Skip to main content
. Author manuscript; available in PMC: 2023 Sep 27.
Published in final edited form as: Comput Biol Med. 2023 Jun 9;163:107134. doi: 10.1016/j.compbiomed.2023.107134

Table 3.

Metric scores of eight individual classifiers as well as soft voting classifier consisting of random forest, logistic regression, K-nearest neighbors, and multilayer perceptron trained with calcium transient features. The best-performing classifier is highlighted in red.

ML classifiers Sensitivity Specificity Precision Accuracy F1-score
Random Forest 0.8519 0.8226 0.807 0.8362 0.8288
Support vector machine 0.8214 0.8167 0.807 0.819 0.8142
K-nearest neighbors 0.8182 0.8033 0.7895 0.8103 0.8036
Decision tree 0.7719 0.7797 0.7719 0.7759 0.7719
Logistic regression 0.8750 0.8667 0.8596 0.8707 0.8673
Adaptive boosting 0.7759 0.7931 0.7895 0.7845 0.7826
Extreme gradient boosting 0.7544 0.7627 0.7544 0.7586 0.7544
Multilayer perceptron 0.8596 0.8644 0.8596 0.8621 0.8596
Soft voting 0.8909 0.8689 0.8596 0.8793 0.8750