Table 2.
Metric scores of eight individual classifiers as well as soft voting classifier consisting of random forest, logistic regression, extreme gradient boosting, and multilayer perceptron trained with sarcomere length transient features. The best-performing classifier is highlighted in red.
| ML classifiers | Sensitivity | Specificity | Precision | Accuracy | F1-score |
|---|---|---|---|---|---|
| Random Forest | 0.8679 | 0.8082 | 0.7667 | 0.8333 | 0.8142 |
| Support vector machine | 0.8824 | 0.80 | 0.75 | 0.8333 | 0.8108 |
| K-nearest neighbors | 0.8478 | 0.7375 | 0.65 | 0.7778 | 0.7358 |
| Decision tree | 0.8889 | 0.6869 | 0.5333 | 0.746 | 0.6667 |
| Logistic regression | 0.7966 | 0.806 | 0.7833 | 0.8016 | 0.7899 |
| Adaptive boosting | 0.7385 | 0.8033 | 0.80 | 0.7698 | 0.768 |
| Extreme gradient boosting | 0.8254 | 0.8730 | 0.8667 | 0.8492 | 0.8455 |
| Multilayer perceptron | 0.8644 | 0.8657 | 0.85 | 0.8651 | 0.8571 |
| Soft voting | 0.8909 | 0.8451 | 0.8167 | 0.8651 | 0.8522 |