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Abstract: The Internet of Things (IoT) has gained significance in agriculture, using remote sensing
and machine learning to help farmers make high-precision management decisions. This technology
can be applied in viticulture, making it possible to monitor disease occurrence and prevent them
automatically. The study aims to achieve an intelligent grapevine disease detection method, using
an IoT sensor network that collects environmental and plant-related data. The focus of this study is
the identification of the main parameters which provide early information regarding the grapevine’s
health. An overview of the sensor network, architecture, and components is provided in this paper.
The IoT sensors system is deployed in the experimental plots located within the plantations of the
Research Station for Viticulture and Enology (SDV) in Murfatlar, Romania. Classical methods for
disease identification are applied in the field as well, in order to compare them with the sensor data,
thus improving the algorithm for grapevine disease identification. The data from the sensors are
analyzed using Machine Learning (ML) algorithms and correlated with the results obtained using
classical methods in order to identify and predict grapevine diseases. The results of the disease
occurrence are presented along with the corresponding environmental parameters. The error of the
classification system, which uses a feedforward neural network, is 0.05. This study will be continued
with the results obtained from the IoT sensors tested in vineyards located in other regions.

Keywords: prediction algorithm; data correlation; IoT system; sensors; disease identification

1. Introduction

The Internet of Things (IoT) technology has greatly developed in recent years, suc-
ceeding in replacing human labor by monitoring from a distance using certain devices.
IoT devices collect information on various environmental conditions; this way, the farmer
gains the advantage of accessing crop data without being present in the field. A new
concept of Artificial Intelligence of Things (AIoT) has been developed to help accelerate the
development of field monitoring and the identification of crop issues [1]. While reducing
management costs, IoT technology can improve productivity by minimizing production
loss through an early and accurate diagnosis [2]. Wireless Sensor Networks (WSNs) are
a distance communication technology that are prominently used in intelligent farms [3].
Using this technology, the data from the sensors placed on the field are transmitted to
winegrowers [4].

Disease detection is an intensive area of research in viticulture. They are caused by
fungi or bacteria. The main grape diseases caused by fungi are downy mildew, powdery
mildew, and black rot. Early disease identification can have a significant impact on yield
and economic costs for the farmer. Plant growth and development, as well as disease
severity, are directly affected by heat stress resulting from temperature changes. When

Bioengineering 2023, 10, 1021. https://doi.org/10.3390/bioengineering10091021 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering10091021
https://doi.org/10.3390/bioengineering10091021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0002-0410-0530
https://orcid.org/0000-0001-9030-8102
https://doi.org/10.3390/bioengineering10091021
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering10091021?type=check_update&version=1


Bioengineering 2023, 10, 1021 2 of 16

pathogen-susceptible plants are grown in areas with frequent temperature changes, dif-
ferent pathogens are able to cause disease because they can withstand a wide range of
environmental variations. The studies on grapevine disease prevention have many studies
using IoT meteorological data. Being used for a variety of applications, IoT technology
takes on a multitude of shapes and structures for each of them. The first separation is the
one related to the Internet part and the object part. Furthermore, following this separation,
a series of layers are defined, from 3 to 7. In its simplest version, the IoT architecture
consists of three layers: the perception layer, network layer, and application layer [5–7].
Increased humidity triggers certain diseases, progressing mainly by altering the infection
process, spore germination, and spore dissemination. Rain and high humidity trigger the
infection of aerial plant tissues by pathogens. Relatively high atmospheric humidity (>85%)
is favorable for the appearance of fungi, bacteria, and the development of diseases. For most
fungal pathogens, leaf wetness (the length of time the leaf has water on its surface) is critical
for disease development. High atmospheric humidity influences resistance to invasion by
Botrytis cinerea and Penicillium expansum. Traditional monitoring of grapevine diseases
involves visual assessments performed by specialists. In addition to being subjective, visual
evaluation has the disadvantage of being labor-intensive, especially in the case of large
plantations [8].

Environmental factors influence the growth of plants, which can be observed in the
stems, leaves, fruits, and flowers. IoT sensor systems are designed to acquire data about
environmental factors and plants. Data acquired from sensors are analyzed with adaptive
algorithms in order to ensure better management strategies in precision viticulture [9–11].
Automatic data collection allows for permanent crop status observation. By applying
treatments after identifying the onset of diseases, the spread of the infection and the
excessive use of pesticides can be reduced, thus having a lower long-term impact on
environmental, animal, and human health. Light is the most important environmental
factor for circadian regulation. Plasmopara viticola, which causes grapevine downy mildew,
the immature form of sporangia has been observed in continuous light and has no effect on
sporangia formation and mycelial growth [12].

A hybrid of Support Vector Machine (SVM) and Logistic Regression (LR) algorithms
were described in another IoT crop monitoring study [13] to predict powdery mildew
disease in tomato plants. Adaptive Sampling (ANR) was applied to minimize the noise in
the data, using the filtering method. The resulting training set obtained from the SVM-ANR
method was further fed into the LR classifier to develop the classification model. The
proposed SVM-LR hybrid method achieved higher accuracy in powdery mildew disease
prediction compared to the SVM and LR algorithms alone. However, the paper did not use
any feature selection algorithm to identify the most important features. Another study [14]
presents a set of fungal disease models applicable to viticulture. Using meteorological
variables, diseases like downy mildew, powdery mildew, and black rot are monitored. The
detection models have been adapted to be learning in real-time and work with IoT SEnviro
nodes [15], which are capable of generating information at adaptive levels. The IoT nodes
are deployed in a vineyard in the province of Castelló on Merlot, Monanstrell, Bonicaire,
and Cabernet (Spain). These sensors stored the data for 130 days (May–September 2018).
Using the threshold for the data of the parameters that can produce the disease, an alarm is
sent on the website in case of disease occurrence. The described methods are proposed for
the reduction in phytosanitary products. Another study [16] correlates the data collected
with the classical method on leaf stomatal conductance and data from the SF-4 Micro Stem
Sap Flow Sensor. This method is used for calibration slopes for three different plants
(a) Hakea sp. (R2 = 0.90), (b) Ardisia sp. (R2 = 0.76), and (c) Fragaria sp. (R2 = 0.82), where
p < 0.05. The comparison between the sap flow data of the SF-4 sensor and the volume of
water measured with classical methods is highly significant (R2 = 0.95). This shows that
distance monitoring gives good results using sensors implemented on the field.

The presented work was developed in a Romanian vineyard, where the environmental
parameters were different in comparison to Spain, France, or Greece [15]. The designed IoT
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system and algorithm will be tested in other vineyards to validate the model. The main
objectives of this study are:

• To identify the degree of attack on the leaves using classical methods;
• To deploy the sensors in the vineyard;
• To correlate the sensors data with data collected using classical methods;
• To cluster the data from the sensors to detect the numbers of diseases that can be

predicted with data from sensors;
• To develop an algorithm for the automated detection of grapevine disease.

As a goal, the present study aims to detect diseases at the point when their evolution
can still be stopped, using a prediction algorithm and comparing the data taken from IoT
sensors with the data obtained using classical methods, in order to verify the accuracy of
sensor data.

This paper is structured in five sections. Section 2 presents the materials and the meth-
ods used for classical and IoT grapevine monitoring, as well as data processing. Section 3
describes the results obtained from data analysis and future work and recommendations.
The discussions are presented in Section 4. The last section offers the conclusions and future
research recommendations.

2. Materials and Methods
2.1. Plant Material and Classical Data Collection Methods

Data acquisition was carried out in field conditions in the plantations of SDV, Murfatlar.
Two grapevine cultivars were chosen to be monitored using classical and sensor-based
methods: Sauvignon Blanc and Cabernet Sauvignon. For each type of vine, a treated and
untreated plot was established. For each variant, 15 grapevine plants were kept under
observation using classical methods, and one plant was chosen to be monitored using
sensors. The active vegetation period was 148 days for Sauvignon Blanc and 151 days for
Cabernet Sauvignon during the year 2021. An agronomic protocol was elaborated in order
to gather information on the health of the grapevine, which included disease monitoring
and plant physiology determinations, namely, stomatal conductance and leaf relative
chlorophyll content. In each plot during the vegetative season, the development of the
following three grapevine diseases was monitored: downy mildew, caused by Plasmopara
Viticola; powdery mildew, caused by Uncinula necator; and grey rot, caused by Botrytis
cinerea. Downy mildew develops especially in conditions of high humidity and moderate
temperatures, usually between 12–25 degrees Celsius, a relative air humidity of 92–100%,
and a leaf humidity of 24% (Table 1). For gray rot, symptoms include the appearance
of a gray mold layer on the surface of plants, loss of color and texture, and rotting and
drying of fruits and inflorescences. In case of severe infection, the plant may die completely.
The fungus develops especially in conditions of high humidity and temperatures between
18–20 degrees Celsius and humidity 80–100% and leaf humidity 72–90%. Symptoms of the
disease include yellowish or green spots on the vine leaves, which later turn into brown or
black spots.

Table 1. The environmental conditions for the occurrence of the studied diseases.

Disease Air Temperature [◦C] Air Humidity [%] Leaf Humidity [%]

Plasmopara viticola Occurrence 10 92–100 24
Optimal 18–25 ≥93 ≥24

Botrytis cinerea Occurrence 15 ≥90 90
Optimal 18–20 ≥80 72–90

Uncinula necator
Occurrence 7–31 ≥30 45

Optimal 15 ≥45 85
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In order to follow the phytosanitary condition of the grapevine, the vegetation
phenophases of the two studied varieties were taken into account, according to the BBCH
scale (Biologische Bundesanstalt Bundessortenamt and Chemical Industry, a universal
scale for plant phenology, where each phenological stage is noted with numbers) [9], along
with the biology of the pathogen and the climatic factors. Considering the fact that the
foliar apparatus is the indicator of the phytosanitary condition of the plant, the leaf was
the vegetative organ used for disease assessment for the classical method. The extent of
the diseases was assessed using a visual graphical scale [14]. Disease assessments were
performed according to the degree of attack (DA). This value represented the extent of the
attack on the crop reported by the total number of plants on which the observations were
made; results after calculating the frequency of the attack was F; and the intensity of the
attack was I, as follows (1) and (2):

GA =
F× I
100

(1)

F =
N × 100

Nt
(2)

N: the number of attacked plants (leaf);
Nt: the total number of observed plants (leaf).
The value of the frequency of the attack informs us only about the spread of the

infected area.
I: the intensity of the attack.
Chlorophyll content and stomatal conductance are relevant indicators of a plant’s

physiological state [17]. The stomatal conductance was measured using a steady-state
porometer, and chlorophyll measurements were achieved with SPAD 502 Plus chlorophyll-
meter. For each variant, 10 leaves were analyzed, measuring values on 10 distinct points
for each of them. The field analyses were performed as follows: BBCH 11–19 (30.04–17.05)
for downy mildew, BBCH 69–79 (14.06–30.07) for powdery mildew, and BBCH 79–85
(30.07–20.08) for gray rot. For each disease, the aforementioned periods corresponded
to the theoretical onset of symptoms, given the optimal environmental conditions were
identified.

2.2. Methods and Algorithms
2.2.1. Clustering Methods

The evaluation of the algorithm’s performance was achieve using four parameters:
inertia; Silhouette coefficient; Calinski–Harabasz index; and the Davies–Bouldin index.
Inertia measured how well a data set was clustered by the K-Means algorithm. It was
calculated by measuring the distance between each data point and its centroid, squaring
this distance, and summing these squares for each cluster (Formula (3)).

N

∑
i=1

(xi − Ck)
2 (3)

Xi: data point;
Ck: centroid;
I: data number;
K: cluster number;
N: maximum data number.
A good model is one with low inertia and a small number of clusters (K). However,

this is a trade-off since as K increases, inertia decreases.
The Silhouette coefficient is used to assess the quality of clusters created by clustering

algorithms such as K-Means, based on how well similar samples are grouped together. The
Silhouette coefficient is calculated for each sample in a cluster. To determine the Silhouette
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coefficient for each observation/data point, the following distances must be found: average
distance between the observation and all other data points in that cluster. This distance can
also be called the average intra-cluster distance. Average distance between the observation
and all other data points in the next closest cluster. This distance can also be called the
average distance between the closest clusters.

The variation range of this parameter is [–1, 1]. If it is 1, the cluster is dense and well
separated from other clusters; if it is 0 or close to 0, it means there are overlapping clusters
or samples that are very close to the decision limit of neighboring clusters. If the score is in
the range [−1, 0], it means that there are samples assigned to the wrong clusters [18].

The Calinski–Harabasz (CH) index is used to evaluate the model when the ground
truth is not known, where validation of how the clustering was achieved is performed
using quantities and characteristics inherent to the data set.

The CH index provides information on the similarity between an object and its own
cluster—cohesion—and in comparison with other clusters—separation. Here, cohesion
is estimated based on the distances between the data points in a cluster and the centroid,
and separation is based on the distance between the centroids of each cluster and the
global centroid. The CH index has the form (a.separation)/(b.cohesion), where a and b
are weights.

The CH index for a number k of clusters on a data set D. Where D is d1, d2, and d3,
. . . , and dN defined as follows (4):

CH =

[
∑K

k=1 nk‖ck − c‖2

K− 1

]
/

[
∑K

k=1 ∑nk
i=1 ‖di − ck‖2

N − K

]
(4)

nk: points number;
ck: centroid k clusters;
c: global centroid;
N: total number of points of data.
A high value of the CH index represents dense and well-separated clusters. In this

case, there is no threshold value. The Davies–Bouldin Index (DBI) is one of the evaluation
measures of clustering algorithms. It most commonly used to evaluate the quality of
the split performed by a K-Means algorithm for a given number of clusters. The DBI is
computed as the average similarity of each cluster to its most similar cluster. If the average
similarity is low, the clusters are well separated, and the result of the clustering is good.

2.2.2. Classification Methods

Decision trees (DTs) are a supervised learning technique used for classification and
regression problems. Generally, DT are used for solving classification problems. This
algorithm is a classifier structured in the form of a tree, where the internal nodes represent
the features of the data set. The branches represent the decision rules, and each leaf node
represents the output. In a decision tree, there are two types of nodes: decision node and
leaf node. Decision nodes are used to make decisions and have multiple branches, whereas
leaf nodes are the result of these decisions and contain no further branches. Decisions or
tests are based on the features in the analyzed data set.

To build a tree, we used the CART algorithm (Classification and Regression Tree
Algorithm). A question is asked, and, based on the answer (Yes/No), the tree is further
divided into subtrees. The disadvantage of a DT is its multiple layers, which lead to a
complex algorithm. If the algorithm is multiclass, this situation is accentuated. Too much
complexity can lead to the phenomenon of “overfitting” (the formed/found hypothesis
includes noise or irrelevant data patterns), but this problem can be solved using the Random
Forest algorithm.

Random Forest (RF) is a machine learning algorithm that produces a good result
in many cases, even without hyper-parameter tuning. It is also one of the most widely
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used algorithms due to its simplicity and versatility of use. Like DT, it is used for both
classification and regression problems.

The confusion matrix is an N × N matrix applied in order to determine the perfor-
mance of a classification model, N being the number of targeted classes. Thus, the target
values are compared with the values predicted using the machine learning model, obtain-
ing a whole-picture view on the performance of the model and the potential errors that
might result.

Accuracy, Recall, Precision, and F1 Scores are used for performance of a model.
Accuracy is the intuitive measure of performance, the ratio of the observations pre-

dicted correctly, and the total number of observations.

• Precision is the ratio of correctly predicted positive observations to the total predicted
positive observations (5).

precision =
TP

TP + FP
(5)

TP: number of true positive cases;
FP: number of false positive cases.

• Recall is the ratio of correctly predicted positive observations to the total observations
in the class (6).

Recall =
TP

TP + FN
(6)

FN = number of false negative cases.

• F1-Measure takes precision into consideration as well as recall, thus analyzing false-
negative and false-positive values (7).

F1 =
TP

TP + FN+FP
2

(7)

A classification method can be achieved using a neural network (NN). A feedforward
neural network can be composed of three types of nodes:

• Input nodes: this provides the network with information from the outside world, and
all input nodes form the input layer together;

• Hidden Nodes: they have no direct connection to the outside world. They perform
calculations and transfer information from input nodes to output nodes;

• Output nodes: these are responsible for computations and transferring information
from the network to the outside world.

The algorithm for data clustering and classification is used in this study [18–21].

2.3. Data Acquisition Using IoT Technology

The experimental system consists of sensor kits based on IoT technology, in concor-
dance with the classical method. The IoT network has the following components: sap
flow meter; air temperature and humidity sensor; solar radiation sensor (PAR); leaf hu-
midity sensor; soil temperature and humidity sensor; and soil oxygen sensor. The sensors
were installed on the field in May 2021 at the beginning of the grapevine growing period
(Figure 1a).

Two solar panels of 10 W and one solar panel of 20 W were used for powering
the sensors and charging the energy sources, as the producer proposed [22]. Data were
transmitted to the cloud using MicroGateway RAK7258. The original cloud was Azure. The
transmission of Wi-Fi (Wireless Internet Frequent Interface) data was performed through
the LORAWan-EU868 protocol. The data transmission distance between the node and
gateway was in the range of 100 m–2 km. There were two nodes with sensors, one for the
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Sauvignon Blanc plot and the other for the Cabernet Sauvignon plot. The data from the
sensors were recorded on an 8 GB external memory card.
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Data could be graphically viewed in the Human Machine Interface (HMI) designed
in LabView from National Instrument or as a table (*.csv format) in order to correlate the
results (Figure 1b). The interface showed the values of temperature, humidity, atmospheric
pressure, and wind direction. Depending on the thresholds written in the code, the pos-
sibility of downy mildew and gray rot could be identified. These parameters influenced
disease occurrence. The favorable atmospheric conditions for disease occurrence were
included in the interface code. The code obtained in LabView used the thresholds of the
main parameters air temperature and humidity.

Data signals from the sensors were analog (with voltage or current output) or digital
(SDI-12 protocol). The IoT system was configured by the company ICT International from
Australia. The sensors used in the study were:

(a) Leaf moisture—PHYTOS 311 type, designed with thin fiberglass. This sensor is
dielectric, with an output voltage of [320; 1000] mV and a 3 V power supply. The
sensors work in the temperature range of −30 ◦C and +40 ◦C;

(b) Soil O2-SO-411 type has a 12 V power supply and works in the range of [−10; +50]
degrees Celsius;
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(c) Moisture and temperature—SDI-12 type, has a digital output type, with a supply
voltage of 12 V. The measuring range of humidity is 0–60% and temperature in the
range of [−30; +70] ◦C. The sensors are placed at a depth of 20 cm;

(d) Photosynthetically active radiation (PAR)-SQ-521 type is a digital sensor with a mea-
surement range of [400; 700] nm;

(e) Air humidity and temperature digital sensor has a temperature range of [−30 ◦C;
+50 ◦C] and an air humidity range of [0%; 100%]. It is powered to 12 V;

(f) The SFM1 Sap Flow Meter measures the speed of sap flow in the stem.

A bloc diagram of the acquisition and communication system is presented in Figure 2a.
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2.4. Data Processing

Environmental conditions and plant behavior were analyzed using the data collected
from sensors, in concordance with the results obtained by classical methods. Data were
analyzed in the Python programming language, using the open source Visual Studio Code
development environment. The prediction was achieved using TensorFlow open sourse
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platform for ML (https://www.tensorflow.org/learn) (accessed on 24 July 2023). The
computing device was a computer equipped with a Nvidia RTX 3090 video card with 24 GB
GDDR6X, an 3.7 GHz Intel Core I9-10900x microprocessor, and 64 GB RAM. The operating
system was Microsoft Windows 10 Pro. [23].

The data from each sensor were placed in a file and then read automatically for feature
extraction. The correlation of data features was performed in order to identify the influences
of the parameters on each other (Figure 2b). For variable analysis, the average values per
hour were computed, the correlation of the normalized data was used, and, finally, a
feedforward neural network was created to classify the data in order to predict the diseases
chosen in the study.

3. Results
3.1. Disease Monitoring Using Classical Methods

Out of the three studied diseases, only powdery mildew was present to a greater extent,
registering a significant degree of attack at the foliar level for both cultivars (Figure 3(I)).
The other diseases measured very low attack values in the periods designated for their
observations. For the treated variants, the attack degree values were considerably lower,
due to the application of phytosanitary treatments.
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3.2. Plant Physiology Determinations

For Cabernet Sauvignon, similar chlorophyll content values were obtained for both
variants during the measuring period for downy mildew, with higher values being recorded
for the treated variant during the measuring periods for powdery mildew and gray rot
(Figure 3(II)).

The lower chlorophyll values were mainly caused by the depigmentation of the leaf,
due to the attack of the pathogens. The same observation could not be made for Sauvignon
Blanc, where chlorophyll values were oscillating [24]. In regard to stomatal conductance,
higher values are obtained when the plant is healthy, during BBCH 11–19. When the
plant began to show symptoms of powdery mildew, during BBCH 69–79, the stomatal
conductance significantly lowered for all the studied varieties. Similar results, where
stomatal conductance registered lower values when the plant was infected with Uncinula
necator, were obtained in another study [24,25].

3.3. Data Analysis

The correlated data using the maximum value could be interpreted as follows: PAR
did not influence other parameters measured in either two of the correlations; SAP was
influenced by both air and soil parameters, but not by leaf moisture. The data on leaf
humidity in the two monitored areas were correlated in over 70% of cases and were
influenced by the same environmental parameters: soil oxygen, moisture, and permeability,
as well as air humidity, but only in the case of the maximum values. In order to improve
the IoT monitoring system, a sensor for identifying the leaf temperature must be included
so that a prediction of the disease could be made according to leaf and air moisture and
temperature.

Leaf humidity values decreased, and the PAR value increased during the critical
period of the appearance of downy mildew, thus not registering the optimal conditions for
the appearance of this disease at the foliar level. Regarding sap flow measurements, the
flow was periodic, not showing significant deformations, although disease symptoms were
present. Starting with November, the plant began to reduce its activity, due to the onset of
the dormancy period. As it is shown in the correlation diagram, sap flow is influenced by
atmospheric conditions and soil parameters.

In order to perform correlation analyses, the chosen data interval was June–October.
The characteristics extracted from each sensor were normalized, and a correlation was
made between the maximum and mean values for each day. The sap flow meter signal
had a periodic variation during the vegetation period Figure 4a, which could be observed
after the FFT (Fast Fourier Transformation) presented in Figure 4b. There were no oxygen
variations in the soil; therefore, sap flow variation was not present either (Figure 4c). After
an increase in soil moisture of over 11%, there was a stabilization of the sap flow through
the plant, even if the humidity increased (Figure 4d).

Using feature importance, we can identify the most significant parameters, which are
then used in the classification methods. The temperature and humidity of air and soil are
the most important parameters that can influence the disease occurrence (Figure 5). This
confirmed the observation achieved using classical methods.

The score obtained after the feature importance analysis was bigger than 0.15, so all the
parameters could be used as input in the prediction algorithm. The next section presents
the results of the prediction and classification algorithm used for the automatic system,
which will be developed at the end of the project.
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4. Discussion

The classical method results can be used in the prediction system. The data acquired
from sensors is used as the input in the algorithms, and the degree of attack for different
diseases is used as the target. As can be seen from the data stored by sensors, leaf color
is influenced by air temperature and humidity. The analysis is applied to the data from
the Cabernet Sauvignon untreated plot in the vegetation period. After clustering two
parameters, air temperature and humidity, the result of Silhouette index is equal to 0.63 for
the two classes, which represent healthy and infected leaves. After the classical methods
study, it was observed that the temperature range of 20 ◦C–25 ◦C had an influence on
infection occurrence at moderate relative air humidity values. The results of our study
were presented in paper [25], in which we analyzed the data from air parameters using
different methods two classes identified. Using a scatter representation, it was observed
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that the data were linearly separable; therefore, the K-Means algorithm was suitable for
the segmentation of the set (Table 2). There was some scatter, mainly at the edges of the
clusters, noticeable through the value of 834,418,465 for inertia, which measured how well
a data set was clustered by the K-Means algorithm. The CH index was 27,863.24, and the
DBI index was 0.491, showing the average similarity of each cluster with the most similar
cluster.

Table 2. The performance of the model [25].

Inertia 834,418.46
Silhouette Parameter 0.63
Index Calinski–Harabasz 27,863.24
Index Davies–Bouldin 0.491

In this part of the project, the target column was added to the data set, which presented
information about the state of the plant: diseased or healthy. The disease type was not
indicated as output value. The classification was achieved using Decision Tree, Random
Forest, and K-Nearest Neighbors algorithms.

The K-fold cross-validation predictions were made on the test subsets [21]. In our
study, K-fold cross-validation was performed on three subsets (Table 3). The value of
accuracy was comparable across all three folds, which indicated a good generalization
ability. The highest accuracy is obtained using R.F.

Table 3. The predictions accuracy on the three test subsets K-fold cross comparing the DT with RF [25].

Accuracy—Subset 1 Accuracy—Subset 2 Accuracy—Subset 3
Decision Tree (DT) 0.976 0.974 0.978

Random Forest (RF) 0.980 0.981 0.983

After computing the confusion matrix associated with the Decision Tree Classifier, it
was observed that a percentage of only 0.648% of the total analyzed cases was misclassified.

In the agronomic protocol, the disease type was indicated, as such, in the next step
of the study, we predicted the Plasmopara and Botritis Cinera diseases. In Figure 6, the
Confusion matrices associated with the three class classifications were presented. The
data used in these analyses were soil and air humidity and temperature, soil oxygen, and
PAR stored during the vegetation period of the 2022 year. This year, the disease was not
frequently identified. So, using the confusion matrix, we could see that a good classification
of the data in three groups was obtained. After the data classification for healthy and
infected plants presented in [25], we could identify the disease type using more parameters
in our analysis.
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For the first set of data, classification was achieved using the DT and RF algorithms
and only temperature and humidity as features. For the second data set, more features
were included (Table 4).

Table 4. Classification report for D T and R F Classifiers.

Classification Report: Decision Tree Classifier (two classes)

precision recall F1-score support
0 1 1 1 5197
1 0.96 0.97 0.96 506

accuracy 0.99 5703
Macro average 0.98 0.98 0.98 5703
Weight average 0.99 0.99 0.99 5703

Classification Report: Random Forest Classifier (two classes)

0 1 1 1 5197
1 0.99 0.96 0.97 506

accuracy 1 5703
Macro average 0.99 0.98 0.99 5703
Weight average 1 1 1 5703

Classification Report: Random Forest Classifier (multiple classifiers)

precision recall f1 score support
0 1.00 1.00 1.00 13
1 1.00 1.00 1.00 7
2 1.00 1.00 1.00 10

accuracy 1.00 30
Macro average 1.00 1.00 1.00 30

Weighted
average 1.00 1.00 1.00 30

Classification Report: Decision Tree Classifier (multiple classifiers)

precision recall f1 score support
0 1.00 0.92 0.96 13
1 1.00 1.00 1.00 7
2 0.91 1.00 0.95 10

accuracy 0.97 30
Macro average 0.97 0.97 0.97 30

Weighted
average 0.97 0.97 0.97 30

For the first set of data, the results are presented in the next paragraph. The values of 1
for the negative class (the disease is not present) and 0.96 for the positive class (the disease
is present) of the F1 parameter in the classification show good performance of the model.
Comparing the ROC (Receiver Operating Characteristic) or PR (Precision/Recall) curve,
the values of 5197 of all data, 506 indicate unbalanced classes. We use the Random Forest
Classifier instead of the Decision Tree Classifier, which has many trees. This obtains
performance and reduces overfitting. In the confusion matrix associated with the RF
classifier, we have cases as 5190 TN, 487 TP, 19 FN, and 7 FFP. The total cases are 5703,
out of which 5677 are correctly classified. In total, 0.45% of the total cases analyzed was
misclassified. Here too, there is an improvement in comparison with previous cases, where
wrongly analyzed cases represented 0.64% of the total (FN = 16, FP = 21).

Analyzing the F1 parameter, used in comparing the efficiency of the classifiers, it can
be seen that the value 1 was still obtained for the negative class (the disease is not present),
but there is an improvement in the result from 0.96 to 0.97 in the case of the positive class
(the disease is present). Global accuracy also changed from 0.99 to 1.

In the second set of data improved for the RF classifier, the results are 1 in all the cases,
and the global accuracy is 1. But, in the case of the DT classifier, the global accuracy is
0.97 less precise than in the first case.
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After the classification algorithms presented above, we design a feedforward neural
network (NN) to identify the disease. Using data collected from the field and from the
sensors, a database is created, which is used to train a neural network. Daily maximum air
temperature and humidity values from the interval April 2021–January 2022 are considered
as inputs. These data are used because there are more data, and more infections are present
in the field in the year 2021. All the input values are normalized in the range [−1, 1].

The target output values are considered three classes with the labels: “0”—normal;
“1”—Plasmopara; and “2”—Botritis. These diseases, which represent the NN outputs,
are identified by classical methods, using the attack degree. The neural network has an
input layer with 512 neurons and three hidden layers with 256, 128, and 64 neurons. All of
these neurons have rectified linear (RELU) activation functions. In the output, there are
three neurons with the SoftMax activation function. It is considered only three neurons,
corresponding to the three classes. The neural network has dense layers, which means that
each neuronal layer is closely connected to the previous. The 5197 data are used for training
and testing NN. The NN is trained after 1000 epochs with 0.05 loss and an accuracy of over
85% (Figure 7a,b).
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In this study, we analyze the different possibilities of disease identification using
different environmental parameters. After the data correlation, we can observe as the
temperature and humidity of the air influence the disease occurrence [26]. The present
project has an advantage in the comparison between data collected from the sensors and
using agronomic protocol [19,20]. In the NN classification, we use the target data obtained
from the field regarding the degree of attack on the leaves collected in the vegetation period.
In the future, we will analyze the data of an IoT sensor system built in the laboratory [22,27].
This system gives more information about the environmental parameters like soil nutrients,
wind direction, leaf colors, and so on.

5. Conclusions

The main problem that can be solved with an IoT system is grapevine monitoring
24 h/day, creating the possibility of disease combat from a distance, without the interven-
tion of farmers.

Comparing the conclusions of other articles that present the study in the same direction
of plant disease detection, the results of this paper are very encouraging, obtaining accuracy
values of approximately 0.95. As predictors, the main environmental parameters taken into
consideration are air temperature and humidity. The robustness of the model is given by
the data collected with classical methods. The difference between our study and others is
the correlation between the results of classical and sensor monitoring methods. This paper
is presented the accuracy of the intelligent models applied for different combinations of
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environmental parameters. On the dataset from the untreated Cabernet Sauvignon plot,
DT classifiers are applied. The accuracy is 0.99. For the RF classifier, the accuracy is 0.97 for
air temperature and humidity parameters. Very good results, but somewhat weaker than in
the previous cases, are obtained with a particular NN algorithm, with an accuracy of 0.88.

However, more research is needed in order to allow a better performance of the
elaborated new hyperparameters or architecture. Including the temperature and humidity
of soil, the results of classification are very good, even 1 for the RF classifier. So, soil
parameters have an important influence on disease occurrence.

The IoT sensor system will be improved with sensors that can give more information
about soil environmental parameters. Automated methods will be designed to identify
the disease and to prevent them using only the sensors. Another objective is to be able to
identify more diseases using data sensors and algorithms.

In addition to the economic aspects, early grapevine disease detection helps to re-
duce the impact on the environment and on human health, as the number of pesticide
applications is reduced.
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