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Summary:

Electronic health record (EHR) data are increasingly used for biomedical research, but these 

data have recognized data quality challenges. Data validation is necessary to use EHR data 

with confidence, but limited resources typically make complete data validation impossible. Using 

EHR data, we illustrate prospective, multi-wave, two-phase validation sampling to estimate the 

association between maternal weight gain during pregnancy and the risks of her child developing 

obesity or asthma. The optimal validation sampling design depends on the unknown efficient 

influence functions of regression coefficients of interest. In the first wave of our multi-wave 

validation design, we estimate the influence function using the unvalidated (phase 1) data to 

determine our validation sample; then in subsequent waves, we re-estimate the influence function 

using validated (phase 2) data and update our sampling. For efficiency, estimation combines 

obesity and asthma sampling frames while calibrating sampling weights using generalized raking. 

We validated 996 of 10,335 mother-child EHR dyads in 6 sampling waves. Estimated associations 

between childhood obesity/asthma and maternal weight gain, as well as other covariates, are 

compared to naïve estimates that only use unvalidated data. In some cases, estimates markedly 

differ, underscoring the importance of efficient validation sampling to obtain accurate estimates 

incorporating validated data.
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1. Introduction

There is great interest in using electronic health record (EHR) data as a cost-effective 

resource to support biomedical research. A growing number of studies relying on data 

extracted from the EHR are appearing in the medical literature. These articles, however, 

are showing up alongside others that highlight concerns of data quality and potentially 

misleading findings from analyses using EHR data that do not properly address data quality 

issues (e.g., Floyd et al. (2012)). To fully realize the potential of EHR data for biomedical 

research, widely recognized problems of data accuracy and completeness must be addressed.

Computerized data checks are necessary but not sufficient for quality data. Validation, in 

which trained personnel thoroughly compare EHR-derived data with the original source 

documents (e.g., paper medical charts or the entire EHR itself for a patient), is best practice 

for ensuring data quality (Duda et al., 2012). However, full validation of EHR data is costly 

and time-consuming, and is generally not possible for large or multi-center cohorts. Instead, 

investigators may validate sub-samples of patient records. This validation sample can be 

used to inform researchers of the errors in their data and their phenotyping algorithms. Data 

from the validation sub-samples can then be used with unvalidated data from the full EHR to 

adjust analyses and improve estimation (Huang et al., 2018; Giganti et al., 2020).

Since researchers have limited funds, it is important to maximize the information obtained 

from data validation. The efficiency of estimators using validated EHR data can be improved 

with carefully designed validation sampling strategies. The literature on two-phase sampling 

is relevant (Breslow and Chatterjee, 1999). In our setting, phase 1 consists of EHR data 

available on all subjects and phase 2 consists of the subset of records that were selected 

for validation. Optimal two-phase designs have been studied for settings where there is an 

expensive explanatory variable that is only measured in the phase 2 subsample (McIsaac 

and Cook, 2014; Tao et al., 2020; Han et al., 2021b); in our case, the validated value of 

an EHR-derived variable can be thought of as this expensive variable. Optimal two-phase 

designs rely on phase 1 data that are correlated with the expensive explanatory variable of 

interest; in our case, the unvalidated variable is often a good surrogate for the validated 

value, which can help with designing efficient validation samples. However, with EHR data, 

there are typically errors across multiple variables (Giganti et al., 2020), which complicates 

sampling designs and subsequent analyses that incorporate the validated data.

Generalized raking, also known as survey calibration, is a robust and efficient way to 

obtain estimates that incorporate data from both phase 1 and phase 2 , even with multiple 

error-prone variables (Deville et al., 1993; Oh et al., 2021b). Generalized raking estimators, 

which include members of the class of optimally efficient augmented inverse probability 

weighted estimators (Robins et al., 1994; Lumley et al., 2011), tilt weights using auxiliary 

information available in the phase 1 sample. Optimal sampling designs for generalized 

raking estimators are not easily derived, but the optimal design for the inverse probability 

weighted (IPW) estimator, based on Neyman allocation (Neyman, 1938), is typically a good 

design for a generalized raking estimator (Chen and Lumley, 2022). However, the optimal 

design depends on parameters that are usually unknown without previous data collection.
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The necessity of prior data to design optimal sampling strategies has led to multi-wave 

sampling schemes. McIsaac and Cook (2015) proposed multi-wave sampling strategies 

and illustrated two-wave sampling in a setting with a binary outcome and an error-prone 

binary covariate. Data from the first wave was used to adaptively estimate parameters 

needed to design the optimal phase 2 sample, and the second wave sampled based on this 

estimated optimal design. Others have also considered similar two-wave sampling strategies 

for different settings (Chen and Lumley, 2020; Han et al., 2021b). Multi-wave sampling 

has shown a remarkable ability to yield sampling designs that are nearly as efficient as the 

optimal sampling design, and therefore have the potential to optimize resources in practice.

In this manuscript, we describe our experience designing and implementing a multi-wave 

validation study with EHR data to estimate the associations between maternal weight gain 

during pregnancy and risks of childhood obesity and asthma. To our knowledge, this is 

the first implementation of a multi-wave sampling design to address data quality issues 

in the EHR. Other novel developments in this paper include the application of functional 

principal components analyses to estimate maternal weight gain during pregnancy and to 

initiate data quality checks (Yao et al., 2005); the implementation of a multi-frame analysis 

to combine results across two independent validation samples targeting our two endpoints 

(Metcalf and Scott, 2009); and estimation via generalized raking techniques, with multiply 

imputed influence functions to estimate the optimal auxiliary variable Han, 2016, Oh et al. 

2021a). The use of these methods allows us to obtain efficient estimates that address data 

quality concerns across many EHR variables while making minimal assumptions.

2. Maternal Pregnancy Weight and Child Health

2.1. Background

Maternal obesity and excessive weight gain during pregnancy have been associated with 

childhood obesity (Heslehurst et al., 2019) and childhood asthma (Forno et al., 2014). 

However, small sample sizes have limited the ability to study the complex nature of 

these associations: for example, to ascertain population sub-group effects, especially by 

race/ethnicity. Hence, there is growing interest in conducting large epidemiological studies 

using EHR data to evaluate the association between maternal gestational weight gain and 

child health outcomes. However, data obtained from EHRs suffer from quality issues, 

necessitating data validation.

2.2. Primary and Secondary Analysis Models

Of primary interest is the association between maternal weight change during pregnancy, 

X, and time from birth to childhood obesity, T . We do not observe T  in all children; 

follow - up is censored at the first of child’s date of last visit or 6th birthday. Let C be 

the time to censoring, Y = min T , C  be the censored-failure time, and Δ = I T ⩽ C  be the 

indicator childhood obesity is observed. Other covariates, Z, include BMI at conception, 

age at delivery, race, ethnicity, cesarean delivery, diabetes, smoking during pregnancy, 

history of depression, insurance status, marital status, number of prior children, whether 

child was singleton, estimated gestational age, and child sex. We assume that T  and C are 

independent conditional on X, Z . Our primary model is a priori specified as the Cox model, 
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ℎ t ∣ X, Z = ℎ0 t exp βX + βZZ , with ℎ t ∣ X, Z  the hazard of obesity at time t conditional on 

X and Z, and ℎ0 t  an unspecified baseline hazard function. Of primary interest is estimating 

β.

Of secondary interest is the association between maternal weight change during pregnancy 

and childhood asthma. Given challenges making definitive diagnoses in very young children, 

we only consider asthma diagnoses during ages 4 and 5 years; the subset of children in 

the obesity study who have data between their fourth and sixth birthdays are included in 

these analyses. Our secondary analysis model is a priori specified as a logistic regression 

model with the outcome asthma (yes/no). The primary exposure is maternal weight change 

during pregnancy, and covariates are maternal BMI at conception, maternal age at delivery, 

maternal race, maternal ethnicity, cesarean delivery, maternal diabetes, smoking during 

pregnancy, insurance status, estimated gestational age, child sex, and maternal asthma. To 

simplify presentation, we do not mathematically define variables for the secondary analysis.

Instead of observing Y , Δ, X, Z , our phase 1 data consist of error-prone versions of these 

variables, denoted Y *, Δ*, X*, Z* , and auxiliary variables, A*, that are not directly included 

in the outcome model but may provide useful information for sampling or weighting. Our 

strategy is to validate a phase 2 sample of records so that we know Y , Δ, X, Z, A  for this 

sample. Before we get to that, we first describe the phase 1 data.

3. Phase 1 Data

3.1. EHR Data Sources

We received data from all mothers in the Vanderbilt University Medical Center EHR who 

gave birth between December 2005 to August 2019 and could be linked with children whose 

data were also in the EHR. Mother-child dyads were included if the child had at least 

one pair of height-weight measurements after 2 years of age, the mother had at least one 

height measurement, and the mother had at least one weight measurement during the year 

preceding pregnancy up to delivery date. A total of N = 10,335 mother-child dyads were 

included in the study as the phase 1 sample. The asthma sub-study included 7,053 (68%) of 

these dyads.

Study investigators received data tables extracted from the EHR including demographics, 

ICD-9/ICD-10 diagnoses, labs, medications, encounters, and insurance data. Childhood 

obesity was defined as body mass index BMI ⩾ 95th percentile based on age and sex 

according to the U.S. Centers for Disease Control and Prevention growth curves between 

ages 2 to 5 years (up until 6th birthday) (Flegal and Cole, 2013). The date of obesity 

was defined as the first date where a child met the obesity endpoint. Children were not 

eligible to be classified as having obesity before age 2. Childhood asthma and maternal 

diagnoses of asthma, diabetes, gestational diabetes, and depression were determined using 

ICD-9 or ICD10 codes and based on published Phecodes (Wu et al. 2019). Additional details 

regarding data management and cleaning of the phase 1 data are in Web Appendix A.
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3.2. Deriving Maternal Weight Change

Maternal weight change per week during pregnancy is ideally computed as the weight 

immediately preceding delivery minus the weight at the time of conception divided by 

the length of the pregnancy. There are several challenges with calculating this exposure. 

First, the date of conception, which is difficult to obtain in the best designed studies, was 

not readily extractable from the EHR data. Second, although most women in our study 

had multiple (median of 9) weight measurements, the weight just before giving birth or 

at the date of conception was often not known. To overcome the former problem, we 

start by assuming that conception occurred 273 days before delivery for all women. This 

initial assumption of a 273-day gestational period is obviously an oversimplification; the 

actual duration of pregnancy is addressed in our phase 2 validation. To overcome the latter 

problem of sparse weight measurements, we estimated maternal weight trajectories fit using 

functional principal components analyses (FPCA) and then extracted the estimated maternal 

weights at conception and delivery from these models. The FPCA permits the borrowing 

of information across mothers while fitting a mother-specific weight trajectory. Our FPCA 

analysis was based on Karhunen-Loève expansion (Ramsay and Silverman, 2007) and an 

estimation technique proposed by Yao et al. (2005) that incorporates measurement error. 

Details are in Web Appendix B. The phase 1 exposure of interest, the maternal weight gain 

per week during pregnancy was given by Xi
* = W i 272 − W i 0 / 273/7 , where W i 0  and 

W i 272  are the estimated weights at conception and the day before delivery for mother i.

4. Phase 2 Data Validation

The previous section describes how we derived the phase 1 data Y *, Δ*, X*, Z*, A*  from 

the EHR. This section describes the data validation procedures to obtain phase 2 data 

Y , Δ, X, Z, A  on a probabilistic sample of mother-child records.

Data used to derive all outcomes, the primary exposure, and all covariates were validated 

by a single research nurse. Data were validated by a thorough review of the EHR. It is 

important to recognize that the phase 1 EHR data were extracted by programmers and that 

variables used in phase 1 analyses were constructed computationally. In contrast, during data 

validation, the nurse looked through the complete EHR, including data not readily extracted 

and free text fields, to validate, and in some cases, find data. For example, estimated 

gestational age could not be readily extracted by programmers from the EHR and was not 

in the phase 1 data; however, this information is in the EHR and was able to be extracted 

by the nurse. Number of prior children and marital status were similarly not in the phase 

1 data but extracted by the nurse. Other desired variables (e.g., smoking during pregnancy) 

were approximated in the phase 1 sample using readily available data (e.g., any history of 

smoking prior to delivery), but were more accurately obtained from a thorough review of the 

EHR. Values were either verified as correct (i.e., matching the phase 1 value), replaced with 

the correct value, or removed if deemed to be an error but no replacement was found.

Although we refer to these manually abstracted data as the validated data, they may still 

contain errors. The nurse may have made mistakes or the correct diagnosis may not be in 

the EHR because it was not entered or missed by health care providers. In our analyses, we 
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assume that validated data are of higher quality than data algorithmically extracted from the 

EHR, and the validated data are considered the reference standard.

More details about phase 2 data validation are in Web Appendix C. Of note, because mother-

child dyads could have a large number of weight and height measurements, we used FPCA 

to prompt validation. In addition to reviewing a sample of measurements around critical 

time points, the nurse validated all weights outside the FPCA-derived 95% confidence 

band of the estimated weight trajectory for a woman. After chart review, the estimated 

maternal weight changes during pregnancy for each woman selected for validation were 

again estimated using FPCA, but incorporating the updated data. The estimated gestation 

period was also entered as part of the phase 2 validation, which typically resulted in a new 

date of conception; the timing of weight measurements was adjusted accordingly.

Figure 1 shows a de-identified example. Five weight measurements were flagged as outside 

the FPCA 95% confidence band based on phase 1 data (left panel), so the nurse checked 

weights corresponding to those dates. The weight above the 95% confidence band was found 

to be incorrect, whereas the weights below the confidence bands were verified as correct. 

The estimated gestational age based on the chart review was 259 days. The weight trajectory 

was then re-estimated for this mother (right panel). The validated weight change per week 

was then re-computed as Xi = W i 258 − W i 0 / 259/7 .

5. Multi-Wave Phase 2 Validation Design

Here we describe our phase 2 sampling design. We had resources to validate 1000 mother-

child dyads. We targeted the first three-fourths of our validation sample n = 750  to optimize 

efficiency of the primary (obesity) analysis and the remaining to optimize the secondary 

(asthma) analysis. Figure 2 provides an overview. A few key concepts are first reviewed.

5.1. Generalized raking

We perform analyses combining phase 1 and phase 2 data using generalized raking. 

Generalized raking, also known as survey calibration, is well-known in the survey sampling 

literature (Deville et al., 1993), but only recently has been recognized in the biostatistics 

literature as a practical approach to obtain augmented IPW estimators (Lumley et al., 

2011). In brief, generalized raking calibrates the sampling weights with an auxiliary 

variable (or vector of auxiliary variables) available in the phase 1 data such that the new 

calibrated weights are as close as possible to the original sampling weights but under 

the constraint that the sum of the auxiliary variable in the re-weighted phase 2 data is 

equal to its known sum in the phase 1 data. This approach improves efficiency over 

IPW estimators if the auxiliary variable is correlated with the variable of interest, with 

efficiency gains growing with increasing correlation (Oh et al., 2021a). In our setting, the 

primary goal is to estimate a regression coefficient, specifically the log hazard ratio, β, 

and the most efficient auxiliary variable is the expected efficient influence function for β, 

denoted E H Y , Δ, X, Z ∣ Y *, Δ*, X*, Z*, A*  (Breslow et al. 2009). This variable relies on 

unknown parameters, but a good estimate of it may be the influence function for β fit 

to the error-prone phase 1 data, denoted H* = H Y *, Δ*, X*, Z* . An even better estimate 
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might be the influence function for β fit to multiply imputed estimates of the validated 

data (Han, 2016; Han et al., 2021a), specifically, Ĥ = ∑m = 1
M H Ŷ m , Δ̂ m , X̂ m , Ẑ m /M, 

where Ŷ m , Δ̂ m , X̂ m , Ẑ m
 represent the mth imputation of Y , Δ, X, Z  for m = 1, …, M

imputation replications. The imputation model is constructed from the phase 2 sample. How 

well Y *, Δ*, X*, Z*  approximate Y , Δ, X, Z  affects how well H* and Ĥ approximate the 

expected efficient influence function.

More precisely, let θ = β, βZ  and θ0 be the parameter defined by the population Cox partial 

likelihood score equation such that ∑i = 1
N Ui θ0 = 0. Let Ri be the indicator that record 

i is in the phase 2 sample, and let πi = P Ri = 1 ∣ Y i
*, Δi

*, Xi
*, Zi

*, Ai
*  denote the sampling 

probability, with 0 < πi < 1. The IPW estimator, θ̂IPW , is the solution to ∑i = 1
N RiUi θ /πi = 0. 

The generalized raking estimator, θ̂R, is the solution to ∑i = 1
N RigiUi θ /πi = 0, where gi is 

chosen to minimize ∑i = 1
N Rid gi/πi, 1/πi  for some distance measure d ⋅ , ⋅  subject to the 

constraint that ∑i = 1
N Hi = ∑i = 1

N RigiHi/πi, where Hi is an estimate of the expected efficient 

influence function for β, either Hi
* or Ĥi. Here we use d a, b = alog a/b − a + b.

5.2. Stratification, Neyman Allocation, and Multi-wave Sampling

For an IPW estimator, the optimal stratified sampling strategy is Neyman allocation 

(Neyman, 1938). Although not necessarily optimal for generalized raking, the loss of 

efficiency when using raking with a Neyman allocation design versus the theoretically 

optimal design is minimal (Chen and Lumley, 2022). Neyman allocation is also fairly 

straightforward to implement. Given a set of strata, Neyman allocation samples proportional 

to the number of observations in the strata times the standard deviation of the variable 

of interest in the strata. Since the log hazard ratio estimator from the Cox model is 

asymptotically equivalent to the sum of influence functions, Neyman allocation in our 

setting is to sample proportional to the product of the number of records in a stratum times 

the standard deviation of the influence function for the target coefficient in that stratum 

Amorim et al. 2021). Again, we do not know the true influence function, but we can 

estimate it from phase 1 data, and as we collect phase 2 data, we can update estimates of it 

and adjust our sampling accordingly.

Following the adaptive multi-wave sampling approach by McIsaac and Cook (2015), we 

divided our phase 2 sample into multiple waves. In wave 1, we estimate the influence 

function of β with H*. We then allocate n 1 , the sample size of the first wave of our phase 2 

sample, across the set of S1 strata in wave 1 via Neyman allocation,

n 1 , s = n 1
Nsσ̂s H*
s Nsσ̂s H* , (1)

where Ns is the population size of stratum s ∈ S1 and σ̂s H*  is the estimated standard 

deviation of H* in stratum s. For the kth sampling wave k > 1 , we determine the desired 

set of strata Sk, which may be the same as Sk − 1, or individual strata s ∈ Sk − 1 can be split into 

2 or more smaller strata. We use the phase 2 data to fit the target model using the validated 
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data and directly estimate the influence function of interest. We then estimate the sample 

design with Neyman allocation for the total cumulative validated sample size ∑j = 1
k n j , where 

n j  is the size of the jth wave of validation sampling. The strategy for the kth wave is then to 

sample the difference between the derived optimal allocation for a stratum and the number 

already sampled in that stratum. Specifically, for each k > 1, the Neyman allocation for a 

stratum s ∈ Sk is given by

n k , s =
j = 1

k
n j

Nsσ̂s, k − 1

s Nsσ̂s, k − 1
−

j = 1

k − 1
n j , s, (2)

where σ̂s, k − 1 is the estimated standard deviation in stratum s of the influence function using 

data already validated, i.e., H Y , Δ, X, Z ∣ Rk − 1 = 1  where Rk − 1 is the cumulative indicator 

that data have been validated by wave k − 1. If a stratum is determined to have been 

oversampled relative to its optimal allocation in the current wave (i.e., n k , s < 0), that stratum 

is closed to further sampling and Neyman allocation is recalculated for the total number to 

be validated in the remaining strata.

In our case, since the cost of validation is essentially equivalent across records, we can 

further improve precision by carefully choosing sampling strata. In general, creating strata 

based on both the outcome and the exposure jointly can result in more efficient designs 

(Breslow and Chatterjee, 1999). More strata are generally more efficient than fewer strata 

(Lumley, 2010). In addition, the most efficient stratification is one where Neyman allocation 

suggests to sample approximately equal numbers from each stratum (Sarndal et al., 2003). 

Put together, our general sampling strategy was to stratify on both the primary exposure and 

outcome together and to choose a fair number of strata such that the number of records 

sampled in each stratum based on Neyman allocation was approximately equal. After 

each sampling wave, we re-calculated the influence function based on the phase 2 data, 

re-computed the optimal number to be sampled with this updated influence function, divided 

large strata following the principle that optimality is achieved by sampling approximately 

equal numbers from strata, and then selected the next wave’s sample based on this updated 

stratification / allocation. We note in subsequent waves strata can be split, but for the final 

post-stratification weights to be well-defined, strata cannot be merged. Note also that the 

number of sampling waves does not need to be a priori specified.

5.3. Multi-wave sampling for obesity endpoint

Our phase 2 sample for the obesity endpoint validated 750 paired records over a total of 

four sampling waves. Strata were created based on phase 1 data including the childhood 

obesity event indicator, the censored-failure time (time to childhood obesity or censoring), 

and the exposure of interest (estimated maternal weight change during pregnancy). We fit 

a simplified Cox model to the phase 1 data with the outcome time-to-obesity, the exposure 

of interest, and covariates BMI at conception, maternal diabetes, maternal age at delivery, 

child sex, child ethnicity, and child race. From this model, we computed the estimated 

influence function for the maternal weight gain log hazard ratio for each mother-child dyad. 

This influence function was then used to create the wave 1 sampling design, where strata 

boundaries were chosen such that the Neyman allocation was similar across strata.
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For wave 1 of our phase 2 sample, we started with 21 strata based on seven combinations 

of obesity/follow-up (censored in ages [2,5) years, censored in ages [5,6), obesity in ages 

[2,2.5), obesity in ages [2.5,3), obesity in ages [3,4), obesity in ages [4,5), and obesity in 

ages [5,6)) and three categories for mother’s estimated weight change during pregnancy 

(⩽ 5.14, 5.14,20.5 , and > 20.5kg, where 5.14 and 20.5 were the 5th and 95th percentiles for 

weight change in phase 1 data). These strata choices make intuitive sense: records with more 

influence on the hazard ratio are those in the tails of the exposure and those experiencing 

the event, particularly early into follow-up (Lawless, 2018). Our plan was to validate 250 

records in wave 1; due to rounding, we sampled 252. Unfortunately, we had an error in our 

code which was not discovered until we began planning our wave 2 sample. This error led 

us to sample more than was optimal from records with maternal weight gains outside the 

5th and 95th percentiles; without this coding error, our wave 1 strata would likely have been 

based on less extreme weight gain percentiles, e.g., perhaps the 10th and 90th percentiles.

Table 1 shows the final strata, the population total in each stratum Ns , the number sampled 

from each stratum in each wave n k , s , and the total number sampled from each stratum 

ns . Note that since wave 1 had fewer strata than the final number of strata (21 vs. 33), 

some of the original strata that were subsequently divided are represented by multiple rows. 

(For example, 8 records were sampled in wave 1 from the original stratum B; these 8 were 

distributed in some manner across final strata 2–4, not just from final stratum 2.)

Upon receiving the wave 1 validation data, we fit a weighted Cox model to the validated 

data (weights equal to the inverse of the sampling probabilities) to obtain influence functions 

and estimate their standard deviations in each of our strata. This Cox model included phase 2 

data for the outcome, the exposure of interest, and nearly all covariates specified for our final 

model. (The model did not include the singleton indicator and dichotomized a few of our 

categorical covariates.) For wave 2, we chose to validate an additional 248 records bringing 

our total validated to 500. We used the updated estimates of the standard deviation of the 

influence function in each stratum and (correctly) applied Neyman allocation for a total 

sampled of 500. From this, we learned we had over-sampled from some strata in wave 1. For 

example, the optimal number to be sampled from original stratum A (obesity = 0, follow-up 

∈ (2,5], and weight change ⩽ 5.14) after wave 1 was 6 , but we had already sampled 7 . In 

contrast, the estimated optimal number to be sampled from original stratum E (obesity=0, 

follow-up ∈(5,6], weight change ∈ (5.14,20.5], i.e., the union of final strata 7–11 in Table 1) 

was 105; in wave 1 we had sampled 16 from this stratum meaning in wave 2 we would need 

to sample 89. Since optimal strata boundaries would sample approximately equal numbers 

from each stratum after applying Neyman allocation, we further divided strata. Specifically, 

prior to sampling for wave 2 we divided 4 strata into 9 new strata (stratum E was split into 

3 strata), making a total of 26 strata. Neyman allocation was used to decide the optimal 

way to sample 500 records from these 26 strata. Nine of these new strata, which included a 

total of 108 records sampled in wave 1 , had already been over-sampled (i.e., n 1 , s ⩾ Neyman 

allocation for stratum s for n = 500), so these strata were closed, and Neyman allocation was 

re-computed to determine how to allocate 392 records (=500–108) across the 17 (= 26–9) 

open strata. The number sampled from each stratum in wave 2 is given in column n 2 , s.
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The process was repeated after collecting wave 2 validation data to select which records to 

sample in wave 3 n 3 = 125  and then again after collecting wave 3 validation data to select 

which records to sample in wave 4 n 4 = 125 . For wave 3 there were a total of 30 strata and 

for wave 4 we expanded to 33 strata. Additional details can be inferred from Table 1.

5.4. Multi-wave sampling for asthma endpoint

We applied a similar multi-wave sampling strategy for the asthma study. Strata were chosen 

based on phase 1 data for child asthma status and maternal weight gain during pregnancy. 

Recall that those in the asthma study N = 7,053  were a subset of those in the obesity study 

N = 10,335 . Of the 750 records already validated for the obesity study, 582 met inclusion 

criteria for the asthma study. Our strategy was to 1) to use this already collected phase 2 data 

to build an imputation model for the validated data, 2) to impute “validated data” from that 

model for all mother-child records that had not been validated, 3) to fit a working analysis 

model to the complete data from which the influence function for the maternal weight gain 

log odds ratio was obtained, 4) to repeat this across multiple imputations to obtain the 

average influence function per mother-child dyad, and 5) to perform Neyman allocation 

based on these estimated average influence functions, refining strata so the allocation was 

approximately balanced across strata. Details are in Web Appendix D.

Table 2 shows strata for the validation sample targeted for the asthma study. Wave 1 for 

the asthma study (5th overall sampling wave) sampled 125 dyads across five strata. After 

completing this validation wave, the process was repeated, combining all phase 2 validated 

data across the 5 prior waves to re-estimate the average multiply imputed influence function 

for the maternal weight gain log odds ratio, which was then used to target our 6th and 

final sampling wave. Unlike the obesity sampling, we had not over-sampled from any strata. 

However, strata were split, creating ten strata from which similar numbers were sampled.

Our plan was to use all validated records meeting inclusion criteria for both the obesity 

and asthma analyses. Thus, in each of the 6 waves of the phase 2 sample, we validated all 

variables needed for both analyses. Thus, we could combine these two separate sampling 

frames using the approach of Metcalf and Scott (2009). This approach requires that the 

samples from the two frames be independent. Hence, records already sampled for validation 

for the obesity study were eligible for sampling in the asthma study. There was some overlap 

between sampled records. If a pair of records had already been validated as part of the 

obesity sampling, we did not re-validate data, but used the already validated data and made 

note of the double-sampling for our analyses. Given we had resources to validate 1000 

records, we selected 284 records for our final wave sample, knowing that there would be 

some overlap. It turned out that 38 of these 284 (13%) had already been validated, so the 

total number of unique mother-child dyads validated across the two sampling designs was 

996.
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6. Analysis of Mother-Child Health Outcomes Data

6.1. Analysis Approach

To obtain valid estimates that are efficient and properly quantify uncertainty, we need to 

account for the multiple sampling frames used to select records in our analyses. To do this, 

we follow the approach of Metcalf and Scott (2009). Specifically, the records that were in 

both sampling frames (i.e., the 7,053 records in the asthma study) were included twice in 

a combined sampling frame and weights were adjusted accordingly. Let πi
O be the sampling 

probability for record i in the obesity frame (i.e., defined by the final strata in Table 1). 

Similarly, let πi
A be the sampling probability for record i in the asthma frame (i.e., defined 

by the final strata in Table 2). The subset of 3,282 records in the obesity frame but not 

the asthma frame received a weight of 1/πi
O. The 7,053 records in both frames that were 

duplicated in the combined frame received weights of ϕi/πi
O and 1 − ϕi /πi

A, respectively. We 

set ϕi = πi
O/ πi

O + πi
A  so that the weight assigned to the unit did not depend on the sample 

in which it was drawn. Treating the original sampling frames as super-strata and preserving 

the original (independent) designs of the two frames, the usual IPW sandwich variance 

estimator with these weights properly accounts for duplication of records in this multi-frame 

dataset (Metcalf and Scott, 2009). A similar approach was applied for the asthma endpoint.

Generalized raking estimators potentially improve the efficiency of the multi-frame IPW 

estimator by calibrating the weights using estimates of the efficient influence function of the 

target regression parameter. Calibration was based on either the naïve influence function or 

on the multiply imputed influence function (Han,2016); the resulting estimators are referred 

to as RakingNv and RakingMI, respectively. The naïve influence function was extracted from 

the Cox model based on only the error-prone phase 1 data. The multiply imputed influence 

function was based on the following procedure: 1) using phase 2 data, fit a model for the 

validated variables conditional on the unvalidated variables; 2) using this model, impute 

“validated data” for all phase 1 records (including those in the phase 2 sample); 3) fit the 

full Cox model to the fully imputed “validated data” and obtain the estimated influence 

function for each record; 4) repeat steps 2 and 3 multiple (in our case 100) times; 5) for each 

observation, compute the average of the estimated multiply imputed influence functions; 6) 

use this average influence function to calibrate weights. The performance of the RakingNv 

versus RakingMI estimators depends on how much error is in the phase 1 data and how well 

the phase 2 data can be imputed. Analyses were performed using the R package survey.

6.2. Error Rates

Table 3 summarizes phase 1 and unweighted phase 2 data for study variables. In the phase 1 

sample, 18% of f our phase 2 sample, where 42% were found to meet the obesity definition. 

Of the 996 validated records, childhood obesity was misclassified only 6 times (0.6%). In 

the subset of phase 1 records in the asthma study, 10% had asthma between ages 4–5 years. 

The asthma outcome had higher rates of misclassification than the obesity outcome: 10.4% 

of children in the phase 2 sample had their asthma diagnosis misclassified with positive 

predictive value (PPV) of 0.57 and negative predictive value (NPV) of 0.97 .
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The estimated maternal weight gain per week during pregnancy was different from that 

estimated in phase 1 data for all mothers in the phase 2 sample, primarily due to corrections 

in the length of pregnancy. The median discrepancy between maternal weight gain was 19.6 

grams/week, ranging from −655 to 933 g/ wk; 93% of validated records had discrepancies 

under 100 g/ wk. Similarly, the estimated BMI at conception was different from that in 

phase 1 data for all mothers in the phase 2 sample with median (range) of discrepancy 

0.13(−6.8 to 8.6)kg/m2. Other variables with high levels of misclassification were maternal 

diabetes (10.9%), smoking during pregnancy (11.8%), maternal depression (13.5%), and 

insurance status (24.3%). In contrast, misclassification was fairly low for race (5.4%), 

ethnicity (1.1%), cesarean delivery (1.3%), child sex (0.4%), singleton (1.2%), and maternal 

asthma (4.5%).

6.3. Regression Results

Holding all other factors constant, a child from a woman who gained 250 grams more per 

week during pregnancy (i.e., 9.75 kg in added weight over a normal 39 week pregnancy) had 

an estimated 30% increased hazard of obesity before age 6 (hazard ratio [HR] = 1.30;95% 

CI 1.14–1.48) based on the multi-frame generalized raking estimator incorporating the phase 

2 validation data and raking with the naïve influence function. For comparison, a model 

using only the unvalidated phase 1 data estimated a 24% increased hazard of obesity (HR = 

1.24; 95% CI 1.14–1.36). Table 4 shows log hazard ratio estimates and standard errors for 

all variables for the various estimators. The estimated log hazard ratio for maternal weight 

gain during pregnancy was fairly similar across all estimators. Raking the multi-frame IPW 

estimator with either the naïve or multiply imputed influence function led to a 33% decrease 

in the variance of the estimated log hazard ratio for maternal weight gain.

An additional analysis raking with the naive influence function suggested that the 

relationship between maternal weight gain during pregnancy and childhood obesity was 

non-linear p = 0.007 , with a fairly constant hazard of obesity for women who gained 

under 11–12 kg during pregnancy, but increasing hazards thereafter; no such non-linear 

relationship was seen using the phase 1 data alone p = 0.87 . Details are in Web Appendix 

E.

Smoking and insurance status were quite error-prone in the phase 1 data, and their 

relationships with childhood obesity were stronger using the validated data and raking 

analyses. Some apparent associations with childhood obesity in the phase 1 data were no 

longer seen (i.e., 95% CI for β crossing 0) in the raking results. The loss of association 

may have been due to decreased precision when incorporating validation data (e.g., 

cesarean section), attenuation (e.g., Asian race), or inclusion of other variables (e.g., 

phase 1 association with singleton status may have been confounded with gestational age). 

Gestational diabetes appeared protective in the raked analyses but not in analyses using only 

the phase 1 data.

Similar analyses were performed to estimate odds ratios for our asthma outcome (Table 

4). In analyses based only on phase 1 data, the estimated beta coefficient of asthma for 

maternal weight gain during pregnancy was −0.54 . Generalized raking estimates were in 

the opposite direction: 0.25 (raking with naïve influence function) and 0.26 (raking with 
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multiply imputed influence function). In terms of a 250 g/ wk difference in weight gain, 

these correspond to odds ratios of 0.88 (95% CI 0.75–1.02) with phase 1 data only and 

1.07 (95% CI 0.74–1.53) raking with the naïve influence function. Although both estimates 

would fail to conclude that maternal weight gain during pregnancy is associated with an 

increased risk of childhood asthma, the naïve estimator is weakly suggestive of a protective 

effect, whereas the raked estimators provide no evidence of an association. The raking 

estimators suggested a stronger association between childhood asthma and Black race, male 

sex, and public insurance than was seen using the unvalidated EHR data; these are known 

risk factors for childhood asthma. Longer gestational age was associated with a lower odds 

of asthma in the raking analyses; no such estimate could be computed using the phase 1 data 

alone.

7. Discussion

We have described our experience implementing a multi-wave validation study to address 

EHR data quality and obtain efficient estimates of the association between maternal 

gestational weight gain and diagnoses of childhood obesity and asthma. Our multi-wave 

sampling approach targeted records for validation based on information learned in prior 

sampling waves. Although we and others have demonstrated the efficiency of multi-wave 

sampling with extensive simulations (McIsaac and Cook, 2015; Chen and Lumley, 2020; 

Han et al., 2021b), to our knowledge this is the first implementation of such a design.

We obtained estimates using a novel generalized raking procedure that efficiently combined 

validation data across multiple sampling waves within two sampling frames with the larger, 

error-prone EHR data. The resulting augmented IPW estimators addressed complicated error 

structures across multiple variables in a robust manner that reliably approximates estimates 

had the entire phase 1 sample been validated. Other analysis approaches could have been 

employed - in particular, multiple imputation, where one imputes the “validated data” using 

models built in the phase 2 subsample (Giganti et al., 2019). However, multiple imputation 

estimators may be biased if the imputation model is misspecified, which is a real concern 

in our setting given that there were over a dozen error-prone variables. Our raking analyses 

that attempted to improve efficiency by calibrating weights with multiply imputed influence 

functions also required substantial imputation; however, consistency of these estimators did 

not depend on correct specification of the imputation model (Han, 2016).

We also employed a modern FPCA approach to estimate maternal gestational weight gain 

and to prompt chart reviews. This approach was critical for producing reliable estimates 

of mothers’ weight trajectories in the presence of sparse data and measurement error. 

The information extracted from the estimated trajectories and used for analysis (i.e., each 

mother’s average weight gain per week during pregnancy) was admittedly simple; other 

components of the FPCA weight trajectory are being considered in on-going analyses. 

However, this summary measure was chosen for primary analyses because of its simplicity, 

ease of interpretation, and scientific relevance based on discussions with a pediatrician and a 

group of women who met with us as part of a community-engagement process.
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Our results suggest that greater maternal weight gain during pregnancy is associated with 

increased risk of childhood obesity but not asthma. Our primary estimate for the obesity 

analysis was similar to the estimate that simply analyzed the error-prone EHR data. This is 

despite our discovery during validation of several variables with appreciable error, including 

the primary exposure. In contrast, the difference between estimates using our methods with 

validated data and only using the error-prone EHR data were much more substantial for the 

asthma analysis. This is likely due in part to differences in the accuracy of the EHR-derived 

phenotypes for childhood obesity (> 99% PPV) versus childhood asthma (57% PPV). 

However, both models demonstrated substantive changes for other associations between 

analyses that ignored versus incorporated validation data. And in an additional analysis, we 

found a sensible, non-linear relationship between maternal weight gain and the hazard of 

childhood obesity that was not seen using the error-prone EHR data alone.

Although the Cox model was a priori specified, it may be of interest to know how results 

would have differed had we used a different model, for example an accelerated failure time 

(AFT) model. In short, the multi-wave sampling procedures would have been identical to 

those described above, except Neyman allocation would have been based on the influence 

function for the relevant coefficient from the AFT model. Although not optimal, our 

sampling strategy designed for a Cox model was likely quite efficient for an AFT model. 

For example, the correlation between the influence functions for the maternal weight gain 

coefficients using the error-prone data for the Cox model and a log-normal model was 

strong, –0.96 (correlation is negative because a higher hazard corresponds to a shorter 

time-to-event). Generalized raking can be easily applied with an AFT model. For example, 

the coefficient for maternal weight gain from a log-normal model with weights calibrated 

with the naïve estimate of the AFT parameter influence function based on error-prone phase 

1 data was –0.54 (standard error of 0.125). Holding all other variables constant, this implies 

that the child from a woman who gained an extra 250 grams per week during pregnancy 

had a 12.6% (95% CI 7.1, 17.8%) decrease in the geometric mean time until obesity. For 

comparison, the coefficient for maternal weight gain from a log-normal model without 

calibration (i.e., using inverse probability weights) was −0.59 (standard error 0.159 ); hence, 

generalized raking resulted in a 38% decrease in the variance of the estimator.

The vast majority of EHR validation studies reported in the biomedical literature validate 

sub-optimal subsamples (most employ simple random or case-control sampling) and do 

not incorporate validation data into analyses, other than simply reporting estimates of data 

quality (e.g., PPV). There are bias-variance trade-offs between naïve analyses of phase 1 

data versus those that incorporate validation data, and in some cases, the decreased precision 

of estimates using validation data may outweigh the increased bias of using unvalidated data. 

Though we can hope that errors in EHR data yield estimates with minimal bias, we cannot 

know this until we actually validate data, examine error rates, and directly calculate their 

impact on estimates. The impact that poor data quality can have on results has been observed 

time and again to be potentially substantial (Floyd et al., 2012, Giganti et al., 2020).

We learned several lessons from our multi-wave validation study. First, adaptive sampling 

designs provide an important chance to recover from a poorly chosen first sampling wave. 

Second, we learned that it takes quite a bit of time between receiving validation data from 
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one wave to design the next wave. Upon receiving validation data we needed to perform data 

quality checks, de-identify data, re-run FPCA analyses, re-fit regression models to estimate 

influence functions, re-compute Neyman allocation, and then meet as a team to discuss 

whether and how to divide strata. Keeping track of interim datasets also became tedious. 

To alleviate some of these challenges we have developed an R package, optimall, which 

performs Neyman allocation, allows easy splitting of strata, and keeps track of various 

datasets in an efficient manner. This package also implements integer-valued Neyman 

allocation Wright, 2017), which provides exact optimality for a fixed sample size (i.e., 

avoids rounding issues) and was employed in later waves of our validation sampling.

When there are two parameters of interest (e.g., maternal gestational weight gain coefficients 

for childhood obesity and asthma), it is not possible to design a validation study that 

is simultaneously optimal for both. We focused three-fourths of our validation sample to 

optimize estimation of the parameter of primary interest; however, we sacrificed some 

precision for estimating the primary parameter to improve estimation of a parameter 

of secondary interest. More research in optimizing designs for multiple parameters is 

warranted.

Our study has potential limitations beyond those already mentioned. The phase 1 sample 

may be unrepresentative because it only included mother-child dyads that could be linked; 

our validation did not investigate whether some dyads were inappropriately excluded. Our 

analyses assumed that the validated data were correct, which may not always be the case. 

There are many other challenges to using EHR data that go beyond what one can glean from 

data validation (e.g., confounding, sparse or erratic data capture, and poor follow-up). In 

particular, although our study addressed a setting where a variable was completely missing 

in phase 1 and found in phase 2 (e.g., estimated gestational age), we did not address a 

setting where there was missing data in a subsample of records, both in phase 1 and phase 2; 

presumably standard methods for addressing missing data (e.g., multiple imputation) could 

be employed on top of those presented here.

In conclusion, we applied innovative designs and analyses to address data quality issues 

across multiple variables in the EHR to efficiently estimate associations between a mother’s 

weight gain during pregnancy and her child’s risks of developing obesity and asthma. 

With the rapid growth of secondary-use data for biomedical research, sampling designs and 

analysis methods of this nature will be increasingly important.
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Figure 1. 
The estimated weight trajectory and 95%-confidence band derived using FPCA for one of 

the mothers based on phase 1 (left) and phase 2 (right) data; dates have been shifted for 

de-identification. Red crosses in the left panel were identified as potential outliers and were 

manually validated. After validation, we updated the weight trajectory (right panel); the 

outlier weight > 100 kg was found to be erroneous and removed.
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Figure 2. 
Schematic of multi-wave sampling strategy for data validation in the childhood obesity study 

and the childhood asthma sub-study. The numbers do not sum to 996 because of overlap of 

38 records sampled for both the obesity and asthma studies.
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Table 1

Multi-wave Sampling Design for Childhood Obesity Endpoint

Original 
Strata

Final Strata Obesity Follow-up Time 
(yrs)

Maternal Gestational 
Weight Gain (kg)

Ns n(1), s n(2), s n(3), s n(4), s ns

A 1 0 (2, 5] ⩽ 5.14 190 7 0 0 0 7

B 2 0 (2, 5] (5.14, 12] 1904 8 21 7 3 24

3 0 (2, 5] (12, 16] 1356 28 0 34

4 0 (2, 5] (16, 20.5] 526 27 37

C 5 0 (2, 5] > 20.5 177 8 2 3 0 13

D 6 0 (5, 6] ⩽ 5.14 208 14 18 1 0 33

E 7 0 (5, 6] (5.14, 8.6] 429 16 22 0 0 25

8 0 (5, 6] (8.6, 12] 1478 15 5 13 39

9 0 (5, 6] (12, 14] 846 18 21 20 44

10 0 (5, 6] (14, 16] 563 22 40

11 0 (5, 6] (16, 20.5] 588 22 8 35

F 12 0 (5,6] (20.5, 24.3] 154 17 19 0 0 32

13 0 (5,6] > 24.3 71 24 0 0 28

G 14 1 (2, 2.5] ⩽ 5.14 49 17 0 0 0 17

H 15 1 (2, 2.5] (5.14, 10] 140 20 19 16 3 28

16 1 (2, 2.5] (10, 12] 126 8 1 22

17 1 (2, 2.5] (12, 16] 205 12 8 5 29

18 1 (2, 2.5] (16, 20.5] 76 3 14

I 19 1 (2, 2.5] > 20.5 33 17 0 0 0 17

J 20 1 (2.5, 3] ⩽ 5.14 13 12 0 0 0 12

K 21 1 (2.5, 3] (5.14, 12] 129 12 13 0 2 19

22 1 (2.5, 3] (12, 20.5] 129 15 0 1 24

L 23 1 (2.5, 3] > 20.5 19 12 0 0 0 12

M 24 1 (3, 4] ⩽ 5.14 21 10 0 0 0 10

N 25 1 (3, 4] (5.14, 12] 175 13 25 0 5 20

26 1 (3, 4] (12, 20.5] 203 3 4 30

O 27 1 (3, 4] > 20.5 28 13 0 0 0 13

P 28 1 (4, 5] ⩽ 5.14 22 9 0 0 0 9

Q 29 1 (4, 5] (5.14, 20.5] 261 10 19 0 4 33

R 30 1 (4, 5] > 20.5 24 11 4 0 0 15

S 31 1 (5, 6] ⩽ 5.14 14 8 0 0 0 8

T 32 1 (5, 6] (5.14, 20.5] 167 8 2 3 4 17

U 33 1 (5,6] > 20.5 11 10 0 0 0 10

Total 10335 252 248 125 125 750

Ns is the population size in stratum s, n 1 , s is the number sampled from the stratum in wave 1, n 2 , s is the number sampled from the stratum in 

wave 2 , and n 3 , s and n 4 , s are defined similarly. ns is the total number sampled from stratum s over all waves of the phase 2 validation sampling.
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Table 2

Multi-wave Sampling Design for Childhood Asthma Endpoint

Original Strata Final Strata Asthma Maternal Gestational Weight Gain (kg) Ns n(1), s n(2), s ns

A 1 0 < 5 306 31 27 31

2 0 [5, 10) 1251 4 31

B 3 0 [10, 12) 1520 16 16 20

4 0 [12, 15) 1681 13 25

C 5 0 [15, 19.5) 1105 24 21 34

6 0 ⩾ 19.5 459 23 34

D 7 1 < 8 115 23 11 23

8 1 [8, 12) 278 13 24

E 9 1 [12, 17] 240 31 4 27

10 1 ⩾ 17 98 27 35

Total 7053 125 159 284

Ns is the population size in stratum s, n 1 , s is the number sampled from the stratum in wave 1, n 2 , s is the number sampled from the stratum in 

wave 2 , and ns is the total number sampled from stratum s over both waves of the phase 2 validation sampling.
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Table 3

Characteristics of phase 1 and unweighted phase 2 samples, and discrepancies.

Variable Phase 1
N = 10, 335

Phase 2a
n = 996

Percent Errorb Discrepancy

Child obesity 17.9% 42.0% 0.6 PPV=0.998, NPV=0.991

Time to event/censoring (age, yrs) 4.3 (2.9, 6.0)c 4.8 (3.0, 6.0) 4.7 1.0 (range 0.04, 1.8)

Maternal weight gain (kg/wk) 0.30 (0.26, 0.38) 0.30 (0.22, 0.41) 100 −0.02 (range −0.66, 0.93)

Maternal BMI (kg/m2) 25.9 (22.6, 30.5) 27.9 (23.8, 33.1) 100 0.13 (range −6.8, 8.6)

Maternal age (yrs) 28.0 (23.5, 32.3) 27.4 (23.0, 31.8) 0 –

Maternal race 5.4

 White 61.8% 56.8 PPV=0.952, NPV=0.962

 Black 23.1% 29.7 PPV=0.986, NPV=0.993

 Asian 6.9% 4.0 PPV=0.904, NPV=0.998

 Other/Unknown 8.2% 9.4 PPV=0.778, NPV=0.966

Maternal ethnicity, Hispanic 14.9% 14.9% 1.1 PPV=0.948, NPV=0.996

Maternal diabetes 10.9

 None 83.3% 89.4 PPV=0.991, NPV=0.553

 Gestational 13.7% 6.7 PPV=0.420, NPV=0.992

 Type 1 or 2 3.0% 3.9 PPV=0.472, NPV=0.977

Cesarean delivery 36.2% 38.2% 1.3 PPV=0.989, NPV=0.986

Child sex, male 52.7% 55.4% 0.4 PPV=0.995, NPV=0.998

Maternal depression 8.9% 10.9% 13.5 PPV=0.376, NPV=0.926

No private insurance 45.9% 67.6% 24.3 PPV=0.941, NPV=0.580

Singleton 98.1% 97.3% 1.2 PPV=0.992, NPV=0.826

Maternal smoking 6.3% 13.2% 11.8 PPV=0.618, NPV=0.897

Marriedd – 51.8% – –

Number prior live birthsd – 0.5 (0, 1) – –

Gestational aged (wks) – 39.1 (38.1, 40.3) – –

Child asthmae 10.4% 13.0% 10.4 PPV=0.570, NPV=0.973

Maternal asthmae 7.8% 11.0% 4.5 PPV=0.827, NPV=0.968

a
Not meant to represent the study populations. Children diagnosed with obesity and asthma were intentionally over-sampled in phase 2 .

b
Percentage of phase 2 values that did not match phase 1 value.

c
Median (25th percentile, 75 th percentile) are reported for continuous variables unless range is noted.

d
Marital status, number of prior live births, and estimated gestational age were not available in the phase 1 data. Gestational age was assumed to be 

39 weeks for computing maternal weight gain per week.

e
Child asthma and maternal asthma are only shown for the N = 7,053 in phase 1 and n = 828 in phase 2 meeting the inclusion criteria for the 

asthma sub-study.
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Table 4

Estimated log hazard ratios for childhood obesity and log odds ratios for childhood asthma (β) and standard 

errors SE  based on various data and estimators. IPW=inverse probability weighted estimator; 

RakingNv=generalized raking with the naive influence function; RakingMI=generalized raking with the 

multiply imputed influence function.

Log hazard ratios for childhood obesity

Phase 1 IPW RakingNv RakingMI

β SE β SE β SE β SE

Maternal weight gain (kg/wk) 0.87 0.18 1.17 0.33 1.06 0.27 1.00 0.26

Maternal BMI (5 kg/m2) 0.28 0.02 0.32 0.03 0.32 0.03 0.32 0.03

Maternal age (10 yrs) −0.05 0.04 0.15 0.11 0.15 0.11 0.15 0.11

Maternal race, Black −0.03 0.06 −0.24 0.14 −0.24 0.14 −0.24 0.14

Maternal race, Asian 0.24 0.11 0.08 0.25 0.10 0.25 0.10 0.25

Maternal race, other/unknown 0.41 0.08 0.04 0.17 0.04 0.17 0.04 0.17

Maternal ethnicity, Hispanic 0.72 0.06 0.95 0.15 0.95 0.14 0.94 0.14

Maternal diabetes, gestational 0.12 0.06 −0.54 0.22 −0.54 0.22 −0.54 0.22

Maternal diabetes, type 1/2 0.13 0.12 −0.19 0.27 −0.15 0.26 −0.15 0.26

Cesarean delivery 0.12 0.05 0.17 0.10 0.17 0.10 0.17 0.10

Child sex, male 0.12 0.05 −0.15 0.10 −0.15 0.10 −0.14 0.10

Maternal depression 0.08 0.08 −0.19 0.18 −0.17 0.18 −0.16 0.18

No private insurance 0.18 0.05 0.60 0.14 0.59 0.14 0.59 0.14

Singleton 0.44 0.21 −0.00 0.33 0.03 0.32 0.02 0.32

Maternal smoking 0.32 0.10 0.48 0.17 0.46 0.17 0.46 0.17

Married 0.32 0.13 0.31 0.13 0.31 0.13

Number prior live births −0.07 0.05 −0.08 0.05 −0.08 0.05

Gestational age (wks) 0.03 0.02 0.03 0.02 0.03 0.02

Log odds ratios for childhood asthma

Phase 1 IPW RakingNv RakingMI

β SE β SE β SE β SE

Maternal weight gain (kg/wk) −0.54 0.31 0.48 0.73 0.25 0.74 0.26 0.74

Maternal BMI (5 kg/m2) 0.10 0.03 0.10 0.07 0.09 0.07 0.10 0.07

Maternal age (10 yrs) −0.18 0.07 −0.07 0.18 −0.08 0.17 −0.08 0.17

Maternal race, Black 0.71 0.09 1.25 0.26 1.28 0.25 1.28 0.25

Maternal race, Asian −0.34 0.22 0.76 0.53 0.78 0.52 0.79 0.52

Maternal race, other/unknown 0.05 0.19 0.49 0.36 0.45 0.36 0.45 0.36

Maternal ethnicity, Hispanic −0.09 0.14 0.20 0.30 0.25 0.30 0.25 0.30

Maternal diabetes, gestational −0.38 0.14 −2.43 0.54 −2.33 0.53 −2.33 0.53

Maternal diabetes, type 1/2 0.10 0.20 0.51 0.50 0.53 0.48 0.54 0.48

Cesarean delivery 0.16 0.08 −0.15 0.21 −0.14 0.21 −0.14 0.21

Child sex, male 0.47 0.08 0.70 0.21 0.73 0.21 0.73 0.21

No private insurance 0.11 0.09 0.90 0.28 0.90 0.28 0.90 0.28
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Maternal smoking −0.44 0.24 0.31 0.28 0.28 0.28 0.29 0.28

Maternal asthma 0.70 0.12 0.75 0.27 0.72 0.26 0.71 0.26

Gestational age (wks) −0.07 0.03 −0.07 0.03 −0.07 0.03

Biometrics. Author manuscript; available in PMC 2024 September 01.


	Summary:
	Introduction
	Maternal Pregnancy Weight and Child Health
	Background
	Primary and Secondary Analysis Models

	Phase 1 Data
	EHR Data Sources
	Deriving Maternal Weight Change

	Phase 2 Data Validation
	Multi-Wave Phase 2 Validation Design
	Generalized raking
	Stratification, Neyman Allocation, and Multi-wave Sampling
	Multi-wave sampling for obesity endpoint
	Multi-wave sampling for asthma endpoint

	Analysis of Mother-Child Health Outcomes Data
	Analysis Approach
	Error Rates
	Regression Results

	Discussion
	References
	Figure 1.
	Figure 2.
	Table 1
	Table 2
	Table 3
	Table 4

