks of recorded events and 

the connections between them to cluster events into phenotypic categories. We applied 

PhenoGraph to the unstimulated patient samples to generate a cellular cluster map of 

baseline major leukocyte populations (Fig. 1a, b). Cellular populations derived from 

traditional hierarchical gating strategies rely on priori knowledge of surface markers 

to define specific lymphocyte populations. Unsupervised clustering via PhenoGraph is 

achieved through the simultaneous evaluation of surface marker expression (Sup Table 

1). As a result, we do not expect these methodologies to yield identical numbers of 

subpopulations [43, 45–47]. We assessed differential expression of surface markers on 
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PhenoGraph-derived subpopulations and defined populations accordingly. CVID/GLILD 

patients demonstrated an overall reduced frequency and absolute counts of CD19+ B 

lymphocytes compared to HC and CVID, while no differences were seen in CD4+ T cell and 

CD8+ T cell frequencies and absolute counts among PBMCs (Fig. 1c, Sup Fig. 3).

Memory B cells can be identified based on co-expression of CD19 and CD27, a 

transmembrane protein expressed by both peripheral T cells [48] and memory B cells 

[49]. As previously reported [50], no difference was observed in the median frequency 

of CD27+CD19+ B cells across the three groups (HC vs. CVID vs. CVID/GLILD) 

(Fig. 2a). CVID/GLILD patients showed a significant increase in CD21lo B cell 

frequency (CD21loIgM+IgD+) (Fig. 2b) along with a decrease in mature naïve B cell 

(CD27−IgM+IgD+) percentages relative to CVID and HC (Fig. 2c). The percentages of 

immature naïve B cells (CD27−IgM+IgD−), IgM memory B cells ( CD27+IgM+IgD−), 

and pre-isotype switched B cells ( CD27+IgM+IgD+) of CVID/GLILD patients, were 

also decreased relative to HC, while atypical memory B cells ( CD27−IgM−IgD−) were 

elevated in CVID/GLILD patients compared to both CVID patients and HC (Fig. 2d–g). 

No frequency differences were observed in anergic B cells ( CD27−IgM−IgD+) (Fig. 2h). 

C-delta class switched B cells have undergone Cμ-to-Cδ class switch recombination at the 

genetic level and may have increased autoreactivity [51, 52]. We found no difference in 

frequency of these cells in our cohort ( CD27+IgM−IgD+) (Fig. 2i). We observed a reduction 

in the percentage of CXCR5+ B cells in both CVID and CVID/GLILD patients relative to 

HC, suggesting defective B cell trafficking to peripheral lymphoid organs (Fig. 2j). Lower 

CXCR5 expression on CD21lo B cells from CVID and CVID/GLILD was also observed 

(Fig. 2k).

PhenoGraph clustering of CD19+ cells was used to delineate B cell subsets (Fig. 2l). The 

resulting cluster map resolved various B cell subpopulations defined by the expression level 

of B cell-specific phenotypic markers (Fig. 2m, Sup Fig. 4). Both the CVID and CVID/

GLILD groups showed a higher proportion of CD21lo B cells (Fig. 2n). Further phenotyping 

of this CD21lo B cell cluster classifies it as CD19+IgM+IgD+CD45RA+CD27lo. Increases 

in CD21lo B cells among CD19+ B cells have been associated with various autoimmune 

manifestations in CVID [53, 54], consistent with the increased frequency of CD21lo B cells 

in CVID/GLILD patients (compared to both HC and CVID).

CVID and CVID/GLILD Patients Show Increased Frequency of Activated HLADR+CD4+ T 
Cells

We found no differences in CD4+ T cell frequency among PBMCs across HC, CVID, 

and CVID/GLILD (Fig. 1c). We measured expression of CD45RA and CD27 on T cells 

to facilitate assignment to the following T cell subsets[55–57]: naïve (CD45RA+CD27+), 

effector memory (CD45RA−CD27−, central memory (CD45RA−CD27+), or TEMRA 

( CD45RA+CD27−). Examination of these subpopulations revealed altered proportions in 

CVID/GLILD patients compared to CVID and HC. Specifically, we observed decreased 

frequency of naïve CD4+ T cells (CD27+CD45RA+), and increased frequencies of 

CD4+ central memory T cells (CD27+CD45RA−) and CD4+ effector memory T cells 

(CD27−CD45RA−) (Fig. 3a–d). CVID patients’ T cells were previously reported to have 
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increased expression of programmed cell death protein 1 (PD-1) [58]. In the context of 

CVID with immune dysregulation, expression of surface molecules that regulate adaptive 

immune responses, such as inducible T cell costimulator (ICOS) and CTLA4, were also 

elevated [59]. Both the CVID and CVID/GLILD groups displayed elevated frequency of I 

COS+CD4+ and PD-1+CD4+ T cells compared to HC (Fig. 3e, f). While not significant, 

CTLA4+CD4+ T cell frequencies from both CVID and CVID/GLILD patient groups trended 

higher compared against HC (Fig. 3g). Higher frequencies of CD4+ and CD8+ T cells that 

express human leukocyte antigen-DR isotype (HLADR) and CD38 are also evidence of 

enhanced immune activation in CVID [22, 60–62]. In agreement with previous findings, we 

found an increase in the frequency of activated HLADR+CD4+ T cells in both CVID and 

CVID/GLILD (Fig. 3h), with elevated expression of HLADR in CVID patients (Fig. 3i). 

We observed no differences in frequency of CD38+CD4+ T cells (Fig. 3j), but expression of 

CD38 on CD38+CD4+ T cells was elevated in both CVID and CVID/GLILD patients (Fig. 

3k). Frequency of HLADR+CD38+ T cells in both the CVID and the CVID/GLILD patient 

groups was also elevated (Fig. 3l). These observations are consistent with PhenoGraph 

clustering of CD4+ T cells, where clusters of HLADR+CD4+ T cells are increased in CVID 

and CVID/GLILD patients (Fig. 3m–o, Sup Fig. 5).

CVID and CVID/GLILD Patients Exhibit Increased Frequency of Exhausted CD57+CD8+ 

Central Memory T Cells

Examination of major CD8+ T cell subpopulation frequency in our cohort revealed altered 

proportions of naïve and T cell effector memory CD8+ T cells in CVID/GLILD patients. 

Relative to HC and CVID, CVID/GLILD patients showed decreased frequency of naïve 

CD8+ T cells (Fig. 4a). No differences in central memory or effector memory CD8 + T 

cells were observed (Fig. 4b, c). Concurrently, the TEMRA (CD27−CD45RA+) CD8+ T 

cells percentage in CVID/GLILD patients was increased compared to HC and CVID (Fig. 

4d). ICOS+CD8+ T cell frequency was elevated only in the CVID group (Fig. 4e). No 

differences in PD-1+CD8+ T cell frequency was observed (Fig. 4f). We observed increased 

frequency of activated HLADR+CD8+ and CD57+CD8+ T cells among PBMC in CVID and 

CVID/GLILD compared to HC (Fig. 4g–o, Sup Fig. 6).

CVID/GLILD Patients’ CD21lo B Cells Demonstrate Uncoordinated ERK Activation

We stimulated patients’ PBMCs and measured TCR/BCR-mediated signal transduction. 

In CD21lo B cells, canonical indicators of BCR signaling were seen (Fig. 5a). For each 

intracellular marker, a signaling response index as shown by differences between the 2-min 

stimulated and unstimulated (T2-T0) were calculated (Fig. 5b). Detection of co-expressed 

genes, where changes in expression of two or more genes were correlated with each 

other, have been used to generate gene networks involved in various disease contexts [63–

66]. We adopted a similar strategy to assess the differential co-induction/phosphorylation 

of signaling proteins in HC, CVID, and CVID/GLILD. To do this, we examined the 

correlation of the response index (median T2-T0 differences) in signaling markers to 

measure the correlation between proximal (TCR/BCR-specific) and distal (TCR/BCR and 

signling by other receptors) cellular signaling response. This correlation was corroborated 

via examination of the T2-T0 changes in the PhenoGraph-resolved populations of naïve 

CD19+ B cells, naïve CD4+ T cells, and naïve CD8+ T cells from healthy individuals, which 

Lui et al. Page 7

J Clin Immunol. Author manuscript; available in PMC 2023 September 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



demonstrated positive correlations between markers along the various signaling pathways 

(Sup Fig. 7).

We explored antigen receptor-mediated signaling responses in PhenoGraph-derived 

populations that were elevated in CVID and CVID/GLILD: CD21lo B cells, HLADR+CD4+ 

T cells, and CD57+CD8+ T cells. These activated subpopulations were compared against 

their naïve counterparts (Sup Fig. 7). Unlike naïve CD4+ T cells from CVID/GLILD, the 

naïve B and CD8+ T cells did not demonstrate the TCR/BCR signaling abnormalities as 

described below. Among CD21lo B cells, we examined the correlation of the proximal 

TCR/BCR signaling response (T2-T0 differences) of each signaling marker against every 

other in a pairwise fashion (i.e., shifts in spleen tyrosine kinase (pSYK) vs. shifts in pERK). 

Positive correlation coefficient represents synchronized/coordinated activation of the two 

signaling proteins. We then compared these signaling protein correlations within CD21lo B 

cells between two patient groups (i.e., shifts in pSYK vs. shifts in pERK for CVID vs. shifts 

in pSYK vs. shifts in pERK for CVID/GLILD) and tabulated the statistical significance 

of the correlation differences (Fig. 5c). Significant p values (p < 0.05) indicated that the 

correlations of response index (T2-T0) for one signaling protein vs. the other (X vs. Y 

axes) were significantly different in the two patient groups being compared (CVID vs. 

CVID/GLILD). However, the same comparison and analyses was not statistically significant 

in the naïve B cell compartment (Fig. 5c).

In CD21lo B cells from HC and CVID patients, we found ERK phosphorylation to be 

correlated with phosphorylation of both SYK and phospholipase C gamma (PLCγ) (at 

T2-T0) (Fig. 5d, e). CD21lo B cells from CVID/GLILD patients, however, demonstrated a 

heterogenous, inverted correlation between ERK activity and early BCR signaling events. 

For a subset of CVID/GLILD patients, activation of early BCR signaling events did 

not result in ERK activation. Conversely, a separate subset of CVID/GLILD patients 

demonstrated ERK activation despite decreased proximal BCR signaling activity, suggesting 

that downstream cellular processes may be decoupled from antigen receptor stimulation. 

These data indicate that while both CVID and CVID/GLILD patients demonstrate increased 

frequency of activated/exhausted CD21lo B cells, only those from CVID/GLILD patients 

exhibit altered BCR downstream signaling, which likely leads to tolerance breakdown and 

lymphocytic infiltration in the lungs and GLILD complication.

CVID/GLILD Patients’ HLADR+CD4+ T Cells Demonstrate Asynchronous PI3K/AKT and 
ERK Signaling

We explored TCR-mediated intracellular signaling relationships in HLADR+CD4+ T cell 

to determine whether signaling profiles are unique in the CVID/GLILD patients, and thus 

provide insight into disease etiology. Comparison of the T2-T0 median differences within 

HLADR+CD4+ T cells between CVID and CVID/GLILD patients revealed altered signaling 

relationships for T cell surface glycoprotein CD3 zeta chain (CD3ζ) with the following 

signaling proteins: AKT, ERK, and S6 (Fig. 6a, b). HLADR+CD4+ T cells from CVID 

patients demonstrated proportional stimulation responses for CD3ζ activation against AKT 

and ERK, indicating concordantly responsive PI3K/AKT and ERK activation downstream 

of CD3ζ phosphorylation (Fig. 6c–e). However, HLADR+CD4+ T cells from CVID/GLILD 
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patients showed heterogeneity and disproportionality in these signaling relationships. We 

report HLADR+CD4+ T cells from CVID/GLILD patients possess attenuated PI3K/AKT 

and ERK activity despite phosphorylation of CD3ζ. A subset of these patients demonstrated 

decreased CD3ζ activation, yet are still able to activate PI3K/AKT, ERK, and S6, which 

suggests that cellular processes that proceed from TCR signal initiation may be decoupled. 

This dysregulated TCR downstream signaling likely contributes to breakdown of tolerance 

in CVID/GLILD and development of non-infectious complication.

CVID/GLILD Patients’ CD57+CD8+ T Cells Demonstrate PLCγ Activation That Is Uncoupled 
from S6 Phosphorylation

Examination of the correlation between signaling responses (T2-T0) of different signaling 

markers against each other within CD57+CD8+ T cells from CVID/GLILD patients, 

compared to those from CVID patients, demonstrated altered pS6 signaling relationships 

(Fig. 7a, b). Specifically, CD57+CD8+ T cells from CVID patients displayed proportionate 

activation of pS6 relative to phosphorylation of CD3ζ and PLCγ. In CVID patients, 

engagement of the TCR resulted in proportional activation of proximal TCR signaling 

proteins and S6 phosphorylation. In contrast, pS6 activation in CD57+ CD8 + T cells 

from CVID/GLILD patients was disproportionate to proximal TCR signaling and PLCγ 
activation (Fig. 7c, d). While not abrogated, the activation of the proximal TCR signaling 

proteins did not correlate with downstream S6 phosphorylation. In summary, these 

CD57+CD8+ T cells with an exhausted/senescent phenotype exhibit diminished proximal 

TCR signaling but equivalent downstream S6 phosphorylation in CVID/GLILD patients 

only. This phenomenon of blunted TCR stimulation with preservation or even enhancement 

of downstream kinase activation is also observed in monogenic etiologies of CVID 

where autoimmune/inflammatory disorders are pervasive, suggesting that disordinate TCR 

proximal and distal signaling response is a common finding in primary immune regulatory 

disorders.

Discussion

Respiratory failure is the leading cause of death among CVID patients [12]. Our poor 

understanding of the immunopathogenesis of GLILD constitutes an obstacle to both 

successful personalized medicine and consensus regarding treatment options. Here, we 

applied mass cytometry to the study of HC, CVID, and CVID/GLILD patients’ PBMCs 

to 1) define the phenotypes of T, B, NK, and myeloid immune cell subsets, and 2) 

evaluate T and B cell antigen receptor signal transduction (Sup Fig. 1). These analyses 

revealed that T and B cell compartments of CVID and CVID/GLILD patients display 

increased activated cells, such as increased frequency of CD21lo B cells, HLADR+CD4+ 

T cells, and CD57+CD8+ T cells (Figs. 2, 3, and 4). Each of these findings has been 

recognized independently in previous literature—supporting different subclassifications in 

CVID. Importantly, in CVID/GLILD patients only, TCR/BCR signaling in these activated T 

and B cells is altered, suggesting that while increased frequencies of activated lymphocyte 

subsets may be a common finding in CVID and CVID/GLILD, the downstream cellular 

function is only disturbed in CVID/GLILD. These data support the use of TCR/BCR 

immunomodulation in GLILD specifically. These data presented provide a cohesive picture 
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of the phenotypic and functional (TCR/BCR signal transduction readouts) differences 

among HC vs. CVID vs. CVID/GLILD. They establish a foundation upon which to define 

specific abnormalities in signaling pathways in CVID/GLILD patients.

Similar to previous reports [67], we found that CD21lo B cells demonstrate decreased 

expression of CXCR5 suggesting increased tissue-homing nature of this B cell 

subpopulation in CVID and CVID/GLILD patients (Fig. 2j). However, unlike previous 

reports, but consistent with the core phenotype of B cell activation/exhaustion, we 

demonstrated defects in BCR signal transduction in this population in CVID/GLILD patients 

only (Fig. 5). These findings suggest that exhaustion of these cells is the cause (or effect) 

of abnormal lymphocyte receptor signaling processes. Exhaustion may be due to inability to 

clear microbial antigens leading to chronic antigen-induced B cell activation, and/or aberrant 

responses to self-antigen as seen in autoimmune disorders where CD21lo B cell frequency is 

increased [54, 67, 68]. Additionally, several CVID genetic etiologies associated with defects 

in TCR/BCR signaling, e.g., PIK3CD, NFκB1, or IKZF1, have been shown to present with 

increased CD21lo B cell frequency, and CD4+ and CD8+ T cell activation. However, detailed 

evaluation of TCR/BCR signaling has not been addressed in the context of these genetic 

defects.

With respect to T cell abnormalities, decreased CD4+ naïve T cell numbers and CD8+ T cell 

exhaustion have been previously described in CVID. Cytokine profiles, T cell proliferation 

outcomes, and expression of high levels of activation and memory markers consistent with 

persistent T cell activation and exhaustion have all been demonstrated in CVID[69–72]. Our 

findings of T cell immunophenotyping are consistent with previous literature, as we detected 

increased frequency and absolute numbers of HLADR+CD4+ T cells and CD57+CD8+ T 

cells in CVID/GLILD patients (Figs. 3 and 4, Sup Fig. 3). Additionally, we demonstrated 

altered TCR downstream signal transduction in these T cell subpopulations compared 

to HC and CVID. These findings are consistent with chronic stimulation cell antigenic 

stimulation in CVID/GLILD (Figs. 6 and 7). Chronic TCR stimulation may underlie the T 

cell phenotypic abnormalities seen. Remarkably, TCR signal transduction in CD8+ naïve T 

cell subpopulations remain normal and similar between CVID/GLILD and HC, suggesting 

that the activated/exhausted T cell phenotype is tied to TCR signal transduction defects.

B and T cell immunophenotyping has long been pursued to subclassify CVID, such 

as the previously published classification of CVID based on CD21lo B cell percentage, 

and its prediction of types of autoimmune/inflammatory complications. However, findings 

have not been applied to clinical practice because these immunological/clinical phenotypic 

correlations have not been consistently demonstrated across (i) heterogeneous CVID 

cohorts, with diverse clinical phenotypes and from multiple institutions; (ii) multiple 

distinct clinical flow cytometry panels/definitions (i.e., inconsistent B cell phenotype flow 

cytometry panels used by different immune diagnostic labs, and hence divergent gating and 

B cell subpopulation definitions); and (iii) clinical practitioner standard of care laboratory 

assessments (i.e., nonstandardized clinical laboratory evaluation).

Amplitude of proximal (i.e., ZAP70) and distal (i.e., ERK or S6) TCR signal transduction 

events and their correlation may most accurately reflect alterations that result in T cell 
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activation/exhaustion, and thus may constitute a surrogate for autoimmune/inflammatory 

complications in CVID. We conclude that proximal and distal antigen receptor-mediated 

signaling is uncoordinated in CD21lo B cells, HLADR+CD4+ T cells, and CD57+CD8+ 

T cells from CVID/GLILD patients, suggesting that CVID patients with GLILD are 

more likely to suffer from an underlying genetic defect affecting TCR/BCR signal 

transduction than those without (Figs. 6 and 7, Sup Fig. 7). Hence, TCR/BCR signaling 

immunomodulators may be an effective therapy for CVID/GLILD patients. We propose 

that discordance of these signaling events can be used to (i) distinguish CVID/GLILD 

patients from all CVID patients, and (ii) raise suspicion (and support further workup) of an 

underlying genetic defect. Validation is required in larger and more heterogeneous cohorts 

of CVID patients with autoimmune/inflammatory complications, and such studies should 

be pursued in the future to better define the underlying immunopathogenesis and delineate 

prognostic measures of immune dysregulation in CVID.

Conclusions

Both CVID and CVID/GLILD patients demonstrate increased frequencies of activated/

exhausted T and B cell subsets (HLADR+CD4+ T cells, CD57+CD8 T cells, and CD21lo 

B cells). However, CVID/GLILD patients are unique in demonstrating discordant TCR/BCR 

signaling in these activated cells. Altogether, these findings suggest that in CVID/GLILD, 

(i) an underlying genetic defect(s) is responsible for abnormal TCR/BCR signaling and 

breakdown of tolerance, and (ii) the use of TCR/BCR signaling immunomodulation as an 

effective therapy.
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Fig. 1. 
Major leukocyte populations revealed through PhenoGraph. Unsupervised PhenoGraph 

cluster map of single cells from HC, CVID, and CVID/GLILD groups (a). Stratification 

of single cell events based on surface marker expression (b). Percentages of lymphocyte 

populations identified through PhenoGraph analysis (c). Error bars represent median and 

95% CI. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Not significant unless 

stated by asterisk in figure. Kruskal–Wallis accounting for multiple comparisons was used 

for statistical significance
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Fig. 2. 
CVID and CVID/GLILD patients demonstrate increased frequency of CD21lo B cells. B 

cell subpopulation percentages derived from manual gating of mass cytometry data for 

CD27+ B cells (a), CD21lo B cells (b), mature naïve B cells (c), immature naïve B cells 

(d), IgM memory B cells (e), pre switched B cells (f), atypical memory B cells (g), 

anergic B cells (h), c-delta switched B cells (i), and CXCR5+ B cells (j). CXCR5 median 

intensity on CD21lo B cells (k). Unsupervised PhenoGraph clustering of CD19+ cells (l) 
and surface marker expression (m). Cluster frequencies corresponding to isotype switched 

B cells (cluster 1) and CD21lo B cells (cluster 14) (n). Error bars represent median and 

95% CI. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Not significant unless 

stated by asterisk in figure. Kruskal–Wallis accounting for multiple comparisons was used 

for statistical significance
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Fig. 3. 
CVID and CVID/GLILD patients show increased frequency of activated HLADR+CD4+ T 

cells. Percentages of CD4 T cell populations derived from manual gating of mass cytometry 

data for naïve CD4+ (a), central memory CD4+ (b), effector memory CD4+ (c), TEMRA 

CD4+ (d), ICOS+CD4+ (e), PD-1+CD4+ (f), CTLA4+CD4+ (g). HLADR+CD4+ T cell 

percentage (h) and median intensity of HLADR surface expression on HLADR+CD4+ 

(i). CD38 +CD4+ T cell percentage (j) and median intensity of CD38 surface expression 

on CD38+CD4+ (k). Percentage of HLADR+CD38+CD4+ (l). Unsupervised PhenoGraph-

derived clustering of CD4+ single cell events (m), cluster map surface marker expression (n) 

and cluster frequencies corresponding to HLADR+CD4+ T cells (clusters 13, 15, and 16) 

(o). Error bars represent median and 95% CI. *p < 0.05, **p < 0.01, ***p < 0.001, ****p 
< 0.0001. Not significant unless stated by asterisk in figure. Kruskal–Wallis accounting for 

multiple comparisons was used for statistical significance
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Fig. 4. 
CVID/GLILD patients exhibit increased frequency of exhausted CD57+ CD8+ T cells. 

Percentages of CD8 T cell populations derived from manual gating of mass cytometry 

data for naïve CD8+ (a), central memory CD8+ (b), effector memory CD8 + (c), TEMRA 

CD8+ (d), ICOS+CD8+ (e), PD-1+CD8+ (f), HLADR+CD8+ (g), CD57 +CD8+ (h), naïve 

CD57+CD8+ (i), central memory CD57+CD8+ (j), effector memory CD57+CD8+ (k), and 

TEMRA CD57+CD8+ (l). Unsupervised PhenoGraph clustering of CD8+ single cell events 

(m), cluster map surface marker expression (n), and cluster frequencies corresponding to 
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CD57+CD8+ TEMRA (cluster 12 and cluster 22), HLADR+CD57+CD8+ TEMRA (cluster 

15), and CD57+CD8+ central memory (cluster 20) (o). Error bars represent median and 95% 

CI. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Not significant unless stated 

by asterisk in figure. Kruskal–Wallis accounting for multiple comparisons was used for 

statistical significance
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Fig. 5. 
CVID/GLILD CD21lo B cells demonstrate discordant BCR signaling events. BCR 

stimulation responses of pSYK, pPLCγ, and pERK within PhenoGraph-derived CD21lo 

B cell cluster (a). Diagrammatic illustration of correlation of stimulation responses between 

pairs of signaling proteins (b). Tabulated p value matrices of differential pairwise signaling 

protein correlations between CVID and CVID/GLILD groups in PhenoGraph-d erived naïve 

B cells and CD21lo B cells (c). Correlation scatterplots of differentially correlated signaling 

protein relationships between CD21lo B cells from CVID and CVID/GLILD (d, e) Error 

bars represent median and 95% CI. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

Not significant unless stated by asterisk in figure. Kruskal–Wallis accounting for multiple 

comparisons was used for statistical significance
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Fig. 6. 
CVID/GLILD HLADR +CD4+ T cells demonstrate discordant TCR signaling events. p 
Value matrices of differential pairwise signaling protein correlations between CVID and 

CVID/GLILD groups in naïve CD4+ and HLADR+CD4+ T cells (a). TCR stimulation 

responses of pCD3ζ, pAkt, pERK, and pS6 within PhenoGraph-derived HLADR+CD4+ 

T cell cluster (b). Correlation scatterplots of differentially correlated signaling protein 

relationships within HLADR+CD4+ T cells (c–e). Error bars represent median and 95% 

CI. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Not significant unless stated 
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by asterisk in figure. Kruskal–Wallis accounting for multiple comparisons was used for 

statistical significance
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Fig. 7. 
CVID/GLILD CD57+CD8+ T cells demonstrate discordant TCR signaling events. p Value 

matrices of differential pairwise signaling protein correlations between CVID and CVID/

GLILD groups in naïve CD8+ and CD57+CD8+ T cells (a). TCR stimulation responses 

of pCD3ζ, pPLCγ, and pS6 within PhenoGraph-derived CD57+CD8+ T cell cluster (b). 

Correlation scatterplots of differentially correlated signaling protein relationships within 

CD57+CD8+ T cells from CVID and CVID/GLILD (c, d). Error bars represent median and 

95% CI. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. Not significant unless 

stated by asterisk in figure. Kruskal–Wallis accounting for multiple comparisons was used 

for statistical significance
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