Skip to main content
. Author manuscript; available in PMC: 2023 Sep 27.
Published in final edited form as: Comput Biol Med. 2023 Jun 9;163:107134. doi: 10.1016/j.compbiomed.2023.107134

Table 2.

Metric scores of eight individual classifiers as well as soft voting classifier consisting of random forest, logistic regression, extreme gradient boosting, and multilayer perceptron trained with sarcomere length transient features. The best-performing classifier is highlighted in red.

ML classifiers Sensitivity Specificity Precision Accuracy F1-score
Random Forest 0.8679 0.8082 0.7667 0.8333 0.8142
Support vector machine 0.8824 0.80 0.75 0.8333 0.8108
K-nearest neighbors 0.8478 0.7375 0.65 0.7778 0.7358
Decision tree 0.8889 0.6869 0.5333 0.746 0.6667
Logistic regression 0.7966 0.806 0.7833 0.8016 0.7899
Adaptive boosting 0.7385 0.8033 0.80 0.7698 0.768
Extreme gradient boosting 0.8254 0.8730 0.8667 0.8492 0.8455
Multilayer perceptron 0.8644 0.8657 0.85 0.8651 0.8571
Soft voting 0.8909 0.8451 0.8167 0.8651 0.8522