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Abstract: Beyond their established role as oxygen carriers, red blood cells have recently been found
to contribute to systemic NO and sulfide metabolism and act as potent circulating antioxidant cells.
Emerging evidence indicates that reactive species derived from the metabolism of O2, NO, and H2S
can interact with each other, potentially influencing common biological targets. These interactions
have been encompassed in the concept of the reactive species interactome. This review explores the
potential application of the concept of reactive species interactome to understand the redox physiology of
RBCs. It specifically examines how reactive species are generated and detoxified, their interactions with
each other, and their targets. Hemoglobin is a key player in the reactive species interactome within RBCs,
given its abundance and fundamental role in O2/CO2 exchange, NO transport/metabolism, and
sulfur species binding/production. Future research should focus on understanding how modulation
of the reactive species interactome may regulate RBC biology, physiology, and their systemic effects.

Keywords: red blood cells; reactive species interactome; nitric oxide; sulfide; antioxidant enzymes;
oxidative stress; hemoglobin

1. Introduction

Oxidative stress was originally defined by Helmut Sies as “an imbalance between antiox-
idants and oxidants in favor of the oxidant, which can potentially lead to molecular damage” [1].
Excessive production of oxidants and/or consumption of antioxidant systems disrupt cellu-
lar redox control and signaling [2,3]. He also introduced the term “reactive oxygen species”
(ROS) to describe oxidants derived from the metabolic utilization of oxygen, including free
oxygen radicals (•OH), superoxide radical anion (•O2

−), and hydrogen peroxide (H2O2).
Intracellular antioxidant systems responsible for scavenging and removal of ROS

comprise molecules that act as redox couples and/or cofactors of enzymes (including the
“inevitable” glutathione [4], as well as antioxidant enzymes, like glutathione peroxidase,
catalase, and superoxide dismutase. The concept of cellular redox balance/disbalance was
described by using the image of a traditional scale consisting of two plates suspended at
equal distances from a fulcrum. Antioxidants were depicted on one plate, and oxidants (or
ROS) were depicted on the other plate. In a weighing balance, the weighing plates level
off only when a static equilibrium between the two plates is achieved, i.e., only when the
masses on the two plates are equal.

According to this conceptual model, under resting conditions, the cellular redox state
is maintained when the oxidant production is balanced by the intracellular antioxidant
response. If the levels of oxidants exceed those of antioxidants, as a result of higher
ROS levels or lower antioxidant production [1], there will be damage to the cell. ROS
have been shown to react with other endogenously produced free radicals and reactive
species containing nitrogen (reactive nitrogen species, RNS) and sulfur (reactive sulfur
species, RSN), which have also been proven to be potent oxidants and disturb normal
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redox homeostasis [5]. In earlier studies, the presence of enhanced oxidative stress or
ROS/RNS/RSS levels was associated with diseases such as diabetes, inflammation, and
mitochondrial dysfunction [1].

The study of redox biology and its conceptualization has evolved considerably since
then. It was proven that ROS are not the only reactive species responsible for oxidative
damage. The free radical nitric oxide (NO) was demonstrated to be produced endogenously
in cells by a nitric oxide synthase (NOS) and act as a signaling molecule and a neurotrans-
mitter. Also, H2O2 was found to have important signaling functions under physiological
conditions and be produced under highly controlled conditions by NADPH oxidases. In
recent years, sulfide has been shown to be produced endogenously in mammalian cells
and tissues and shows fundamental biological and physiological effects, resembling the
effects of NO in some cases. Here, the term “sulfide” is used for simplicity to indicate the
mixture of all sulfide species found in equilibrium among themselves at biological pH.,
i.e., H2S (g), H2S (aq), HS−, and S2−. In water at pH 7.4, H2S (aq) is rapidly equilibrated
into HS− (>70%) and S2−. Therefore, the main biologically relevant sulfide species in cells
are H2S (aq) and HS− (>70%). The IUPAC nomenclature of these species is as follows:
H2S, sulfane or hydrogen sulfide; HS−, sulfanide or hydrogen(sulfide)(-1); S2−, sulfide(-2)
or sulfanediide.

It is also clear that these radicals and oxidants are highly compartmentalized, undergo
chemical reactions and complex interactions among them, and may affect common bio-
logical targets. In other words, in a biological environment, molecules derived from the
metabolism of O2, NO, and H2S may interact with each other and should be considered
components of the same system. Therefore, we introduced the term reactive species inter-
actome [5]. The reactive species interactome is defined as an “oxidation-reduction system
consisting of chemical interactions between reactive sulfur species (RSS), reactive nitrogen
species (RNS), and ROS with their thiol targets”.

Red blood cells (RBCs) are simple, short-lived, anucleated cells present in almost all
vertebrates, whose main function is the transport of oxygen (O2) and carbon dioxide (CO2)
along the vascular system of vertebrates. For many years, scientists have thought that
the sole function of RBCs was to deliver O2 to body tissues. However, there is growing
evidence that these cells may be involved in complex systemic redox regulation [6]. RBCs
have a very complex and poorly understood reactive species interactome.

The presence of high concentrations of hemoglobin and its oxidized form, methe-
moglobin, is one of the main sources of ROS in RBCs. RBCs are particularly rich in
antioxidants and detoxifying enzymes and transport high millimolar concentrations of
glutathione [6,7] and glutathione persulfide (GS(S)nSG) [8].

In addition, RBCs are exposed to endothelial-derived nitric oxide (NO) and its metabo-
lites, such as nitrite (NO2

−), nitrate (NO3
−), and nitrosospecies (RXNO) [9]. (RXNO

indicates low-molecular-weight molecules where a “nitroso group” is bound to a cys-
teine (nitrosothiols) or an amino group (nitrosamine) [9].) RBCs have been shown to
transport NO metabolites and NO bound to hemoglobin as nitrosylhemoglobin and
s-nitrosohemoglobin. RBCs also produce NO under hypoxic conditions and release “NO
bioactivity”, i.e., they are able to induce vasodilatation in ex vivo bioassays. In addition,
RBCs express an endothelial nitric oxide synthase (eNOS) [10]. Therefore, RBCs play a
central role in the systemic regulation of NO [6].

Additionally, RBCs participate in sulfide metabolism. RBCs were shown to scavenge
sulfide, transport RSS, and express a 3-mercapto sulfotransferase (3-MST) and thus poten-
tially contribute to the endogenous enzymatic production of sulfide and its metabolites as
well [11]. The potential chemical, biochemical, and pharmacological interactions of sulfide
with NO in RBCs (or “cross-talk”, as defined in the literature) and their reactions with
hemoglobin have also been proposed [5,11–15].

Erythroid cells and reticulocytes (and therefore probably also RBCs) contain high
levels of heme oxygenase 1, which catalyzes the degradation of oxidized hemoglobin
and thereby also produces carbon monoxide (CO) [16]. The interaction of CO with other
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reactive species in RBCs (or in other compartments) has not yet been investigated in detail.
In general, the role of the reactive species interactome in the regulation of RBC physiology and
pathophysiology remains unclear. This review summarizes recent evidence on the reactive
species interactome in RBCs and how it may affect the cardiovascular system. Specifically,
we will introduce the concept of the reactive species interactome as it applies to RBCs, how
oxidants are produced in RBCs and how they are detoxified, the role of RBCs in systemic
NO and sulfide metabolism, and their cross-talk.

2. Role of RBCs in Systemic Redox Regulation—Oxidant Generation and
Antioxidant Systems

RBCs contain complex redox systems that are indispensable for the preservation
of cellular integrity, the control of cellular metabolism, and the modulation of cellular
shape and flexibility [6]. Predominantly, the generation of ROS in RBCs arises from the
autoxidation of oxyhemoglobin. This process transitions the iron from its typical ferrous
state (Fe2+) to a ferric state (Fe3+), resulting in the formation of methemoglobin (metHb)
and superoxide anion radical (O2

•−). This shift greatly diminishes the oxygen affinity
of the prosthetic group of hemoglobin and is followed by protein degradation. Given
the substantial concentration of hemoglobin within RBCs (32 to 36 g/dL), this reaction
significantly contributes to ROS formation. However, Hb-Fe3+ can be reverted back to Hb-
Fe2+ via cytochrome b5 reductase, using NADH as an electron donor [6]. Iron can also be
released from metHb during its degradation, and—if not scavenged by ferritin [17]—it is a
potent generator of ROS, mainly by reactions involving O2

•− radicals or H2O2, culminating
in the production of highly reactive hydroxyl radicals and hydroxyl anions. Interestingly,
both Hb-Fe2+ (oxy/deoxyHb) and Hb-Fe3+ can react with hydrogen peroxide (H2O2). This
reaction forms ferryl hemoglobin (Hb-Fe4+=O), which is a highly oxidizing species that
generates secondary radicals and ultimately liberates free iron. For a detailed discussion of
these reactions, please refer to older but excellent reviews [18,19]. RBCs are also recognized
for their ability to produce NO under both normoxic and hypoxic conditions [20]. NO
may also react with O2

•− to produce peroxynitrite, but its formation in RBCs has not
been studied.

Hence, it is essential for RBCs to possess robust antioxidant systems, both enzymatic
and nonenzymatic, which can neutralize these reactive species and sustain their intracellular
levels to a minimum. These systems can be divided into three categories.The first category
consists of antioxidant molecules and redox pairs, including reduced/oxidized glutathione
(GSH), ascorbate/dehydroascorbate, and α-tocopherol [6]. GSH, a linear tripeptide, can
occur in the reduced form (GSH) or in the oxidized form (GSSG, a dimer of two GSH
molecules). The ratio of GSH/GSSG in RBCs is utilized to estimate the redox state of an
organism; typically, reduced GSH constitutes 90–95% of the total GSH [4,5,21,22]. Ascorbate,
also referred to as vitamin C, serves as a crucial antioxidant in RBCs. The redox pair
ascorbate/dehydroascorbate plays a vital role in sustaining redox homeostasis within
RBCs by reducing metHb and oxidants that diffuse into the cell membrane [23]. Vitamin
E, or α-tocopherol, is another significant antioxidant within RBCs. It is found within the
membranes of RBCs due to its lipophilic properties [24].The second category consists of
redox equivalents, such as NADH and NADPH, which play a crucial role by providing
reducing equivalents for enzymes catalyzing redox reactions. They are reduced during
glycolysis and the pentose phosphate pathway. The deficiency of glucose or malfunction
of pentose phosphate pathways can severely impact the membrane integrity and redox
homeostasis of RBCs [25–28].

The third category involves enzymatic antioxidant systems that are crucial for the
survival and proper functioning of RBCs [29]. A series of detoxifying enzymes is found
in RBCs, including catalase, peroxiredoxin 2, glutathione peroxidase, and glutaredoxin.
For instance, catalase and glutathione peroxidase catalyze the conversion of H2O2 into
water [30]. Peroxiredoxin and thioredoxin (which is needed to recycle peroxiredoxin)
detoxify mainly lipid peroxides in the membrane [31], and play a fundamental role in
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RBC redox homeostasis in vivo [32]. Glutaredoxins are responsible for keeping thiols in
a reduced state; they were isolated from RBCs almost 30 years ago, but their role is still
elusive [33,34].

The key function of the enzymatic and nonenzymatic redox antioxidant systems found
in RBCs is to keep hemoglobin in a reduced form, thereby preserving its ability to bind
oxygen. By limiting the generation of metHb, these systems reduce ROS generation and
protect the cellular membrane lipids, proteins, channels, and metabolic enzymes from
oxidative stress.

Furthermore, an additional fourth category of multifunctional or “moonlighting”
enzymes participate in the overall redox homeostasis by coordinating and fine-tuning
antioxidant response, iron homeostasis, and energy metabolism. In RBCs, these include
the glyceraldehyde 3-phosphate dehydrogenase (GAPDH), which forms a membrane
“metabolome” complex at the N-terminus of Band3/anion exchange 1 (AE-1) together
with glycolytic enzymes and cytoskeletal proteins, and can migrate into the cytoplasmic
compartment in dependency of the pO2 [35,36]. Under oxidative stress conditions and
during RBC storage (for example, in transfusion units), the oxidation of Cys152 and His179
in the catalytic pocket of GAPDH alters its metabolic function and leads to a metabolic
switching from glycolysis towards the pentose phosphate pathway [37].

Deficiencies in these antioxidant systems can lead to cellular damage and dysfunction
derived from the oxidation of redox switches found in cytoskeletal proteins (like spectrin,
ankyrin, protein 4.2, and actin), leading to a loss of membrane integrity, altered RBC
deformability, and hemolysis [38]. Genetic mutations of these proteins are linked with
severe conditions like hemolytic anemia [6]. Moreover, these modifications also occur
during RBC storage and are defined as a “storage lesion” [26]. Very elegant proteomics and
metabolomics studies carried out in recent years have revealed how pO2, protein–protein
interactions, redox state, and metabolic control are intimately intertwined and modulate the
redox physiology of RBC [37,39]. In addition, these studies may also provide new ways to
prevent the “storage lesion” and prolong the therapeutic applicability of transfusion units,
which is of fundamental importance in the therapy of different forms of severe anemia and
blood loss in the clinic.

3. Role of RBCs in Systemic NO Metabolism

RBCs play a pivotal role in regulating the systemic availability and bioactivity of NO
by scavenging, binding, and metabolizing NO and its metabolites [20]. In this way, RBCs are
an important contributor to the concentrations of other NO metabolites in plasma, including
nitrate, nitrite, nitrosothiols (RSNO), and nitrosamines (RNNO). The NO metabolites also
show bioactivity as they can release NO (via enzymatic and nonenzymatic reactions) and
cause vasodilation, and thereby can affect the cardiovascular system [40–44]. There is also
evidence that nitrite may have signaling effects on its own by modulating the activity of
downstream targets, including protein kinase A [45,46].

RBCs may regulate the pool of circulating NO metabolites via various mechanisms,
mainly involving reactions with hemoglobin or eNOS-derived NO formation [20,47]. Oxy-
hemoglobin (oxyHb) captures eNOS-derived NO from the vascular endothelium under
normoxic conditions in a rapid reaction that leads to the formation of nitrate, thus limiting
and fine-tuning the bioactivity of endothelial NO. Under hypoxic conditions, deoxyhe-
moglobin can also react with NO, forming nitrosyl hemoglobin (HbNO), which is more
stable under these conditions. HbNO has been proposed as an indicator of NO bioavail-
ability in RBCs [48]. HbNO was also indicated as being an intermediate for the formation
of S-nitroso hemoglobin, which, in turn, initiates a cascade of transnitrosation reactions
transferring the nitroso group from one cysteine to the next and mediates hypoxic vasodila-
tion [49–51]. In ex vivo experiments, the nitrosation of the membrane protein spectrin aids
in preserving RBC deformability under oxidative stress [52]. Deoxyhemoglobin reduces
nitrite to NO under hypoxic conditions [53–55]. This nitrite reductase activity of deoxy-
hemoglobin was shown to induce NO-dependent vasodilation under hypoxic conditions,



Antioxidants 2023, 12, 1736 5 of 10

thus offering more evidence that RBCs indeed partake in the vasodilation of vessels and do
not merely serve as NO sinks.

RBCs also express an active eNOS, which is, therefore, another source of NO produc-
tion and is active under normoxic conditions [10]. There is compelling in vivo evidence that
endogenous NO production by eNOS in RBCs affects both circulating NO metabolites and
blood pressure [56,57]. Chimera mice obtained from the transplantation of bone marrow
from eNOS KO into irradiated WT mice showed decreased circulating NO metabolites and
elevated systolic blood pressure and mean arterial pressure [56]. Recently, we generated
a mouse model lacking eNOS in RBCs obtained by crossing eNOSflox/flox mice with mice
expressing a Cre recombinase under the control of the hemoglobin beta chain promoter
(HbbCrepos mice) [57]. These mice showed hypertension and increased systemic vascular
resistance, accompanied by decreased HbNO levels in RBCs, decreased nitrite/nitrate,
and hypertension.

We also generated mice carrying eNOS in RBCs only and lacking eNOS in all other
tissues (RBC eNOS KI mice), which we obtained by crossing mice carrying a duplicated
and inverted exon 2 (conditional eNOS KO mice) and two pairs of loxP sequences with
the HbbCre mice; in the presence of the Cre recombinase, the exon 2 is “flipped”, and
eNOS expression is restored. The reactivation of eNOS expression in RBCs rescued the
hypertension phenotype and the levels of HbNO in RBCs. These data demonstrate that
RBCs play a fundamental role in blood pressure regulation and NO metabolism.

4. Role of RBCs in Systemic Sulfide and Persulfide Metabolism

The role of sulfide metabolism in the canonical and noncanonical functions of RBC
and/or their dysfunction has never been investigated specifically. However, independent
studies have shown that RBCs can scavenge, transport, metabolize, and release sulfide and
its metabolites (including thiosulfate, persulfates, and polysulfides) [11]. Therefore, RBCs
are likely to play a central role in overall sulfide physiology and pharmacology, similar to
their role in NO metabolism.

RBCs rapidly uptake and scavenge high concentrations of sulfide both ex vivo and
in vivo [11]. It is very likely that RBCs may contribute in this way to prevent its toxic
accumulation in the bloodstream, as proposed already at the beginning of the last cen-
tury [58–61].

At physiological pH, sulfide primarily exists as an anion HS−, and to a lesser extent, as
dissolved H2S. In RBCs, sulfide can permeate cell membranes, entering RBCs via the anion
exchange protein Band3/AE1, which catalyzes a net acid flux exchanging HCO3

− [59].
Interestingly, HCO3

− has a lower affinity for Band3/AE-1 as compared to HS−. This
explains why, in buffered suspensions, RBCs rapidly take up H2S/HS− [59,62]. As a
consequence, the uptake of sulfide by RBCs may modulate the pH of the cells and their
supernatants. If these effects are also present in vivo, sulfide intake in RBCs may potentially
modulate the overall homeostasis of pH in the body.

Under physiological conditions, oxyhemoglobin does not undergo a reaction with
sulfide. At very high concentrations, millimolar amounts of sulfide react with oxyhe-
moglobin to form a stable green compound sulfhemoglobin [63–67]; the reaction requires
the presence of oxidative agents and is slower. Intriguingly, sulfhemoglobin is not formed
under physiologically relevant conditions, and its production is solely witnessed in RBCs
in vivo subsequent to the administration of oxidizing pharmaceuticals (like phenacetin)
together with sulfur-containing compounds, like hydroxylamine sulfate, sulfur dioxide,
and others [11].

Notably, methemoglobin forms a reversible metHb-SH− complex with sulfide at
more physiologically relevant concentrations, a finding first documented by Kellin in
1933 [68] and later reproduced by others [69,70]. The metHb-SH− adduct was shown to
slowly decompose to yield inorganic polysulfides, HS2O3

−, and does not react further in
the presence of millimolar concentrations of low-molecular-weight thiols, like Cys and
GSH [12,69,71].
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Recent investigations carried out in intact RBCs have shown that sulfide reacts with
metHb to form a metHb-SH− intermediate and produces polysulfide and thiosulfate [12].
Interestingly, the sulfide reactivity with metHb varies in intact cells compared to cell-free so-
lutions. In cell-free hemoglobin solutions, the metHb-SH− complex is fairly stable. Instead,
in intact cells, the rapid decomposition of the metHb-SH− complex leads to the forma-
tion of deoxyhemoglobin and, in the presence of oxygen, oxyhemoglobin (deoxy/oxyHb).
Thus, according to these experiments, treating RBCs with sulfide leads to the reduction
of methemoglobin to deoxy/oxyHb. Clearly, there must be cellular mechanisms within
RBCs that facilitate metHb-SH− reduction since this occurs in intact cells only and not in
hemoglobin solutions.

In vivo, metHb is ubiquitously present in high concentrations within healthy RBC
(ranging from 100 to 300 µM), comprising 1–3% of the total hemoglobin concentration.
Therefore, metHb is a highly efficacious sulfide scavenger in vivo. As mentioned in the
second chapter of this review, the conversion of metHb (which has a low affinity for oxygen)
into deoxy/oxyHb (which is the oxygen-binding form) is carried out by a cytochrome C
reductase, and it is key for the physiological function of RBCs. The data discussed here
show that the same reaction occurs when RBCs are treated with sulfide. Accordingly,
sulfide has been shown to reduce heme-containing proteins of mammalian and inverte-
brate origin [72]. Thus, it is tempting to speculate that in this way, endogenous sulfide
may help maintain hemoglobin in an oxygen-binding state. This hypothesis needs to be
verified experimentally.

Interestingly, RBCs also express 3-mercaptopyruvate sulfotransferase (3-MST,
EC 2.8.1.2) [73], which may catalyze the formation of sulfur species and sulfide inside
the cells [69,74–79]. 3-MST metabolizes molecules containing sulfane sulfur, i.e., a sulfur
atom bound to another sulfur atom (RS-(S)n-R′). High 3-MST activity has been mea-
sured in RBCs, the liver, kidneys, and adrenal cortex [75–77]. Its endogenous substrate is
3-mercaptopyruvate (3-MP), which is generated from l-cysteine and α-ketoglutarate by a
cysteine aminotransferase. The main function of 3-MST is to transfer the sulfur atom of
3-MP to acceptors like cyanide, sulfite, and sulfinate, producing soluble compounds for
detoxification. This process involves two steps: the formation of MST-bound persulfide and
H2S. 3-MST also uses HS2O3

- as a substrate to produce sulfite and enzyme-bound sulfane
sulfur. Patients with 3-mercapto lactate-cysteine disulfiduria and iron deficiency anemia
show higher activity as compared to other patient cohorts and healthy individuals [75,76].
However, the role of 3-MST in erythropoiesis, RBCs physiology, and pathophysiology
is unknown.

Besides 3-MST, RBCs contain high concentrations of several other enzymatic systems,
like the glutathione system and antioxidant enzymes, which are potentially involved in
sulfide/polysulfide metabolism [80–82].

There is evidence that RBCs might also participate in the biochemical and biological
interaction and “cross-talk” between NO and sulfide [11]. We have shown that NO-induced
methemoglobin (metHb) formation can be reversed by sulfide, which reconverts metHb
back to deoxy/oxyhemoglobin, effectively restoring the oxygen-carrying capacity [12].
Moreover, we found that sulfide treatment via continuous Na2S infusion increased nitrosyl-
Hb levels in RBCs in rats, indicating that sulfide boosts the formation of nitrosyl-Hb
(considered by some as a vasodilator) [14]. These findings point to an in vivo cross-talk
between NO and H2S in RBCs, which may occur via the formation of hybrid S/N molecules.
The role and effects of this NO/H2S cross-talk and its interaction with hemoglobin and
antioxidant enzymes on RBC physiology and function remain unknown and warrant
further investigation.

5. Summary and Perspective

This article discusses how the concept of the reactive species interactome pertains to
the complex redox biology and physiology of RBCs. At the center of the reactive species
interactome in RBC is hemoglobin and its different redox forms, i.e., the reduced form
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(oxy/deoxyHb) and the oxidized form (metHb). The degradation of metHb (which con-
stitutes 1–3% of all forms) is the main source of the production of superoxide and other
oxidants. This is efficiently and potently neutralized by a battery of antioxidant systems.
Moreover, oxy/deoxyHb are also involved in NO metabolism, as oxyHb scavenges NO,
and deoxyHb reacts with NO (forming HbNO) and produces NO from nitrite. An intracel-
lular source of NO in RBCs is eNOS, which may participate in the formation of NO adducts
of hemoglobin, like HbNO. RBCs, therefore, strongly contribute to the systemic regulation
of NO metabolism and bioactivity. In addition, metHb is involved in sulfide scavenging
and metabolism. Sulfide forms a stable adduct with metHb, which is then reduced—in
intact cells only—into deoxy/oxyHb. 3-MST is also a potential source of sulfide/persulfide
in RBCs, but its role is still elusive. The exact role that the reactive species interactome
plays in the regulation of RBC physiology and pathophysiology remains an open question
that needs further investigation.
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